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Modeling Distribution and Abundance of Antarctic Baleen
Whales Using Ships of Opportunity

Rob Williams1, Sharon L. Hedley2, and Philip S. Hammond2

ABSTRACT. Information on animal abundance and distribution is at the cornerstone of many wildlife and
conservation strategies. However, these data can be difficult and costly to obtain for cetacean species. The
expense of sufficient ship time to conduct design-unbiased line transect surveys may be simply out of reach
for researchers in many countries, which nonetheless grapple with problems of conservation of endangered
species, by-catch of small cetaceans in commercial fisheries, and progression toward ecosystem-based
fisheries management. Recently developed spatial modeling techniques show promise for estimating
wildlife abundance using non-randomized surveys, but have yet to receive much field-testing in areas where
designed surveys have also been conducted. Effort and sightings data were collected along 9 650 km of
transects aboard ships of opportunity in the Southern Ocean during the austral summers of 2000–2001 and
2001–2002. Generalized additive models with generalized cross-validation were used to express
heterogeneity of cetacean sightings as functions of spatial covariates. Models were used to map predicted
densities and to estimate abundance of humpback, minke, and fin whales in the Drake Passage and along
the Antarctic Peninsula. All species’ distribution maps showed strong density gradients, which were robust
to jackknife resampling when each of 14 trips was removed sequentially with replacement. Looped
animations of model predictions of whale density illustrate uncertainty in distribution estimates in a way
that is informative to non-scientists. The best abundance estimate for humpback whales was 1 829 (95%
CI: 978-3 422). Abundance of fin whales was 4 487 (95% CI: 1 326–15 179) and minke whales was 1,544
(95% CI: 1,221–1,953). These estimates agreed roughly with those reported from a designed survey
conducted in the region during the previous austral summer. These estimates assumed that all animals on
the trackline were detected, but preliminary results suggest that any negative bias due to violation of this
assumption was likely small. Similarly, current methodological limitations prohibit inclusion of all known
sources of uncertainty in the favored variance estimator. Meanwhile, our approach can be seen generally
as an inexpensive pilot study to identify areas of predicted high density that could be targeted to: inform
stratified designs for future line transect surveys, making them less expensive and more precise; increase
efficiency of future photo-identification or biopsy studies; identify candidate time-area fisheries closures
to minimize by-catch; or direct ecotourism activities. The techniques are likely to apply to areas where
funding is limiting, where cetacean studies or wilderness-based tourism are just beginning, or in regions
where even a very rough estimate of animal abundance is needed for conservation or management purposes.

Key Words: abundance; Antarctic; baleen whale; cetacean; distance sampling; distribution; line transect;
platform of opportunity; spatial model

1Sea Mammal Research Unit, 2University of St. Andrews

http://www.ecologyandsociety.org/vol11/iss1/art1/
mailto:rmcw@st-andrews.ac.uk
mailto:slc@st-andrews.ac.uk
mailto:psh2@st-andrews.ac.uk


Ecology and Society 11(1): 1
http://www.ecologyandsociety.org/vol11/iss1/art1/

INTRODUCTION

Conservation of threatened species and management
of exploited ones call for reliable information on
distribution, abundance, and trends in abundance.
Quantitative research on marine species is important
for numerous, yet often conflicting, reasons. Marine
mammals are often of management and
conservation concern because they overlap spatially
and ecologically with what humans want from the
oceans (Trites et al. 1997). Cetaceans (whales,
dolphins, and porpoises), with their vast ranges,
represent a particular challenge for population
monitoring (Talbot 1974, Donovan 1986, Bowen
1997, Berggren et al. 2002a). They spend small
fractions of their time at the surface, and even then,
only small portions of the animals’ bodies are
visible. Although arboreal marsupials are also
cryptic and difficult to study (Lindenmayer et al.
2003), researchers can at least walk in their habitat.
Pelagic cetacean research requires a ship, so these
animals are not only difficult to study, but also costly
to study (Burns and Wandesford-Smith 2002,
Hammond et al. 2002).

Now consider, for example, the problem of by-catch
of small cetaceans in commercial fishing nets. This
problem is large, global, and growing (Northridge
and Hofman 1999, Berggren et al. 2002b).
Quantitative methods exist for assessing objectively
whether observed levels of by-catch are biologically
sustainable for a given population (Wade 1998), but
these require information on population size and an
estimate of the uncertainty associated with this
parameter. Without these estimates, managers are
in the unenviable position of having to balance the
risk of ignoring a potential conservation threat on
the one hand, against imposing unnecessary
financial pressures (such as time-area closures,
pingers or gear modification) on fishermen on the
other. This may create a scenario where managers
in affluent countries could choose to conduct
surveys to improve the precision or accuracy of
abundance estimates as by-catch levels deemed
unsustainable are neared. However, such surveys
may not be an option for researchers working in
other areas, despite a similar need for information
in order to manage or conserve marine resources
(Vidal 1993).

Cetacean biologists commonly use line-transect
sightings surveys in order to provide information on

abundance and distribution (e.g., Buckland et al.
2001). However, in their conventional form, line-
transect surveys should be designed to give all
points in the study area an equal probability of being
sampled (Buckland et al. 2001), with transects being
placed at random with respect to the distribution of
the animals being studied. Conceptually, this is easy
to do, but chartering a ship to conduct such a design-
unbiased survey can be costly, sometimes
prohibitively so.

When a survey design violates assumptions of equal
coverage probability, other methods are required.
One model-based approach is to use generalized
additive models (GAMs, Hastie and Tibshirani
1990) to describe animal density along the trackline
as smooth or linear functions of spatial or
environmental covariates, and then use that
relationship to predict density throughout the study
area. Spatial modeling methods using line-transect
survey data were developed by Hedley et al. (1999)
and Bravington (2002). These techniques allow
descriptive models of heterogeneity in whale
density to be fitted to line-transect-type data, but
without the requirement for random placement of
tracklines in the study area. Data from such surveys
could potentially be combined when fitting the
models, thus imparting information on how animals
use their habitat, and on how populations behave
over time, even when sample sizes from individual
surveys may be small.

An extreme case of surveys that fail to provide equal
coverage probability is presented by those
conducted from ships whose routes cannot be
determined by the researcher, namely ships of
opportunity. It would be useful to have inexpensive
methods to allow coarse information on abundance
and distribution to be obtained in cases where funds
are not available for chartering a suitable ship to
conduct a design-unbiased survey. Many
researchers have attempted to glean information
from so-called “Platforms of Opportunity,” where
the platform may be sighting logs (Braham and
Dahlheim 1982, Moore et al. 1999), whaling records
(Mizroch 1983, 1984, Gregr et al. 2000, Gregr and
Trites 2001), or ships from which both effort and
sightings were recorded (Northridge et al. 1995,
Marques 2001). On opportunistic surveys where
effort is recorded, not only is coverage non-random,
but also it is generated by other people’s needs,
rather than a quantifiable algorithm (and thus one
cannot simply weight observations based on
sampling inclusion probability in a Horvitz-
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Thompson-like estimator, e.g., Borchers et al.
1998a). Consequently, the concept of “coverage
probability” in terms of survey design is not
meaningful; the narrow covered region along the
ship’s course has certain coverage probability,
whereas everywhere else has zero coverage
probability. Design-based methods, which rely on
all points in the study area having equal or at least
estimable probability of coverage, are therefore
inappropriate for data from platforms of
opportunity. These data can only be analyzed using
a suitable model-based technique, such as the GAM-
based spatial models presented in this paper.

Wilderness-based tourism is a global and growing
industry (Nelson 1994). More than 10 000 tourists
now visit Antarctica annually on expedition-style
natural history cruises aboard small, ice-
strengthened ships (International Association of
Antarctic Tour Operators 2000). As a fleet, these
ships provide reasonable coverage of the Scotia Sea
and Antarctic Peninsula region, straddling parts of
the International Whaling Commission (IWC)
Areas I and II (Fig.1). Undertaking sightings
surveys from a tourist ship that is already on the
water is an attractive option for scientists wanting
to study important areas that are otherwise
prohibitively expensive to access. The tourism
industry benefits as well from trained observers who
can teach passengers about the area, and provide
guests with the sense that they are facilitating
research that will aid conservation of Southern
Ocean wildlife. The importance of the Southern
Ocean to global cetacean conservation cannot be
overemphasized (Laws 1977). Commercial whaling
removed approximately two million whales from
the southern hemisphere between 1904 and 1980,
representing 80–95% of all great whales in the
region (Baker and Clapham 2002). Monitoring their
recovery is clearly important.

We collected line-transect survey data on cetaceans
from Antarctic ships of opportunity in the South
Atlantic sector of the Southern Ocean during the
2000–2001 and 2001–2002 austral summers. Our
primary goal was to provide an inexpensive
description of abundance and distribution of three
balaenopterid species: humpback (Megaptera
novaeangliae), fin (Balaenoptera physalus) and
Antarctic minke (B. bonaerensis) whales. Our
secondary goal was to illustrate the uncertainty in
our predicted animal distribution maps using
custom animations.

METHODS

An expanded description of the methods used is
found in App. 1 (including details about ship size
and platform height in Table 1).

Data Collection

Data were collected on eight trips between 3
December 2000 and 14 March 2001, and on six trips
between 5 December 2001 and 12 February 2002
(Table 2). All our trips started or ended in Ushuaia,
Argentina (Fig. 1), and lasted from 6 to 24 days.
Two ships were used during the first season, and a
third ship in the second season.

Effort

Data were collected from the highest accessible
point (the “primary platform”) on each of the three
ships used in this study (Table 1). At the beginning
and end of each data session, a handheld GPS unit
was used for recording time, ship’s location, course,
and speed. Information was recorded on factors that
could affect sighting conditions, including sea state,
cloud cover, and precipitation, and a subjective
visibility code estimated the range at which a minke
whale might be visible. Effort data were collected
every 30 min thereafter, or more frequently if
sighting conditions changed or if the ship made a
marked change in course or speed. One of us (RW)
was present during all data collection sessions.
Consequently, although the ship represents a
platform of opportunity, the effort and sightings
were collected using standardized survey methods
by a trained observer, rather than by tourists.

Sightings

When a cetacean school was spotted, it was assigned
a sighting number. An angle board mounted on the
deck railing was used to measure radial angle to the
sighting, and a visual estimate was made of the
range. Radial distance estimates were corrected
subsequently using photogrammetric experiments
described in Williams (2003). Ship location and the
time of the sighting were recorded, and binoculars
were used to confirm species and school size.
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Fig. 1. Study area in the context of International Whaling Commission (IWC) Antarctic baleen whale areas.
Most trips left from Ushuaia, Argentina or Port Stanley, Falkland Islands [Islas Malvinas]. Trips to the
Antarctic Peninsula were more common than those to South Georgia, necessitating a post hoc designation
of an Antarctic Peninsula–Drake Passage stratum (left of the dotted line) and a Scotia Sea (right of the
dotted line) stratum.
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Table 1. Height of the primary observation and secondary (duplicate tracking) platforms aboard three ships
of opportunity used in this study.

Platform height (m)

Ship Primary Secondary

Mariya Yermolova 14 12

Lyubov Orlova 14 12

Explorer 12 10

Data Analysis

Modeling detection probability and estimation of
mean school size

Exploratory analysis of the sightings data was
conducted in Distance 4.0 Release 2 (Thomas et al.
2002). Detection probability for each species was
modeled as smooth functions of perpendicular
distance (x). Candidate forms for the detection
function were the hazard-rate and half-normal
models (Buckland et al. 2001). Data were analyzed
as though all whale schools directly on the trackline
were spotted, that is, the so-called g(0)=1
assumption (Buckland et al. 2001). [Preliminary
double-platform trials (Borchers et al. 1998b)
showed that 92%–99% of these large animals were
detected on the trackline, that is that g(0) ranged
from 0.92 for minke whales to 0.99 for fin whales,
so violation of this assumption was unlikely to have
introduced serious bias (Williams 2003).] School
size and sea state were included as candidate
covariates, and model selection was guided by
Akaike’s Information Criterion (AIC; Akaike
1973). All other things being equal, large schools
are detectable at greater distance than small schools.
To address this, the default regression approach
used in Distance 4.0 was used (Thomas et al. 2002).
The selected detection function was extracted from
Distance and used in R ( http://www.r-project.org) 
for spatial modeling. These analysis methods are
described in greater detail in App. 1.

Spatial Modeling from Line-transect Survey
Data

Building descriptive models

The effort and sightings data were modeled using
the “count” method (Hedley et al. 1999). Tracklines
from each data collection session were divided into
segments approximately 2 nautical miles (nm) in
length. A previous simulation study (Hedley 2000)
indicated that this was a suitable segment length to
capture the heterogeneity in encounter rate for
Antarctic baleen whales, but also that the count
method was highly robust to variation in segment
length. Start and end locations of the segments were
calculated using the Geofunc add-in (Laake 2001)
for EXCEL 2000®.

The location of the midpoint of each segment
(latitude, LatMid, and longitude, LonMid) was
calculated, along with two additional candidate
explanatory variables. The first of these, depth, was
calculated in ARCINFO® using a digital
bathymetric database for the study area, DBDB-V
Database
https://128.160.23.42/dbdbv/dbvquery.html. The
second variable was the distance from each segment
to the nearest coastline, mindist. Spatial models do
not model density directly largely because of
problems linking density to an appropriate
distributional form of the response variable. A
solution to this problem involves including the area
searched as an offset term in the model. School
density in a segment, di, is estimated by:
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Table 2. Search effort.

Season Ship Start Date Primary Secondary Primary Duplicate

1 2001 Yermolova 3 Dec 17 Dec 926 0 26 0

2 2001 Yermolova 20 Dec 27 Dec 411 0 11 0

3 2001 Yermolova 30 Dec 22 Jan 1298 462 87 40

4 2001 Orlova 24 Jan 30 Jan 180 0 1 0

5 2001 Orlova 2 Feb 9 Feb 342 0 11 0

6 2001 Orlova 11 Feb 16 Feb 297 0 2 0

7 2001 Orlova 19 Feb 26 Feb 680 0 27 0

8 2001 Orlova 1 March 14 March 1013 46 34 10

9 2002 Explorer 5 Dec 11 Dec 341 0 17 0

10 2002 Explorer 14 Dec 20 Dec 257 0 2 0

11 2002 Explorer 26 Dec 2 Jan 244 134 11 6

12 2002 Explorer 9 Jan 17 Jan 920 66 26 3

13 2002 Explorer 20 Jan 1 Feb 1745 171 80 9

14 2002 Explorer 4 Feb 12 Feb 1329 230 29 5

Total: 9981 1109 364 73

(1)

where ni is the number of detected schools in the
segment, li is the length of the segment, and

(2)

is the estimated probability density function
evaluated at zero perpendicular distance (Burnham
and Anderson 1976). By including the estimated
covered area of each segment as an offset term in
the model, offset = 

(3)

the response variable,

(4)

can be modeled as count data. It would be unrealistic
to expect whale schools to be spread randomly
throughout the region, so these counts should not
be modeled using a Poisson error distribution
(where the variance of each observation is assumed
to be equal to its mean). As in other similar studies
(e.g., Clarke et al. 2000, Forney 2000, Hedley 2000,
Marques 2001), we model the clustering in the data
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using quasi-likelihood, assuming that variance is
proportional to the mean, and thus accounting for
at least some of the over-dispersion present in the
data (compared with a Poisson distribution).
Although this technique does not alter the point
estimates compared with a Poisson assumption, it
should provide more realistic variance estimates.
Nevertheless, some residual small-scale, localized
correlation is likely to remain unmodeled. The
model was thus of the following general form:

(5)

where:

(6)

is a parameter to be estimated; and
zik represents the value of the kth explanatory spatial
variable in the ith segment, which is a smooth
function, sk, of the explanatory variable.

Note that if detectability varies within a segment (e.
g., because of varying sea states) this model may be
further generalized to:

(7)

where:
wi is the distances at which perpendicular sightings
were truncated in the ith segment; and

(8)

is the estimated probability of detection of a school
in the ith segment (i.e., estimated from f, which could
vary between segments according to the value of
covariates).

The models were fitted in the package mgcv (Wood
2001) available within the R software (R
Development Core Team 2003). Flexibility and
model term dropping were guided by the framework
recommended by Wood (2001, App. 1). Note that
mgcv uses Generalized Cross Validation for model
selection. Thus, the procedure automates a training
and cross-validation approach for choosing a
statistically defensible degree of smoothing, with
penalties for unnecessary flexibility.

Defining the Study Area

The study area is difficult to define a priori for
surveys conducted from ships of opportunity. In this
study, the tracklines themselves were used for post
hoc definition of the study area. A convex hull was
fitted around the tracklines in the Antarctic
Peninsula–Drake Passage stratum (Strindberg
2001; Fig. 1), where the bulk of the search effort
occurred and within which area coverage appeared
reasonable. This defined the area across which
whale density would be predicted. Although
sightings and effort data from the Scotia Sea stratum
(Fig. 1) were included in all descriptive modeling
steps, no attempt was made to predict in that stratum,
because coverage probability in the middle of that
stratum was zero. Including effort beyond the study
area provides good structure to the descriptive
model, and tames the tendency for flexible models
to extrapolate unrealistically high density at the
peripheries of study areas where coverage is poor
—a so-called “edge effect” (Clarke et al. 2000,
Bravington 2002). However, including this region
in the prediction grid’s convex hull would have
approached extrapolation rather than interpolation,
because all trips in our study were restricted to the
periphery of the Scotia Sea.

Predicting Whale Density throughout the
Study Area

A gridded data set was created, containing a value
in every grid cell for each explanatory variable in
the model. A square grid size of 5 km on a side (i.
e., 25 km2) was chosen for prediction. This was
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arbitrary, but constrained by two requirements: the
resolution had to be coarser than the segment length
(2 nm), but not large enough for values of the
explanatory variables to vary much within the cell.
Values for the explanatory variables (latitude,
longitude, depth, and distance offshore) were
calculated using the value at the midpoint of each
grid square. Extensive simulations (Hedley 2000)
revealed that model descriptions and predictions
were robust to variation in choice of grid size, but
the area of the grid square should be larger than that
of segments along the trackline.

The prediction grid data were passed to the
descriptive model selected for each species using
the predict.gam function in mgcv. The output of the
model was an estimate of the predicted number of
whale schools in each grid cell, based on each cell’s
latitude, longitude, distance offshore, depth, and
area. This predicted count was converted to density
for mapping purposes by dividing the count by the
area of each cell. Animal abundance was calculated
by multiplying the predicted density in each cell by
expected school size (from the size-bias regression
in the detection function modeling step; Buckland
et al. 2001) and by the area of each cell, and taking
the sum of all values in the grid.

Estimating Variance of Abundance Estimates

In conventional distance sampling surveys,
variance may be estimated from the sample variance
of independent transect lines (Buckland et al. 2001).
However, not only is it difficult to identify replicate
transects from data collected aboard ships of
opportunity (Marques 2001), but also the segments
of effort used in the spatial model cannot be assumed
to be independent, so analytical variance estimates
are inappropriate. Buckland et al. (2001)
recommended resampling the effort and sightings
data to obtain variance estimates in such cases.

Jackknife estimates of variance have been shown to
perform well in some spatial modeling applications
(Hedley 2000), but not universally so. The jackknife
may be thought of as an approximation of the
nonparametric bootstrap (Efron and Tibshirani
1986), but is likely to be biased unless the number
of resampling units is large. On the face of it, there
may be a large number of sampling units in our study
(e.g., days of search effort), but such units are not
likely to be independent. Although the number of
trips is small (14), each individual trip can be

thought of as independent, and in the absence of a
better alternative, the method we used to estimate
variance was the jackknife (Miller 1974, Efron
1979, Efron and Stein 1981), using each trip as the
resampling unit. Other resampling-type estimators
of variance were found to perform poorly (Williams
2003). Therefore, variance was estimated by
removing each trip’s effort and sightings data in
turn, with replacement, and analyzing the remaining
data to predict abundance. The 95% confidence
intervals of these 14 pseudovalues were calculated
using standard jackknife estimator methods
assuming a log-normal distribution (Buckland et al.
2001).

RESULTS

Searching Effort

Searching effort totaled approximately 10 000 km
(Table 2). Ship speed averaged 12 kn (23 km h-1,
0.15SE) during the survey. Searching was carried
out in Beaufort 4 conditions or better along 78% of
the trackline. Visibility was excellent (>2 km) for
94% of the search effort.

Sightings

A total of 364 sightings of cetacean schools was
observed. These are summarized by species in Table
3. The minimum number of sightings recommended
for modeling detection probability is 60–80 schools
(Buckland et al. 2001). Only three cetacean species
were seen this frequently: humpback—129 schools,
232 individuals; fin—80 schools, 207 individuals;
and minke—75 schools, 119 individuals.
Consequently, subsequent analyses were restricted
to these three species. An additional five schools
(approximately nine animals) were spotted, but not
identified to species. These were not included in the
analyses.

Humpback Whales

Exploratory data analysis suggested truncating the
perpendicular sighting distances at 2500 m. This
truncation distance was used to assess the fit of
different candidate detection functions. The model
that fitted the resulting humpback sightings data
best, as determined by AIC, was a hazard-rate key
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Table 3. Sightings of cetacean schools by species.

Species Schools Indiv.

Humpback whale (Megaptera novaeangliae) 129 232

Fin whale (Balaenoptera physalus) 80 207

Minke whale (B. bonaerensis) 75 119

Hourglass dolphin (Lagenorhynchus cruciger) 19 86

Killer whale (Orcinus orca) 14 61

Southern bottlenose whale (Hyperoodon planifrons) 14 34

Peale’s dolphin (L. australis) 9 46

Dusky dolphin (L. obscurus) 4 15

Southern right whale (Eubalaena australis) 4 7

Sei whale (B. borealis) 4 11

Long-finned pilot whale (Globicephala melas) 2 38

Cuvier’s beaked whale (Ziphius cavirostris) 2 4

Sperm whale (Physeter macrocephalus) 2 6

Strap-toothed whale (Mesoplodon layardii) 1 1

Unidentified cetacean spp. 5 9

function with no adjustment terms. There was
insufficient evidence in the data (based on AIC) to
justify including sea state as a covariate. Effective
strip half-width (esw) was estimated to be 1142 m
(SE = 105). Mean group size was estimated by a
size-biased regression to be 1.83 (SE = 0.07).

 Modeling density along the trackline

The selected model included the following
explanatory terms:

s(LatMid, 1.47) + s(mindist, 4) + s(depth, 4) + s
(LonMid, 3.87)

where the numbers in parentheses refer to the
estimated degrees of freedom for each term selected
by mgcv.

The effect of each variable on density, conditional
on the other variables being included in the model,
is shown in App. 2. The explanatory power of the
model was moderate; the adjusted R-square score
(Wood 2001) for the model was 0.129, and deviance
explained was 36.1%.
 
 Modeling humpback whale density and abundance
across the prediction grid

The model predicted a very strong density gradient
with the highest-density region predicted along the
west side of the Antarctic Peninsula (Fig. 2).
Humpback whale abundance in the best-covered
region of the study area was estimated to be 1829
animals.
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Fig. 2. Predicted density gradient of humpback whale schools in the best-covered region of the study area.
The scale bar on the right is in units of schools per nm2. Tracklines are shown as solid black lines, and
humpback sightings shown as red circles with radius proportional to school size.

The log-normal 95% confidence interval on
humpback abundance was 978–3422. Predicted
density gradient maps of humpback whale schools
were created at each jackknife iteration, and are
shown in Fig. 3. The area predicted to have the

highest density of humpback whale schools, the
western Antarctic Peninsula region, was identified
consistently at each iteration.
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Fig. 3. An animation showing variation in predicted density of humpback whales. Each frame of the
animation reflects an iteration of jackknife resampling: the removal of one trip’s effort and sightings data;
refitting the detection function on the remaining sightings; reevaluating size-bias corrected estimates of
mean school size; refitting the spatial model; and prediction across the grid. White patches within the
regions of high density reflect grid squares predicted to have >0.22 humpback whale schools/nm2. The
longest axis of the prediction grid (from the southern tip of South America to the northern tip of the Antarctic
Peninsula) is approximately 500 nm long. Note that, although the scale of the density gradient varies among
iterations, the placement of the highest-density area along the western Antarctic Peninsula is consistent.
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Fin Whales

Exploratory data analysis suggested truncating the
perpendicular sighting distances at 2000 m. This
truncation distance was used to model the detection
function, and the model that fitted the fin whale
sightings data best, as determined by AIC, was a
hazard-rate key function with no adjustment terms
and without sea state as a covariate. Effective strip
half-width was estimated to be 816 m (SE = 108).
The regression-based estimate of mean school size
was 2.44 (SE = 0.20).

 Modeling density along the trackline

The selected model included the following
explanatory terms:

s(LonMid, LatMid, 1.47) + s(mindist, 3.93) + s
(depth, 3.80)

where the first term represents a two-dimensional
smooth of latitude and longitude. The effect of each
variable on density, conditional on the other
variables being included in the model, is shown in
App. 3. Fin whale density tended to be low in water
depths shallower than 1000 m, and within 40 nm
from the nearest coastline. The explanatory power
of the model was moderate; the adjusted R-square
score for the model was 0.103, and deviance
explained was 37.9%.
 
 Modeling density and abundance across the
prediction grid

The model predicted a strong density gradient with
the highest-density region predicted in the Scotia
Sea (Fig. 4). Fin whale abundance in the best-
covered region of the study area was estimated to
be 4487 animals.

The log-normal 95% confidence interval on fin
whale abundance was 1326–15 179. Predicted
density gradient maps of fin whale schools were
created at each jackknife iteration, and are shown
in Fig. 5. Note that the predicted density of fin
whales was substantially more variable than that for
humpback whales, likely reflecting an edge effect
related to poor coverage in the highest-density
region of the study area.

Minke Whales

Exploratory data analysis revealed no long tail to
the perpendicular distance distribution, so no
truncation of perpendicular sighting distances was
needed in order to obtain an adequate fit. The
detection function that fitted the minke whale
sightings data best, as determined by AIC, was a
hazard-rate key function with no adjustment terms.
Effective strip half-width was estimated to be 663
m (SE = 91). The regression-based estimate of mean
school size was 1.209 (SE = 0.064).

 Modeling density along the trackline

The selected model included the following
explanatory terms:

LatMid + s(mindist, 3.03) + s(depth, 2.01) + s
(LonMid, 3.42)

i.e., latitude entered the model as a linear term
(which has one degree of freedom). The effect of
each variable on density, conditional on the other
variables being included in the model, is shown in
App. 4. Minke whale density showed bimodal
longitudinal peaks near 45ºW and 65ºW. The linear
term of LatMid had a slope of -0.30 (±0.12SE, p =
0.011), indicating that the marginal effect of latitude
on density was linear in a southward direction. The
explanatory power of the model was quite poor, with
an adjusted R-square score for the model of 0.105,
and deviance explained of 23.4%. In particular, the
model described the generally higher density
regions around the Peninsula quite well, but
provided an inadequate fit in the Drake Passage,
where minke whale sightings were made, but no
patches of higher density were predicted to occur.
Because of the high number of segments with no
sightings in the Drake Passage, the models were not
sufficiently flexible to fit the local concentrations
seen there well; rather the aim was to obtain maps
of the general trend in density in the region as a
whole. An increase in the flexibility allowed for
each smooth term in the model may have produced
a better fit, but may also have led to unrealistically
high variance estimates.
 
 Modeling density and abundance across the
prediction grid

The model predicted a strong density gradient with
a predicted high-density region spread along the
Antarctic Peninsula (Fig. 6). Minke whale
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Fig. 4. Predicted density gradient of fin whale schools in the best-covered region of the study area. The
scale bar on the right is in units of schools per nm2. Tracklines are shown as solid black lines, and fin whale
sightings are shown as red circles with radius proportional to school size.
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Fig. 5. An animation showing variation in predicted density of fin whales at each iteration. White patches
within the regions of high density reflect grid squares predicted to have >0.22 fin whale schools/nm2. The
longest axis of the prediction grid (from the southern tip of South America to the northern tip of the Antarctic
Peninsula) is approximately 500 nm long. Note that the area predicted to have the highest density of fin
whale schools showed more variability than was seen in humpback whales (Fig. 2), but was always predicted
to lie in offshore waters, running parallel to the Antarctic Peninsula.
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Fig. 6. Predicted density gradient of minke whale schools in the best-covered region of the study area. The
scale bar on the right is in units of schools per nm2. Tracklines are shown as solid black lines, and minke
sightings are shown as red circles with radius proportional to school size.
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Fig. 7. An animation showing variation in predicted density of minke whales at each iteration. All grid
squares were predicted to have <0.22 minke whale schools/nm2. The longest axis of the prediction grid
(from the southern tip of South America to the northern tip of the Antarctic Peninsula) is approximately
500 nm long. Areas close to shore, and in the icy waters off the northern tip of the Antarctic Peninsula
were predicted to have high densities of minke whales in each iteration.
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abundance in the best-covered region of the study
area was estimated to be 1544 animals.

The log-normal 95% confidence interval on minke
whale abundance was 1221–1953. Predicted
density gradient maps of minke whale schools were
created at each jackknife iteration, and are shown
in Fig. 7. These predictions consistently identified
high-density areas very close to shore, and off the
northern tip of the Antarctic Peninsula (Antarctic
Sound).

DISCUSSION

Spatial modeling of line-transect survey data
collected from ships of opportunity yielded
abundance estimates and predicted density maps for
three baleen whale species in the Antarctic. Our
looped animations of predicted animal density
represent a novel way to illustrate uncertainty in
estimates of both abundance and distribution to
interested stakeholders who are non-scientists. This
study demonstrates that there is merit in collecting
reliable distance sampling data from a non-
randomized survey with reasonable coverage,
modeling heterogeneity along the trackline, and
using the model to predict density throughout the
study area. The framework outlined here is an
appropriate way to gain useful information on
frequently seen cetacean species in other areas from
expedition-style cruise ships, fishing boats,
freighters, or other ships of opportunity in
understudied areas, or where lack of research
funding prevents researchers from conducting
design-unbiased surveys.

Distribution of Antarctic Balaenopterids and
Other Cetaceans

Maps of cetacean distribution can be useful for
guiding future research. The smooth density
surfaces predicted for humpback, fin, and minke
whales (Figs. 2, 4, and 6, respectively) could be used
in a variety of ways, providing that they accurately
reflect mean animal distribution during the survey.
Sequential exclusion of each of the 14 trips affected
the scale of the density gradient, but not its general
orientation (Figs. 3, 5, and 7). Information on whale
distribution and density plays a key role in
management and conservation. For example, if local
competition were suspected between commercial
krill harvest and krill-eating predators (Laws 1977),

krill catch quotas could be allocated spatially in
order to minimize it. One framework for assessing
evidence for competition was outlined by Boyd
(2002).

More generally, the identification of high-density
areas could assist efforts to minimize by-catch of
threatened species, or to set aside a protected area
that satisfies the energy requirements of the
population (Hooker et al. 1999). Places where
whales are reliably seen can form core areas for
wilderness-based tourism. Whalewatching is an
important and growing industry worldwide (Hoyt
1997). Well managed, it promises to be a sustainable
source of income for many displaced fishermen and
for members of remote coastal communities.

But identification of high-density areas also plays
an important iterative role in cetacean research
itself. Studies that do not require a randomized
sampling design routinely benefit from identifying
high-density areas that can be targeted in future.
This would increase the efficiency of photo-
identification and biopsy studies. Identifying core
areas, and directing research effort within them,
were important contributions to the well-known and
long-term studies of resident killer whale (Orcinus
orca) populations of the northeast Pacific (Bigg et
al. 1990, Baird and Whitehead 2000, Ford et al.
2000). Similarly, studies on spatial and temporal
distribution (Hooker et al. 1999) and association
patterns (Gowans et al. 2001) of northern bottlenose
whales (Hyperoodon ampullatus) benefited from
finding and targeting a high-density area, The Gully,
off Nova Scotia, Canada. Spatial modeling can be
thought of as a rapid and objective way to identify
such hotspots.

Finally, pilot studies such as this can be used to map
density gradients that aid the design of future line-
transect surveys. By surveying across known
density gradients, one avoids conflating real spatial
variation in animal density with sampling
variability. Knowledge of animal distribution can
also guide stratification of future line-transect
survey designs, with more effort being allocated to
high-density areas. Informed decisions about
transect placement and stratification will generally
increase the precision of abundance estimates from
future surveys. As a result, distribution maps such
as the ones we present can be an end point in
themselves or simply an aid to future survey design,
depending on the research questions being asked,
and on the financial resources at hand.
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Abundance of Antarctic Balaenopterids

It is important to know, but difficult to assess,
whether the absolute abundance estimates predicted
by our spatial models were unbiased. Irrespective
of survey design, the most obvious form of negative
bias in any line-transect survey is the assumption
that individuals at zero perpendicular distance were
detected with certainty. Violation of this so-called
g(0)=1 assumption can occur in two ways: not all
animals were available to be detected (“availability
bias”); or observers failed to detect all available
animals (“perception bias,” Marsh and Sinclair
1989). Consequently, the g(0) assumption is likely
to hold strictly true only for highly visible and
frequently surfacing animals, whose exhalations
make them detectable at the surface several times
while within an observer’s field of view. We
referred earlier to our experimental data (Williams
2003), which indicated that detection probability for
animals surfacing on the trackline actually ranged
from 0.92 (minke whales) to 0.99 (fin whales).
Consequently, perception bias was likely to have
resulted in only minor underestimation of absolute
abundance.

Similarly, our abundance estimates are likely to be
biased low because availability bias is not accounted
for, but we believe that this bias is likely to be small
as well. Diving data can be used test this contention.
A recent review of common (i.e., Balaenoptera
acutorostrata, rather than Antarctic, B. bonaerensis)
minke whale diving behavior by the IWC Scientific
Committee reported a mean surfacing rate of 49.2
s-h (IWC 2005 (App. 6)). In our study, minke whales
were detected at a maximum radial distance of 2950
m, and a mean of 760 m. At an average ship speed
of 12.6 kn, this corresponds to minke whales
surfacing a maximum of seven times and an average
of two times within the field of view. Thus,
availability bias was likely to be low. The double-
platform experiments discussed previously (Williams
2003) revealed that observers detected 92% of
minke whales that were visible on the trackline.
Thus, minke whales presented observers with
several opportunities to detect them (i.e.,
availability bias was small), and when whales were
at the surface, observers rarely missed detecting
them (i.e., perception bias was small).

Although humpbacks (Dolphin 1987) and fin
whales (Jahoda et al. 2003) surface less frequently
on average than minke whales do, their blows are
visible at a much greater distance. Using the steps

outlined above, we calculated roughly that
observers had one to four opportunities to detect
humpbacks and fin whales within the average and
maximum field of view, respectively. Our double-
platform data suggest that the probability of
detecting a whale that surfaced on the trackline was
even higher for fin and humpback whales (0.95 and
0.99) than for minke whales (0.92). Thus,
availability and perception bias were likely very
small for these species as well.

These very rough estimates were calculated using
respiration data from whales in the northern
hemisphere, but the exercise suffices to demonstrate
our point, that negative bias was likely to be small
for these species. The same would not hold true for
less conspicuous species, or for animals that dive
much longer than these three balaenopterid species.
Indeed, g(0) will be lower for more cryptic or
longer-diving species, or under poorer survey
conditions. For example, Barlow and Sexton (1996)
reported an estimate of g(0) = 0.87 for the deep-
diving sperm whale (Physeter macrocephalus). As
these emerging techniques continue to be
developed, however, statisticians will incorporate
robust ways of addressing missed trackline
detection into spatial modeling methods (Bravington
2002, 2004).

Until such new methods are available and proven,
we used two subjective approaches to gauge the
accuracy of our point estimates of abundance. The
first was a series of internal checks. Point estimates
of abundance varied by only 10%–20% when
adding and dropping model terms, considering two-
dimensional vs. one-dimensional smooths, or
increasing model flexibility. The second, external
approach to gauging accuracy of these abundance
estimates was to compare estimates with those from
designed surveys. There is no “ground truth” against
which these estimates could be judged, because the
study area was defined post hoc from the search
effort (and, therefore, was not designed explicitly
to be comparable with other surveys), and because
true abundance is rarely known.

But one suitable data set for comparison is that
collected on the CCAMLR-IWC Krill Synoptic
Survey in January–February 2000, the year before
the first season in our study (Hedley et al. 2001).
The CCAMLR-IWC cetacean data were collected
along a grid of systematically placed tracklines
across a large section of the South Atlantic sector
of the Southern Ocean. The CCAMLR-IWC study
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covered a roughly rectangular region from
approximately 49°W to 71°W, and from 60°S to 67°
S. Thus, the earlier study area was roughly 2.5 times
the size of ours, but located in the southern half of
our study area (Fig. 1). The region of overlap
between the two studies was found to be an area of
high density for minke and humpbacks, and a region
of relatively low density for fin whales. Given this,
we would expect that the CCAMLR study would
yield abundance estimates a few times greater than
ours for humpback and minke whales. We would
expect our fin whale estimate to be higher than the
CCAMLR estimate, because our study sampled
north of 60°S, and found areas of high fin whale
density.

A spatial model was developed to model humpback,
fin, and minke whale distribution from the
CCAMLR-IWC data (Hedley et al. 2001). In fact,
the CCAMLR-IWC estimate of 6991 animals was
approximately 3.8 times our estimate of 1829. The
CCAMLR-IWC estimate of 7395 minke whales was
4.8 times as high as our estimate of 1544. Our fin
whale estimate of 4427 whales was approximately
three times as high as the CCAMLR-IWC estimate
of 1492. These calculations represent very
simplistic comparisons of very complex systems:
indeed, not all whales return to the feeding grounds
annually, so neither study’s estimates should be
interpreted as “truth.” However, in all three cases,
the differences were in the direction of the trend
predicted. And the differences are on the order of
magnitude that one would expect given estimated
differences in study area size, and observed inter-
specific differences in animal density. Thus, we
conclude that our methods provided a rough but
unbiased estimate of the average whale abundance
in the region during the two austral summers of the
study. Including both years in the study was
necessary because of sample size constraints, but
may have introduced additional variability.
Ongoing work using these platforms will allow us
to assess in future inter-annual variability in whale
density in this region, as well as factors that
influence inter-annual variability in animal
distribution.

It should be noted that this study aimed to provide
estimates of absolute abundance. An alternative use
of these platforms might have been to collect
estimates of relative abundance (e.g., presence/
absence, encounter rate, or density). The use of
platforms of opportunity for collecting information
on relative abundance is well established, and it has

been shown that opportunistic platforms (or other
indirect measures of abundance such as levels of
by-catch) can be used to make inferences about
population trends over time. In such cases, the goal
ought to be to keep sources of bias (such as trackline
detection probability) constant over time rather than
minimizing bias. However, our study is novel in that
it demonstrates that such platforms can allow
researchers to estimate how many animals are in a
given area. Estimates of absolute animal abundance
are critical for, inter alia, calculating acceptable
levels of anthropogenic mortality, or for quantifying
predator needs before setting fishing quotas.

Variance of Abundance Estimates

Reliable estimation of the variance of abundance
estimates from the spatial models is a difficult, and
as yet unresolved, statistical challenge (Hedley et
al. 1999, Forney 2000, Marques 2001, Bravington
2003). Using the same data collected in this study,
Williams (2003) investigated four methods of
estimating variance (bootstrapping vs. jackknifing,
using Trip and Day as resampling units), resulting
in 95% confidence intervals that differed by as much
as an order of magnitude. In addition, the bootstrap
estimates of variance showed substantial positive
bias (i.e., the confidence limits did not contain the
point estimate).

Given the competing interests of independence
(resampling methods) and good spatial coverage
(spatial modeling), the best compromise for this
study was the jackknife estimator using each trip as
the resampling unit. This provided the most
reasonable estimates of variance. This finding
echoes previous recommendations, which found the
jackknife to perform well in a spatial modeling
framework (Hedley 2000, Marques 2001). Clearly,
further research is needed in this area, however, the
confidence intervals we report represent a good first
step. Although the reliability of our favored variance
estimator is hindered by the small number of
independent resampling units, the confidence
intervals are likely to be unbiased, and they do
incorporate uncertainty from all the primary sources
of variation: detection function fitting; group size
bias; and GAM-fitting. One area of ongoing
research is to extract confidence intervals from the
unexplained variance in the model-fitting process
as a whole, but these methods will take some time
to be developed and tested (Bravington 2002, 2003,
2004). In the meantime, we encourage researchers
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who try these methods to collect as much data as
possible.

In summary, these data indicate that the best
abundance estimates currently available in the study
area during the time of the survey were 1829 (95%
CI: 978–3422) humpback whales, 4487 (95% CI:
1326–15 179) fin whales, and 1544 (95% CI: 1221–
1953) minke whales.

Using Ships of Opportunity for Collecting and
Modeling Line-transect Data

The key distinction between collecting data from a
platform of opportunity and using an opportunistic
data set is that in the former, the platform is
opportunistic, but the researcher can ensure that
study design and data collection are rigorous and
dedicated. The same may or may not be true of study
design and data collection in an existing,
opportunistic data set. Researchers using free
platforms must be prepared to be flexible, because
what one gains financially and logistically, may be
lost in terms of control over study design. However,
in addition to using ships of opportunity for
measuring distribution and abundance, line-transect
data from non-randomized surveys can be very
useful for traditional habitat modeling exercises.

The number of candidate environmental covariates
in a spatial modeling framework is potentially large,
and may include variables of direct relevance to
whales, such as temperature, ice cover, and prey
density. In addition to identifying how many
animals are in an area, and how they are distributed,
spatial modeling methods can describe associations
to help us understand why whales are found where
they are, or at least provide testable hypotheses
about distribution. We strongly encourage the use
of these platforms for collecting information on
habitat preference and distribution of other marine
wildlife, such as turtles, seabirds, and pinnipeds.
However, in terms of estimating absolute
abundance, we note that the detectability of these
taxa is likely to be much lower than for baleen
whales, whose blows are detectable on the scale of
kilometers.

Synopsis

By incorporating information on the strip width
effectively searched, our approach allows
researchers to predict absolute abundance of
wildlife in a study area, as well as preferred habitat
within that area. Spatial modeling of line-transect
data will allow surveys to be undertaken from ships
of opportunity in regions where abundance and
distribution data currently do not exist. Even
abundance estimates on the correct order of
magnitude may be of great value to researchers
establishing conservation priorities in developing
countries, and to managers in any country in the case
of understudied taxa. As tourism expands globally
to target currently untouched regions, it will be
important to gain as much information from those
platforms as possible.

GAM-based models enable estimation of the
number of animals in a spatially flexible way, which
will enable us to combine disparate surveys to detect
changes in distribution and abundance over time.
We encourage the use of the package mgcv for such
methods, because it incorporates cross validation,
and requires user-driven input in model selection.
We welcome ongoing efforts to develop more
rigorous variance estimators, but urge researchers
to identify the most appropriate methods to quantify
uncertainty in the meantime on a case-specific basis.

These data were collected, and some insight gained
in the process, using minimal funds, and the
volunteer efforts of people on a ship that was
heading to Antarctica regardless of whether a
scientist was on board. Other wilderness-based
tourism platforms may be equally useful for
conservation studies in understudied regions.
Future work should consider the use of these ships
to collect data that allow modeling of variables of
biological relevance, namely those that influence
animal distribution directly, rather than as habitat
proxies. Habitat variables such as temperature, ice
cover, salinity, and prey density can all be explored
in a spatial modeling framework. When these data
can be collected from a ship of opportunity, they
should be. In a spatial modeling framework, line-
transect data (i.e., effort, sightings, perpendicular
distance, and relevant covariates) collected from
free survey platforms become much more
informative than sightings alone, and the techniques
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are likely to have wide application to areas where
financial resources are limiting and where
population-level cetacean studies are just
beginning.

Responses to this article can be read online at:
http://www.ecologyandsociety.org/vol11/iss1/art1/responses/
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Appendix 1. Expanded Methods Section.

Please click here to download file ‘appendix1.pdf’.
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APPENDIX 2. Smoothed components (solid line) of four explanatory variables (x-axes) used in the fitted
GAM and the response variable, density of humpback whale schools. Each explanatory variable was allowed
up to 9 df, and degree of smoothing was automated by mgcv. Each x-axis contains a rugplot, where small
ticks mark locations of observations. Regions of high whale density are identified by values above zero on
the y-axis. Note the different scale of each y-axis, which is labeled s(covariate name, estimated degrees of
freedom). The dashed lines represent ±2 standard errors, or roughly 95% confidence intervals.
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APPENDIX 3. One two-dimensional (LonMid, LatMid) and two one-dimensional (depth + mindist)
smoothing splines (solid line) of the fitted GAM (x-axes) and the response variable, density of fin whale
schools. Each explanatory variable was allowed up to 9 df, and degree of smoothing was automated by
mgcv. Each x-axis contains a rugplot, where small ticks mark observed values. Regions of high whale
density are identified by values above zero on the y-axis. Note the different scale of each y-axis, which is
labeled s(covariate name, estimated degrees of freedom). The dashed lines represent ±2 standard errors,
or roughly 95% confidence intervals.
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APPENDIX 4. Smoothed components (solid line) of three explanatory variables (x-axes) used in the fitted
GAM and the response variable, density of minke whale schools. Each explanatory variable was allowed
up to 9 df, and degree of smoothing was automated by mgcv. Each x-axis contains a rugplot, where small
ticks mark locations of observations. Regions of high whale density are identified by values above zero on
the y-axis. Note the different scale of each y-axis, which is labeled s(covariate name, estimated degrees of
freedom). The dashed lines represent ±2 standard errors, or roughly 95% confidence intervals.
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