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ABSTRACT. City growth and changes in land-use patterns cause various important social and
environmental impacts. To understand the spatial and temporal dynamics of these processes, the factors
that drive urban development must be identified and analyzed, especially those factors that can be used to
predict future changes and their potential environmental effects. Our objectives were to quantify the
relationship between urban growth and its driving forces and to predict the spatial growth pattern based on
historical land-use changes for the city of Los Ángeles in central Chile. This involved the analysis of images
from 1978, 1992, and 1998 and characterization of the spatial pattern of land-use change; the construction
of digital coverage in GIS; the selection of predictive variables through univariate analysis; the construction
of logistic regression models using growth vs. nongrowth for 1978–1992 as the dependent variable; and
the prediction of the probability of land-use change by applying the regression model to the 1992–1998
period. To investigate the influence of spatial scale, we constructed several sets of models that contained
(1) only distance variables, e.g., distance to highways; (2) only scale-dependent density variables, e.g.,
density of urban area within a 600-m radius; (3) both distance and density variables; and (4) both distance
and density variables at several spatial scales. The environmental variables were included in all models.
The combination of distance and density variables at several scales is required to appropriately capture the
multiscale urban growth process. The best models correctly predict ~90% of the observed land-use changes
for 1992–1998. The distance to access roads, densities of the urban road system and urbanized area at
various scales, and soil type were the strongest predictors of the growth pattern. Other variables were less
important or not significant in explaining the urban growth process. Our approach, which combines spatial
modeling tools and GIS, significantly advances the understanding of urban growth patterns, provides an
important contribution to urban planning and management, and can be applied widely.

Key Words: land-use change; logistic regression; Los Ángeles, Chile; mid-cities; spatially explicit
modeling; urban growth patterns

INTRODUCTION

Urban growth factors

City growth and changes in land-use patterns have
various social and environmental impacts,
including the loss of natural spaces, increased
vehicular congestion, landscape fragmentation and
homogenization, the loss of highly productive
agricultural lands, alterations in natural drainage
systems, and reduced water quality (Pickett and
Cadenasso 1995, Pickett et al. 1997, 2001, Breuste
et al. 1998, Bella and Irwin 2002, Berling-Wolff and
Wu 2004a, Pauchard et al. 2006). In addition to the

many positive effects of urbanization such as
economies of scale and accessibility to education
and culture, there are also negative externalities
such as congestion, pollution, and criminality. As
urban areas expand, the advantages of compact
cities are progressively lost (Gordon and
Richardson 1997). Thus, for example, the positive
effect of agglomeration that comes from reducing
transport costs is becoming less important (Glaeser
1998). The combination of a larger and more mobile
population with city growth has reduced the quality
of life for important segments of the population
(Marsh 1991, Sabatini 1998). However, because the
world population is growing, urbanization will
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unavoidably continue. It is thus important to
understand the underlying mechanisms of city
growth to mitigate the negative aspects of
urbanization.

Although there are many global factors that explain
recent evolution in cities, e.g., national and
international market growth and economic
globalization, local factors contribute to urban
development in the form of specific traits. One of
these is the population’s socioeconomic situation,
which encompasses demographic processes, social
status, ethnicity, education and income levels,
housing availability, and land-use policies (Azócar
et al. 2007). In fact, some researchers have explained
the development of new residential neighborhoods
on rural land, as well as that of industrial and storage
areas, through the construction of highways and new
access routes (Hylton 1995, Parker 1995). Thus,
accessibility is still considered to be one of the
factors that best explains the development of urban
service, commerce, and industrial activities, as well
as residential and recreational projects (Newman et
al. 1992, Azócar et al. 2007). Herbert and Thomas
(1982) suggested that urban sprawl has commonly
been controlled by communication networks and
accessibility. Therefore, main access routes
constitute important attractors for urban activities
and generate different urbanization patterns. Recent
studies in two Chilean cities, Chillán and Los
Ángeles, showed constant expansion of both cities
away from their historic downtowns, but not away
from the main access routes (Azócar et al. 2003,
2007, Henríquez et al. 2006).

Mid-cities

Mid-cities is a new concept in the social sciences
and is connected to territorial development policies.
At the global level, urban centers having between
20,000 and 2,000,000 inhabitants are considered to
be mid-cities; this range varies by cultural,
territorial, demographic, and economic context
(Bellet Sanfeliu and Llop Torné 2004) and
fluctuates between 50,000 and 1,000,000 for Chile
and Latin America in general (Rodríguez and Villa
1998, Sabatini 1998). Regardless of the population
range considered, these cities play an enormous role
globally. Approximately 62% of the world’s urban
population resides in cities with less than 1 x 106 
inhabitants (Bellet Sanfeliu and Llop Torné 2004).

Although population criteria provide some clarity
with regard to these cities, they are incomplete

without the concept of intermediation, which gives
meaning to the definition of mid-cities. Urban
intermediation refers to the city’s role in topological
structuring, that is, its integration and articulation
functions over vast territories. In addition, with
respect to scale, mid-cities are characterized by easy
management and fewer social conflicts and
environmental problems (Bellet Sanfeliu and Llop
Torné 2004). Research on the Chilean cities of
Valdivia (Borsdorf 2000), Puerto Montt (Rovira
Pinto 2000), Temuco (Romero and Toledo 2000),
and Los Ángeles (Azócar et al. 2003) shows
agreement on the importance of mid-cities as
centers of regional and provincial administration,
provision of services to the hinterlands, and
industrial transformation of natural resources.
Chilean mid-cities are especially interesting
because some have had higher growth rates than the
large cities, particularly in the most recent
intercensus periods (González 1994, Rodríguez and
Villa 1998, Sabatini 1998).

Modeling changes in urban land use

The study and evaluation of urban growth patterns
and the forces driving their transformation require
the management and use of spatial analysis,
statistics, and GIS techniques. These techniques are
necessary for understanding the complex dynamics
of these processes and their multiple causal factors
(Wu 1998, Pijanowski et al. 2002, Berling-Wolff
and Wu 2004b). In fact, these techniques help to
identify spatial patterns and predict and/or simulate
future changes or tendencies (Qi and Wu 1996, Wu
1998, de Koning et al. 1999, Berling-Wolff and Wu
2004b). Models for land-use change have been
developed into a powerful tool for spatial analysis,
mostly oriented at (1) exploring the various
mechanisms that drive land-use change and the
social, economic, and spatial variables leading to
change (de Koning et al. 1999); (2) projecting the
potential environmental and socioeconomic
impacts of changes in land use (Alig 1986,
McDonnell and Pickett 1993, Foresman et al. 1997,
Theobald et al. 1997); and (3) evaluating the
influence of different policies and management
regimes on development and land-use patterns
(Bockstael et al. 1996).

Models of land-use change rely on simple
parameters, including the urban area’s present
extension, main transport routes, distances to
workplaces and goods, topographical conditions,
and the existence of land with special conditions, e.
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g., protected areas. The main purpose of modeling
is to identify the physical and socioeconomic factors
that determine or condition pressure for land-use
change at the urban–rural interface (White and
Engelen 2000). The two prevalent approaches to
modeling spatial land-use change patterns are
regression-based models and models based on
spatial transition (Theobald and Hobbs 1998,
Brown et al. 2002, Pijanowski et al. 2002). In the
former approach, a relationship is established
between a wide range of predictive variables and
the probabilities of land-use change; the latter
approach is an extension of Markov’s aspatial
technique and a form of stochastic cellular
automaton (Zhou and Liebhold 1995).

The objective of regression-based models is to
establish functional relationships within a set of
appropriate spatial variables that are then used to
predict the locations of changes in the landscape.
The influence of these local factors on land-use
change is traditionally modeled using the distance
decay function in which the strength of the influence
decreases as the distance increases (LaGro and
DeGloria 1992, Theobald and Hobbs 1998). The
approaches usually taken in regression-based
modeling are linear, i.e., logistic regression,
nonlinear, i.e., linked to neuronal networks, or
generalized and additive (Brown et al. 2002,
Pijanowski et al. 2002).

We used logistic regression modeling to quantify
the relationship between urban growth in the mid-
city of Los Ángeles and its causal factors at a fine
scale with a resolution of 30 m and to predict the
spatial patterns of this growth. We placed special
emphasis on investigating the role of spatial scales
by using scale-dependent neighborhood density
variables that measured, for example, road density
at neighborhoods of various distances from the focal
point, and by considering two random growth
models operating at scales of 3000 and 500 m from
the city perimeter. A random growth model was
required to select areas that did not grow for
comparison to the areas with observed growth using
logistic regression.

METHODS

Study area

The city of Los Ángeles is located in central Chile’s
Biobío Region (37º30’ S, 72º20’ W), 500 km south
of the capital city, Santiago. Demographically, with

123,500 inhabitants, it is considered a mid-city. In
the most recent intercensus period of 1992–2002,
the city’s population grew at an annual rate of 2.6%,
which was double the population growth rate of
Santiago for the same period. Data from population
censuses from 1940 to 1992 show growing
participation by Los Ángeles in the total township
population and even in the total provincial
population of Biobío Province. In 1940, 40.1% of
the township’s population resided in the city of Los
Ángeles; by 1992 this proportion had increased to
67.4%. In other words, a notable process of
population concentration has occurred in the city of
Los Ángeles in recent decades (Henríquez et al.
2006, Azócar et al. 2007). Agricultural and forestry
activities dominate the natural environment of Los
Ángeles (Fig. 1), which is situated on deep and well-
drained soils, with slopes that do not surpass 5%. In
general, Los Ángeles is the main urban center in
Biobío Province and is where the principal
commercial, financial, and service activities are
concentrated.

Spatial database

A spatial database was generated for 1978, 1992,
and 1998 using georeferenced digital aerial
photographs. Thematic coverage maps were
obtained using photointerpretation techniques and
included urban and rural land use; roadway
infrastructure; commercial, health, and educational
amenities; and financial services. The digital
coverage of the water network, contours, and soil
types was obtained from official cartographic
sources such as base maps from the Military
Geographic Institute (Instituto Geográfico Militar)
and orthophotos from the Natural Resource
Research Center (Centro de Investigación de
Recursos Naturales). This digital information was
stored and managed in ArcView 3.3 (ESRI,
Redlands, California, USA) and IDRISI 14.02
(Clark University, Worcester, Massachusetts, USA)
GIS software. All spatial data were transformed to
raster formats with 30 × 30-m cell sizes.

Changes in urban land use

Changes in urban land use were quantified by
analyzing aerial photographs of the city of Los
Ángeles from 1978, 1992, and 1998 (Fig. 2A). For
the periods 1978–1992 and 1992–1998, we obtained
maps showing cells changing from nonurban to
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Fig. 1. Study area location in Chile and land use classification in 1998.

urban and cells remaining nonurban. Transitions
from urban to nonurban did not occur, and cells that
were already urban were excluded, but were used
to derive predictive variables such as distance to the
city perimeter. The process of growth and urban
change was quantified using transition matrices.
The matrix axes represented land-use categories
between periods; the matrix cells represented the
number of pixels that changed from one category to
another; and the matrix diagonal represented pixels
that did not undergo any changes during the study
period (López et al. 2001).

Variable identification and preparation

To quantify the relationship between urban growth
and its causal factors, we related the map of 1978–
1992 land-use change (Fig. 2B) to a set of predictor
variables that was selected a priori using
hypothesized environmental relations based on our
current knowledge of the urbanization process in
Los Ángeles. A priori variable selection is important
in model selection to avoid data mining and for the
use of only those variables that can be interpreted
(Burnham and Anderson 1998, Johnson and
Omland 2004). An appropriate binary response
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Fig. 2. (A) Urban area in 1978, 1992, and 1998. (B) Observed spatial growth pattern from 1978 to 1992.
(C) Random spatial growth pattern for a growth surface of 3000 m used to select cells with no growth
for the binary response variable of the logistic regression model. The random growth pattern was created
by dividing the area with urban growth between 1978 and 1992 into fragments smaller than 150 cells
(13.5 ha) and distributing them randomly without overlap within an area < 3000 m from the 1978 city
perimeter, i.e., the potential urban growth surface. (D) Random spatial growth pattern for a growth
surface of 500 m. The random growth pattern was created analogously to that in (C) using a maximum
distance of 500 m from the 1978 city perimeter.
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variable was constructed from the observed growth
pattern (Fig. 2B), and general linear models
(Burnham and Anderson 1998) with binomial
distributions for binary response variables, i.e.,
logistic regression, were used to derive models that
predict the probability of urban growth depending
on the various predictor variables. The significance
of the predictor variables provides information on
their importance in determining urban growth
processes, and the model can be used to predict the
spatial pattern of growth.

Variables hypothesized to act as driving forces of
urban growth were selected from prior studies of
Los Ángeles and other mid-cities of central Chile
(Borsdorf 2000, Romero and Toledo 2000, Rovira
Pinto 2000, Azócar et al. 2003) and from the analysis
of a temporal series of aerial photographs. These
variables were then classified according to their
interaction with the observed areas of urban growth
as (1) distance variables, indicating distances to
certain elements such as roadway infrastructure or
the city perimeter; (2) neighborhood variables,
indicating the scale-dependent densities of certain
elements such as roadway infrastructure within a
circular area of specific radius from a focal point);
or (3) environmental variables, indicating the
presence, absence, or value of environmental factors
that may limit or strengthen urban growth (Table 1).

Distances were calculated using a proximity
analysis in which each 30 × 30 m cell was assigned
the minimal distance to a determined element such
as cells with access roads, industrial areas, or an
existing middle-class neighborhood. In contrast,
scale-dependent neighborhood density variables
were calculated using a circular moving window
algorithm (Schadt et al. 2002, Naves et al. 2003)
that assigned the mean value of the variable within
a circular area of specific radius to the focal cell. By
moving the circle over the entire grid, we obtained
a value of the variable for each cell of the grid. The
effect of scale on the results was evaluated by
considering radii of 150, 300, 600, 900, and 1200
m; these radii ranged from the immediate
neighborhood to about one-half of the city
perimeter.

Statistical analysis

Random growth models

Logistic regression requires the use of a binary
response variable. A value of 1 corresponds to an

occurrence of the variable of interest, e.g., change
in land use from nonurban to urban (e.g., Fig. 2B,
gray area); a value of 0 corresponds to the
nonoccurrence of the variable, e.g., no change from
nonurban to urban (e.g., Fig. 2B, black area). We
constructed the response variable from the observed
growth pattern using several steps.

In the first step, we assigned a value of 1 to all 30 ×
30 m cells that had a land-use change from nonurban
to urban; all other cells were assigned a value of 0,
corresponding to no change in land use. However,
there were many more cells with no growth than
with growth, which presented the problem of how
to appropriately reduce the number of cells with a
value of 0. There are several possibilities, and the
appropriate selection depends on the aim of the
model and the characteristics of urban growth. Most
urban growth occurred in the neighborhood of areas
that were already urbanized, but occasionally an
isolated area up to 3000 m from the city’s perimeter
was urbanized (Fig. 2A). Therefore, cells that were
too far from the city’s perimeter were excluded from
those with a value of 0. However, because the
maximal distance from the city’s perimeter that was
accepted to include cells with a value of 0 may
critically influence the outcome of the model, we
selected two different sets of cells with a value of 0
at distances of 3000 and 500 m from the city’s
perimeter, hereafter called the “random growth
model.”

The selection of the 3000-m distance accepted cells
with no growth from a relatively wide area around
the city’s perimeter, including agricultural,
grassland, and forest areas (Fig. 2C). The 3000 m
was the maximum distance of any cell with growth
from the city’s perimeter during the study period
(Henríquez et al. 2006). This selection may allow
the identification of coarse factors determining
urban growth because it may include environmental
conditions with an a priori low likelihood of growth.
However, cells in the immediate neighborhood of
the city in 1978 had a high probability of diffusion
growth (Fig. 2A). To explore more subtle factors
discriminating growth and no growth in these areas,
we used the second random growth model with the
smaller maximal distance of 500 m from the city’s
perimeter (Fig. 2D).

To obtain an equilibrated number of cells with
values of 0 and 1, we could randomly select a
number of cells with a value of 0, i.e., as many as
the observed number of cells with a value of 1, from
the areas with no growth within the 3000- or 500-
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Table 1. Derived variables considered in the statistical analysis and their mean values in cells with growth
and no growth of the independent variable (see Fig. 3B,D).

 
Variable Abbrevia

tion
S3000† S500‡ Mean ±

SD growth
S3000

Mean ±
SD no

growth S3

000

Mean ±
SD growth

S500

Mean ±
SD no

growth S500

(A) Distance variables, giving distance from:

Urban road network dstcam **§ **§ 186.10 ± 
190.69

463.18 ± 
367.21

187.96 ± 
189.91

283.91 ± 
179.26

Urban perimeter dstcdad **§ **§ 618.24 ± 
650.14

1750.60
± 653.56

668.27 ± 
712.51

987.69 ± 
919.75

City center dstctro ** 2064.95
± 1075.02

3616.52
± 942.41

2130.69
± 1131.07

2213.59 ± 
1130.32

Amenities and services dsteqp ** 1038.46
± 661.54

2019.96
± 702.52

1089.50
± 730.06

1278.59 ± 
952.16

Rivers and estuaries dstrio 527.40 ± 
330.30

587.66 ± 
475.48

514.31 ± 
334.78

503.15 ± 
378.81

Highways dsttcam2 **§ 1822.10
± 1463.23

2346.69
± 1656.24

1781.42
± 1481.91

1858.52 ± 
1715.29

Access roads dsttcam3 **§ **§ 697.79 ± 
745.80

1757.97
± 1150.80

740.68 ± 
853.68

1067.01 ± 
1118.25

Urban roads dsttcam4 ** **§ 1115.58
± 1137.25

2439.46
± 1226.03

1132.58
± 1145.02

1437.83 ± 
1154.69

Rural roads dsttcam5 703.17 ± 
504.29

675.20 ± 
431.02

711.44 ± 
495.14

730.66 ± 
533.61

Railroads dsttcam6 **§ 2147.59
± 1468.42

2834.98
± 2058.15

2200.15
± 1460.59

2530.94 ± 
1557.03

Lower-class neighborhoods dsttcdad1 ** ** 1155.64
± 1072.99

2538.05
± 1000.03

1211.59
± 1093.77

1571.19 ± 
1132.19

Middle-class neighborhoods dsttcdad2 ** ** 1533.30
± 1032.63

2966.30
± 1054.04

1592.29
± 1072.05

1971.42 ± 
1214.91

Upper middle-class neighborhoods dsttcdad3 ** ** 1870.33
± 1219.67

3492.79
± 1122.31

1921.24
± 1268.27

2550.08 ± 
1239.95

Industrial areas dsttcdad4 ** 920.12 ± 
687.68

1916.29
± 706.11

962.12 ± 
761.21

1224.26 ± 
1045.47

(B) Neighborhood variables, giving density of:

Urban road network at 150 m dncam05 **§ **§ 7.20 ± 7.43 2.93 ± 5.79 7.22 ± 7.63 3.07 ± 5.74

(con'd)
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Urban road network at 300 m dncam10 **§ **§ 6.61 ± 4.44 2.83 ± 3.66 6.54 ± 4.57 3.65 ± 4.04

Urban road network at 600 m dncam20 **§ **§ 5.73 ± 3.01 2.66 ± 2.34 5.72 ± 3.08 4.61 ± 2.35

Urban road network at 900 m dncam30 **§ **§ 5.73 ± 2.28 2.80 ± 1.79 5.69 ± 2.37 4.80 ± 1.77

Urban road network at 1200 m dncam40 **§ **§ 5.81 ± 2.18 2.99 ± 1.45 5.76 ± 2.23 4.65 ± 1.60

Urban area at 150 m dncdad05 **§ **§ 6.38 ± 14
.68

0 5.99 ± 14
.51

0.42 ± 2.53

Urban area at 300 m dncdad10 **§ **§ 9.57 ± 16
.58

0.02 ± 0.29 9.08 ± 16
.63

1.98 ± 5.65

Urban area at 600 m dncdad20 **§ **§ 13.23 ± 1
6.81

0.29 ± 1.97 12.74 ± 1
7.09

6.29 ± 9.92

Urban area at 900 m dncdad30 ** ** 15.36 ± 1
6.01

0.79 ± 3.54 14.92 ± 1
6.31

8.39 ± 11.25

Urban area at 1200 m dncdad40 ** ** 16.97 ± 1
5.47

1.47 ± 4.64 16.51 ± 1
5.81

9.15 ± 11.45

Amenities and services at 150 m dneqp05 0.03 ± 0.18 0 0.03 ± 0.19 0

Amenities and services at 300 m dneqp10 ** **§ 0.03 ± 0.10 0 0.04 ± 0.11 0.01 ± 0.05

Amenities and services at 600 m dneqp20 ** 0.03 ± 0.06 0.00 ± 0.01 0.03 ± 0.06 0.03 ± 0.05

Amenities and services at 900 m dneqp30 ** 0.05 ± 0.07 0.00 ± 0.02 0.05 ± 0.08 0.04 ± 0.05

Amenities and services at 1200 m dneqp40 ** ** 0.07 ± 0.10 0.01 ± 0.02 0.07 ± 0.10 0.04 ± 0.06

Lower-class neighborhoods at 150 m dntcdad105 ** ** 3.04 ± 9.91 0 2.50 ± 8.74 0.18 ± 1.89

Lower-class neighborhoods at 300 m dntcdad110 ** **§ 4.94 ± 11
.19

0.02 ± 0.29 4.29 ± 9.93 0.77 ± 4.59

Lower-class neighborhoods at 600 m dntcdad120 ** ** 7.33 ± 11
.01

0.20 ± 1.57 6.88 ± 10
.68

2.48 ± 7.07

Lower-class neighborhoods at 900 m dntcdad130 ** ** 7.97 ± 9.54 0.39 ± 2.09 7.56 ± 9.48 3.55 ± 6.69

Lower-class neighborhoods at 1200 m dntcdad140 ** ** 7.61 ± 8.04 0.67 ± 2.51 7.22 ± 7.96 4.12 ± 6.26

Middle-class neighborhoods at 150 m dntcdad205 **§ 1.22 ± 7.67 0 1.30 ± 8.08 0.02 ± 0.24

Middle-class neighborhoods at 300 m dntcdad210 **§ 1.40 ± 7.82 0 1.49 ± 8.52 0.13 ± 1.01

Middle-class neighborhoods at 600 m dntcdad220 **§ 1.96 ± 6.71 0.01 ± 0.15 1.97 ± 7.11 0.52 ± 1.94

Middle-class neighborhoods at 900 m dntcdad230 **§ 2.68 ± 6.46 0.08 ± 0.66 2.61 ± 6.50 1.02 ± 2.82

Middle-class neighborhoods at 1200 m dntcdad240 ** **§ 3.33 ± 5.74 0.20 ± 1.37 3.22 ± 5.81 1.82 ± 3.72

Upper middle-class neighborhoods at 150
m

dntcdad305 0.44 ± 3.74 0 0.32 ± 2.26 0

Upper middle-class neighborhoods at 300
m

dntcdad310 **§ 0.57 ± 3.02 0 0.49 ± 2.57 0.08 ± 0.69

(con'd)
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Upper middle-class neighborhoods at 600
m

dntcdad320 **§ **§ 0.80 ± 2.57 0 0.76 ± 2.37 0.23 ± 1.63

Upper middle-class neighborhoods at 900
m

dntcdad330 **§ **§ 1.22 ± 2.84 0 1.22 ± 2.74 0.32 ± 2.17

Upper middle-class neighborhoods at
1200 m

dntcdad340 ** **§ 1.64 ± 3.01 0 1.65 ± 2.97 0.33 ± 1.90

Industrial area at 150 m dntcdad405 **§ **§ 1.68 ± 6.54 0 1.87 ± 6.84 0.22 ± 1.69

Industrial area at 300 m dntcdad410 **§ 2.67 ± 7.46 0 2.81 ± 7.57 1.01 ± 3.40

Industrial area at 600 m dntcdad420 ** 3.14 ± 5.71 0.07 ± 0.54 3.12 ± 5.72 3.07 ± 5.18

Industrial area at 900 m dntcdad430 **§ 3.49 ± 4.68 0.32 ± 1.18 3.53 ± 4.91 3.50 ± 4.21

Industrial area at 1200 m dntcdad440 **§ **§ 4.38 ± 4.76 0.60 ± 1.51 4.42 ± 5.01 2.89 ± 3.08

(C) Environmental variables

Elevation elevac **§ 139.51 ± 
9.37

142.52 ± 
10.86

139.80 ± 
9.29

141.10 ± 
9.97

Slope slope 0.26 ± 0.26 0.50 ± 1.47 0.28 ± 0.32 0.32 ± 0.59

Soil type suelo **§ **§ 2¦ 2¦ 2¦ 2¦

 Note: Variables followed by **§ were used to build the various logistic regression models.

†S3000, sampling based on a growth surface of 3000 m.
‡S500, sampling based on a growth surface of 500 m.
§Variables that were not strongly correlated with other variables (Spearman correlation coefficient <
0.65).
¦Modal class for categorical variables.
**P < 0.01, Mann–Whitney U test.

 

m radius around the city’s perimeter, hereafter
called the potential urban growth surface (Fig. 2C,
D). However, this was problematic because the
urbanization process typically proceeded in an
autocorrelated manner in blocks with a spatial scale
larger than the 30 × 30 m cell size used as the unit
of analysis (Fig. 2A). We therefore used an
alternative approach to construct the cells with a
value of 0 for the dependent variable. This approach
approximated the spatial structure of the observed
cells with a value of 1 to reduce the problem of
spatial autocorrelation. In short, we divided the area
with growth into fragments with a maximum size
of 150 cells (13.5 ha) and distributed these
fragments randomly without overlap within the

potential urban growth surface (Fig. 2C,D). Typical
construction units in Los Ángeles were not
individual houses, but rather new housing
developments or industrial facilities that comprised
several hectares, i.e., larger than the 30 × 30 m cells.
A detailed description of the algorithm used can be
found in Wiegand et al. (2006).

Spatial autocorrelation and sampling scale

Spatial autocorrelation of the dependent variable
may lead to pseudoreplication because the data are
not independent and will result in an increased
power, which produces overfitted models. To
evaluate the effect of autocorrelation and to define
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an appropriate sampling scale, a spatial
autocorrelation analysis was done on the proportion
of cells with growth. For this, the Pearson
correlation coefficient rP was calculated between
variables x(i) and y(i), where x(i) is the value of the
dependent variable at cell i and y(i) is the mean value
of the dependent variable inside a ring of radius r 
and width of one cell around cell i. This correlation
coefficient measures the spatial autocorrelation of
variable x with lag d (Schadt et al. 2002, Naves et
al. 2003). To reduce problems with severe spatial
correlation, we determined the spatial lag d at which
growth was not strongly correlated, i.e., a
correlation coefficient of rP < 0.65, and selected only
those cells that were sufficiently separated. For both
urban growth surfaces, the correlation coefficient
was < 0.65 for a spatial lag of five or more cells
(Fig. 3A,C). Thus, we reduced the effect of spatial
autocorrelation by using a systematic sample of 5 ×
5 cells, i.e., retaining only cells that were separated
by more than five cells, to represent the dependent
variable (Fig. 3A,C). The values and geographic
positions of the independent variables were then
chosen from the 463 and 472 remaining sample cells
for the 3000- and 500-m growth surfaces,
respectively (Fig. 3B,D).

Univariate analyses

Significant differences in the mean values of the
independent variables between cells with and
without growth were evaluated using the
nonparametric Mann-Whitney U test. This allowed
us to exclude some variables from the regression
analysis. Problems with multicolinearity between
independent variables were avoided by retaining the
variable that best explained the observed growth
from pairs of highly correlated, i.e., Spearman
correlation coefficient > 0.65, independent
variables.

Multivariate analyses

Variables from 1978 were used to adjust the logistic
regression for growth during the period 1978–1992.
To reduce the high number of possible models, we
performed four different regression analyses that
corresponded to different a priori selected
hypotheses and model structures. In the first model,
we hypothesized that environmental variables and
distance variables would be sufficient to describe
the observed urban growth. This corresponds to
traditional approaches in regression modeling (e.g.,
LaGro and DeGloria 1992, Pijanowski et al. 2002,

Allen and Lu 2003). In the second model, we
hypothesized that environmental variables and
neighborhood density variables at one appropriate
spatial scale would be sufficient to describe the
observed urban growth. To determine the
appropriate spatial scale of the neighborhood
variables, we repeated the analysis for all five scales
selected. This approach was recently used in
wildlife habitat suitability modeling (e.g., Schadt et
al. 2002, Naves et al. 2003). In the third model, we
tested whether the inclusion of both distance and
neighborhood density variables together with
environmental variables would describe the
observed urban growth better than the first two
models. In the fourth model, we allowed
environmental variables, distance variables, and
neighborhood density variables at different spatial
scales.

To evaluate which model and spatial scales best
explained the observed growth pattern, we
performed a variable reduction approach combining
stepwise ordinal logistic regression and best subset
selection based on the Akaike information criterion
(AIC; Burnham and Anderson 1998, Shtatland et al.
2001). We first used the stepwise model selection
technique for each of the 12 model structures and
spatial scales, if appropriate, taking the reduction of
the likelihood ratio as a criterion. Variables within
model structures were further reduced if they were
highly correlated; in the combined models, i.e., the
third and fourth models, we used only variables
selected in a simpler model, i.e., the first or second
model.

To select from among the remaining models the
scale and model that resulted in the best fit to the
data, we used the AIC. The AIC penalizes model
complexity, i.e., the number of explanatory
variables used in the model (Burnham and Anderson
1998). To aid in the interpretation of the model, we
also used Nagelkerke’s R² (Allen and Lu 2003). We
repeated all analyses for the two random growth
models, i.e., models based on the 3000-m growth
surface and models based on the 500-m growth
surface. The statistical analysis was performed
using SPSS for Windows, release 10.0.5.

Prediction

The results of the regression analysis were used to
predict the probability of urban growth in 1992–
1998 using the parameters of those models that
produced the best global fit according to the AIC.
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Fig. 3. (A) Spatial autocorrelation and scale definition for the 3000-m urban growth surface and (B)
systematic sampling of 5 × 5 cells used as the dependent variable based on the 3000-m urban growth
surface. (C) Spatial autocorrelation and scale definition for the 500-m urban growth surface and (D)
systematic sampling of 5 × 5 cells used as the dependent variable based on the 500-m urban growth
surface.
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The predictions were evaluated using transition
matrices that compared the predicted growth from
a given model (P > 0.5) with that observed in the
second study period of 1992–1998.

RESULTS

Urban growth factors and variables

The following six variables were selected as
independent variables explaining the urban growth
process: roadway networks, amenities and services,
residential and industrial areas, bodies of water, soil
type, and topographic characteristics. These basic
variables were used to generate a total of 52 derived
variables, which were grouped according to their
relationship with the areas of observed urban growth
in terms of distance variables, neighborhood
variables, and environmental variables (Table 1).

The superposition of the urban growth areas over
independent variables showed the growth pattern to
be closely related to the distance and density of
certain elements such as roads, amenities, and
residential and industrial areas and to the
characteristics of some environmental and
topographic factors. For example, all the sampled
cells with urban growth were distributed within a
range of 0 to 990 m from the urban roadway
network, and nearly half of these were located at
distances of less than 124 m from roads. Likewise,
the presence of certain types of soil favored urban
growth; growth occurred most frequently on type 2
soil, which is high-quality, productive agricultural
soil (Table 1).

Dynamics of urban land-use change

By analyzing the results of the transition matrices
(Table 2), it can be seen that the constructed urban
surface grew 65.5% between 1978 and 1992 with
respect to the 1978 urban area, spreading urban use
onto 533.3 ha of what was once predominantly
agricultural land. In the following period (1992–
1998), urban growth was 34% with respect to the
1992 urban area, increasing urban usage by 457.8
ha and once again occupying former agricultural
land. The rate of change of new urban land
incorporated into Los Ángeles between 1992 and
1998 at 76.3 ha/yr is double that between 1978 and
1992 at 38.1 ha/yr.

Urban growth modeling

Analysis of the observed growth pattern for 1978–
1992 for the 3000-m urban growth surface using a
Mann–Whitney test revealed that only five of the
52 variables considered did not show significant
differences between no growth and growth (S3000 in
Table 1). For example, the mean distance between
cells with urban growth and rivers was not
significantly different from the mean distance
between cells with urban growth and randomly
distributed cells without urban growth (P = 0.7; α 
= 0.01). The same was true for rural roads, slope,
and the two neighborhood variables of a radius of
5 and 150 m (Table 1). Thus, five variables were
eliminated. Additionally, seven distance and 14
neighborhood variables were eliminated because
they were highly correlated with the remaining
variables (Table 1). The 12 logistic regression
models were adjusted using the remaining 26
variables.

When repeating the above analysis for the 500-m
urban growth surface, we found that that 21 of the
52 variables considered did not show significant
differences between cells with and without urban
growth (S500 in Table 1). These variables were
related to, e.g., the distance to highways and
railroads, amenities and services, and the density of
middle-class neighborhoods and industrial areas.
Thus, 21 variables were eliminated. Additionally,
three distance and seven neighborhood variables
were eliminated because they were highly
correlated with the remaining variables (Table 1).
The 12 logistic regression models were adjusted
using the remaining variables.

Models with distance variables

Model m1d, based on the 3000-m growth surface,
contained six significant variables and reached an
R² of 0.67 (Table 3). The variables that contributed
most to the probability of urban growth were:
distance from access roads, distance from highways,
distance from the urban roadway network, and
distance from the urban perimeter. Of these,
distance from highways and distance from access
roads best explained growth in the fit to model m1d.
The environmental variables of soil and elevation
were also selected; they significantly explained a
large proportion of the model variance (Table 3A).

According to the adjusted parameters, β(i), of model
m1d, a negative relationship was observed between
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Table 2. Transition matrices of urban land use for (A) 1978 to 1992 and (B) 1992 to 1998. Values indicate
the number of urban and nonurban cells; the matrix diagonal indicates cells that did not undergo change
during the study period.

(A) 
1978

Nonurban Urban Total

Nonurban 284,764 284,764

Urban 5925 9041 14,966

1992

Total 290,689 9041 299,730

(B)
1992

Nonurban Urban Total

Nonurban 279,677 279,677

Urban 5087 14,966 20,053

1998

Total 284,764 14,966 299,730

the probability of urban growth and the distance
from certain elements. In other words, the greater
the distance, the lower the probability of land-use
change. The variables related to distance from
commercial, educational, and health amenities;
financial services; and the city’s historic downtown
were not entered into the model because they were
highly correlated with the variable of distance from
the urban perimeter and therefore were implicitly
incorporated within the latter variable. The same
was true for distance from lower-, middle-, and
upper-middle-class neighborhoods (Table 3A).

The analogous model fit using the 500-m urban
growth surface was considerablely poorer, yielding
an R² of 0.17 and an Akaike information criterion
(AIC) of 596, which was greater than the AIC of
332 of the model fit using the 3000-m urban growth
surface (Table 4A). Interestingly, the highly
significant variables of the 3000-m model of the
distance to access roads and the distance to
highways did not enter at the 500-m scale. The

remaining variables of model m1d that were able to
discriminate between growth and no growth were:
distance from the urban roadway network, distance
from the urban perimeter, and soil (Table 4A).

Models with neighborhood variables

The model based on the 3000-m urban growth
surface presenting the best global fit with respect to
the environmental and neighborhood variables were
estimated from variables constructed using a 40-cell
radius (1200 m) yielding an R2 of 0.58. The AIC
decreased with increasing scale from 495.5 in model
m2e5 with a 300-m neighborhood to 384.5 in model
m6e40 with a 1200-m neighborhood (Table 3B). The
model m4e20 with an AIC of 392, adjusted using
variables from the 20-cell radius (600 m), was also
noteworthy. However, the models using only
environmental and neighborhood variables yielded
a poorer fit than model m1d (AIC = 332, R2 = 0.67),
which was constructed using only distance and
environmental variables (Table 3B).
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Table 3. Results of the adjustment of the logistic regression using the 3000-m random growth model
according to variable blocks.

 
Model parameters

Model† AIC‡ R²§ Variable β(i) Standard
error

Wald P

(A) Distance variables only

m1d 332.0 0.6694 Distance from
urban road
network

–0.0026 0.0006 18.07 0.00002

Distance from
urban perimeter

–0.0011 0.0003 16.12 0.00006

Distance from
highways

–0.0012 0.0002 25.69 <0.00001

Distance from
access roads

–0.0013 0.0003 25.90 <0.00001

Elevation –0.1218 0.0341 12.78 0.00035

Soil type –0.2302 0.0774 8.85 0.00293

β0 23.8128 5.2988 20.20 0.00001

(B) Neighborhood variables only, with fixed scale

m2e5 495.3 0.3763 Density of
urban road
network at 150
m

9.4994 1.6703 32.34 <0.00001

Density of
urban area at
150 m

617.0347 1135.3707 0.30 0.58681

Soil type –0.3165 0.0706 20.09 0.00001

β0 0.2213 0.2233 0.98 0.32151

m3e10 431.6 0.4992 Density of
urban road
network at 300
m

19.3921 3.0979 39.18 <0.00001

Density of
urban area at
300 m

104.0760 34.2814 9.22 0.00240

Soil type –0.3411 0.0821 17.27 0.00003

β0 –0.3184 0.2642 1.45 0.22811

m4e20 392.0 0.5677 Density of
urban road
network at 600
m

29.2041 6.0233 23.51 <0.00001

(con'd)
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Density of
urban area at
600 m

33.4325 5.9790 31.27 <0.00001

Soil type –0.4111 0.0940 19.14 0.00001

β0 –0.6162 0.3118 3.90 0.04815

m5e30 403.2 0.5489 Density of
urban road
network at 900
m

73.6928 8.8314 69.63 <0.00001

Density of
urban area at
900 m

21.5670 7.1991 8.97 0.00274

Soil type –0.3979 0.0801 24.65 <0.00001

β0 –2.0723 0.3524 34.59 <0.00001

m6e40 384.5 0.5800 Density of
urban road
network at
1200 m

87.4612 11.3259 59.63 <0.00001

Density of
industrial area
at 1200 m

19.5602 6.6540 8.64 0.00329

Soil type –0.4020 0.0867 21.49 <0.00001

β0 –2.7073 0.4129 42.98 <0.00001

(C) Distance variables and neighborhood variables, with fixed scale

m7de05 318.3 0.6916 Distance from
urban perimeter

–0.0008 0.0003 7.15 0.00751

Distance from
highways

–0.0012 0.0002 26.76 <0.00001

Distance from
access roads

–0.0015 0.0003 32.48 <0.00001

Elevation –0.1254 0.0333 14.18 0.00017

Soil type –0.2608 0.0881 8.75 0.00309

Density of
urban road
network at 150
m

9.1671 2.3453 15.28 0.00009

Density of
urban area at
150 m

361.6225 1105.3059 0.11 0.74354

β0 22.9483 5.2292 19.26 0.00001

m8de10 300.1 0.7136 Distance from
highways

–0.0015 0.0002 46.40 <0.00001

Distance from
access roads

–0.0018 0.0002 64.15 <0.00001

(con'd)
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Elevation –0.1532 0.0296 26.73 <0.00001

Soil type –0.2899 0.0972 8.89 0.00286

Density of
urban road
network at 300
m

17.7731 3.8258 21.58 <0.00001

Density of
urban area at
300 m

66.9658 27.5644 5.90 0.01512

β0 26.4003 4.8024 30.22 <0.00001

m9de20 306.4 0.7052 Distance from
highways

–0.0013 0.0002 34.67 <0.00001

Distance from
access roads

–0.0016 0.0002 48.88 <0.00001

Elevation –0.1197 0.0306 15.33 0.00009

Soil type –0.3348 0.1054 10.08 0.00150

Density of
urban road
network at 600
m

26.3141 7.3612 12.78 0.00035

Density of
urban area at
600 m

20.5620 5.5627 13.66 0.00022

β0 20.8131 4.9719 17.52 0.00003

m10de30 315.7 0.6896 Distance from
highways

–0.0014 0.0002 40.86 <0.00001

Distance from
access roads

–0.0017 0.0002 55.52 <0.00001

Elevation –0.1438 0.0307 22.01 <0.00001

Soil type –0.3598 0.0941 14.63 0.00013

Density of
urban road
network at 900
m

61.7723 10.5389 34.36 <0.00001

β0 23.6957 5.0295 22.20 <0.00001

m11de40 301.1 0.7123 Distance from
highways

–0.0018 0.0003 37.12 <0.00001

Distance from
access roads

–0.0020 0.0003 52.39 <0.00001

Elevation –0.1629 0.0364 19.98 0.00001

Soil type –0.3648 0.1011 13.03 0.00031

Density of
urban road
network at
1200 m

96.8332 15.0026 41.66 <0.00001

(con'd)
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Density of
industrial area
at 1200 m

–24.0245 8.8825 7.32 0.00684

β0 26.3263 6.0023 19.24 0.00001

(D) Mixed scales

m12de10/40 283.9 0.7400 Density of
urban road
network at 300
m

11.6821 4.2384 7.60 0.00585

Density of
urban area at
300 m

45.9087 25.2229 3.31 0.06874

Density of
urban road
network at
1200 m

65.4130 16.3232 16.06 0.00006

Density of
industrial area
at 1200 m

–24.5411 10.3400 5.63 0.01762

Distance from
highways

–0.0017 0.0003 29.41 <0.00001

Distance from
access roads

–0.0019 0.0003 46.47 <0.00001

Elevation –0.1515 0.0387 15.35 0.00009

Soil type –0.4009 0.1141 12.35 0.00044

β0 25.0694 6.4313 15.19 0.00010

 †Models: mid, models adjusted using distance variables; miej, models adjusted using neighborhood
variables by scale; midej, models adjusted using distance and neighborhood variables; midej/k, models
adjusted using distance and neighborhood variables with combined scales; i is the model number and j 
and k are scale identifiers, with j and k = 150, 300, 600, 900, or 1200 m.
‡Akaike information criterion.
§Nagelkerke's R².

Again, the models based on the 500-m urban growth
surface were much poorer than the corresponding
models based on the 3000-m urban growth surface.
However, at neighborhoods of 150 and 300 m, the
models improved compared to the model using only
distance variables. The significant variables were
analogous to those in model m1d and were related
to the urban road network, the urban area, and the
soil (Table 4B).

Models integrating distance and neighborhood
variables

The integration of distance and neighborhood
variables substantially improved the global fit of the
models based on the 3000-m urban growth surface
compared to model m1d, increasing the R² to 0.71
and decreasing the AIC from 332 in m1d to 300.1
in m8de10. The variables of distance from access
roads and distance from highways best predicted
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Table 4. Results of the adjustment of the logistic regression using the 500-m random growth model according
to variable blocks.

 
Model parameters

Model† AIC‡ R²§ Variable β(i) Standard error Wald P

(A) Distance variables only

m1d 595.7 0.1729 Distance from
urban road
network

–0.0030 0.0006 28.29 <0.00001

Distance from
urban perimeter

–0.0005 0.0001 16.99 0.00004

Soil type –0.1790 0.0514 12.13 0.00050

β0 1.6829 0.2464 46.63 <0.00001

(B) Neighborhood variables only, with fixed scale

m2e5 571.9 0.2300 Density of
urban road
network at 150
m

7.9491 1.5460 26.44 <0.00001

Density of
urban area at
150 m

11.6128 3.0429 14.56 0.00014

Soil type –0.1776 0.0537 10.93 0.00095

β0 –0.0091 0.2020 0.00 0.96412

m3e10 570.6 0.2329 Density of
urban road
network at 300
m

13.5780 2.4692 30.24 <0.00001

Density of
urban area at
300 m

5.9422 1.4281 17.31 0.00003

Soil type –0.1856 0.0539 11.86 0.00057

β0 –0.3294 0.2202 2.24 0.13479

m4e20 614.8 0.1250 Density of
urban road
network at 600
m

10.5500 4.3290 5.94 0.01481

Density of
urban area at
600 m

2.3884 0.9157 6.80 0.00910

Soil type –0.1994 0.0512 15.13 0.00010

β0 –0.1183 0.2511 0.22 0.63773

(con'd)
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m5e30 615.6 0.1230 Density of
urban road
network at 900
m

16.8090 5.2836 10.12 0.00147

Density of
upper middle-
class neighbor
hoods at 900 m

11.5866 5.6784 4.16 0.04130

Soil type –0.2080 0.0510 16.62 0.00005

β0 –0.2930 0.3075 0.91 0.34070

m6e40 599.4 0.1638 Density of
urban road
network at
1200 m

19.1889 6.6552 8.31 0.00394

Density of
upper middle-
class neighbor
hoods at 1200
m

16.1304 6.8802 5.50 0.01905

Soil type –0.2014 0.0520 15.00 0.00011

β0 –0.4766 0.3546 1.81 0.17897

(C) Distance variables and neighborhood variables, with fixed scale

m7de05 562.9 0.2691 Density of
urban road
network at 150
m

8.6128 1.6024 28.89 <0.00001

Density of
urban area at
150 m

10.1741 2.9501 11.89 0.00056

Distance from
access roads

–0.0004 0.0001 13.01 0.00031

Distance from
urban roads

–0.0002 0.0001 4.66 0.03083

Soil type –0.1825 0.0544 11.26 0.00079

β0 0.6118 0.2731 5.02 0.02504

m8de10 565.9 0.2577 Density of
urban road
network at 300
m

14.5090 2.5187 33.18 <0.00001

Density of
urban area at
300 m

5.4364 1.4090 14.89 0.00011

Distance from
access roads

–0.0003 0.0001 9.96 0.00160

Soil type –0.1772 0.0538 10.86 0.00098

β0 –0.0815 0.2339 0.12 0.72755

(con'd)
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m9de20 593.2 0.1838 Density of
urban area at
600 m

1.9142 0.9414 4.13 0.04202

Distance from
urban road
network

–0.0028 0.0006 24.18 0.00000

Distance from
urban perimeter

–0.0003 0.0001 5.48 0.01922

Soil type –0.1745 0.0515 11.47 0.00071

β0 1.3189 0.2983 19.55 0.00001

m10de30 589.3 0.1934 Density of
upper middle-
class neighbor
hoods at 900 m

13.9404 5.4899 6.45 0.01111

Distance from
urban road
network

–0.0029 0.0006 26.52 <0.00001

Distance from
urban perimeter

–0.0004 0.0001 11.27 0.00079

Soil type –0.1798 0.0519 12.03 0.00052

β0 1.5086 0.2529 35.58 <0.00001

m11de40 581.5 0.2216 Density of
upper middle-
class neighbor
hoods at 1200
m

25.4850 5.9750 18.19 0.00002

Distance from
urban road
network

–0.0027 0.0006 22.96 <0.00001

Distance from
access roads

–0.0003 0.0001 6.53 0.01058

Soil type –0.1860 0.0525 12.54 0.00040

β0 1.2578 0.2446 26.44 <0.00001

(D) Mixed scales

m12de10/40 545.5 0.3031 Density of
urban road
network at 300
m

14.8692 2.5883 33.00 <0.00001

Density of
urban area at
300 m

4.9017 1.5274 10.30 0.00133

Density of
upper middle-
class neighbor
hoods at 1200
m

30.8957 8.2085 14.17 0.00017

(con'd)
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Density of
industrial area
at 1200 m

–8.0127 4.0362 3.94 0.04712

Distance from
access roads

–0.0003 0.0001 9.71 0.00183

Soil type –0.1917 0.0559 11.74 0.00061

β0 0.0134 0.2767 0.00 0.96132

 †Models: mid, models adjusted using distance variables; miej, models adjusted using neighborhood
variables by scale; midej, models adjusted using distance and neighborhood variables; midej/k, models
adjusted using distance and neighborhood variables with combined scales; i is the model number and j 
and k are scale identifiers, with j and k = 150, 300, 600, 900, or 1200 m.
‡Akaike information criterion.
§Nagelkerke's R².

urban growth. These variables remained negative;
thus, the closer were access roads and highways, the
more probable was urban growth. Urban growth was
also significantly related to the two environmental
variables of elevation and soil type, and
significantly positively related to the density of the
urban road network within the 300-m neighborhood
and density of urban areas within the 300-m
neighborhood (Table 3C).

Again, the models based on the 500-m urban growth
surface were much poorer than those based on 3000-
m urban growth surface. The integration of distance
and neighborhood variables, however, improved the
global fit, and the model with 150-m neighborhood
variables provided the best fit (Table 4C).

Models with mixed scales

For the 3000-m urban growth surface, a mixed
model, m12de10/40, that incorporated neighborhood
density variables at two different scales was
generated from the two models with the best global
fit, i.e., m8de10 and m11de40. Using this new model,
the AIC decreased significantly to 283.9 and
Nagelkerke’s R² increased to 0.74. Nevertheless,
despite a noticeable improvement in the model’s
global fit, the variables of distance from access
roads, distance from highways, and density of the
urban roadway network continued to be the best
predictors of urban growth. In the case of the density
of the urban roadway network, the 1200-m
neighborhood gave the best results (Table 3D). This
model shows that elements such as the general urban

area and industrial areas can have opposite effects
at different spatial scales. The density of urbanized
cells within a 300-m radius had a significant positive
effect on the probability of urbanization, whereas
the density of industrial areas within a 1200-m
radius had a significant negative effect.

For the 500-m urban growth surface, we obtained a
mixed model that greatly improved the model fit.
However, the fit was still poor compared to the
model based on the 3000-m urban growth surface.
With these new models, e.g., m12de10/40, the AIC
decreased to 545.5 and Nagelkerke’s R² increased
to 0.3031. Despite noticeable improvement in the
model’s global fit, the density of the urban road
network continued to be the best predictor of urban
growth (Table 4D).

Urban growth prediction for 1992–1998 using
models based on a 3000-m growth surface

By comparing the predicted results with the
observed urban land cover change between 1992
and 1998, the transition matrices (Table 5A) showed
the classification error for the three models with best
global fit: m8de10, m11de40, and m12de10/40. Model
m11de40 gives minor classification error with 8.5%
of cells classified incorrectly (25,552 of 299,730
cells). Nevertheless, model m8de10 gives the best
classification for cells with urban growth, with
72.3% of cells classified correctly (3677 of 5087
cells).
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Table 5. Transition matrices evaluating the predictions of the best models using the (A) 3000-m and (B)
500-m growth surface by the number of cells correctly classified as having growth or no growth in urban
area. Correctly classified cells are in boldface, incorrecly classified cells are in normal type, and numbers
in parentheses indicate percentage of cells.

 
(A) 

m8de10 m11de40 m12de10/40

No growth Growth Total No growth Growth Total No growth Growth Total

Urban a
rea in
1998

No growth 264,099
(89.6)

30,544
(10.4)

294,643
(100)

No growth 271,220
(92.1)

23,423
(7.9)

294,643
(100)

No growth 270,081
(91.7)

24,562
(8.3)

294,643
(100)

Growth 1410
(27.7)

3677
(72.3)

5087
(100)

Growth 2129
(41.8)

2958
(58.2)

5087
(100)

Growth 1831
(36)

3256
(64)

5087
(100)

Total 265,509 34,221 299,730 Total 273,349 26,381 299,730 Total 271,912 27,818 299,730

 

(B)
m7de5 m8de10 m12de10/40

No growth Growth Total No growth Growth Total No growth Growth Total

No growth 273,746
(92.9)

20,897
(7.1)

294,643
(100)

No growth 262,648
(89.1)

31,995
(10.9)

294,643
(100)

No growth 263,353
(89.4)

31,290
(10.6)

294,643
(100)

Growth 2467
(48.5)

2620
(51.5)

5087
(100)

Growth 1882
(37)

3205
(63)

5087
(100)

Growth 2229
(43.8)

2858
(56.2)

5087
(100)

Urban a
rea in
1998

Total 276,213 23,517 299,730 Total 264,530 35,200 299,730 Total 265,582 34,148 299,730

 Note: These data allow the calculation of the total percentage of correctly classified cells. For example,
according to model m8de10 for the 3000-m growth surface, of the total of 299,730 cells, 264,099 cells
and 3677 cells were correctly predicted to have no growth and growth, respectively, yielding a total of
89.3% of all cells that were correctly predicted by this model.

The explicit spatial model predictions for 1998
using the parameters of the above three models
constructed for the 1978–1992 period and the
variables generated for 1992 were illustrated (Fig.
4A–C). Although the three models varied in some
details, they produced overall consistent predictions.
First, the area east of the city shows a high
probability of urban growth due to the proximity to
access roads and highway. Second, there is a high
probability of urban growth in the immediate

neighborhood of the city. Finally, all three models
predicted a high probability of growth for the traffic
nodes in the south because of the proximity to access
roads and highways.

Most of the areas incorrectly classified as areas of
urban growth were located in the immediate
neighborhood of the 1992 city or close to access
roads and highways (Fig. 4A–C). The models
produced a rather smooth, diffusion-like probability
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Fig. 4. Model predictions for urban growth in 1998 giving the probability of growth for each cell. (A)
Model m8de10, (B) model m11de40, and (C) model m12de10/40, based on the 3000-m growth surface. (D)
Model m7de5, (E) model m8de10, and (F) model m12de10/40, based on the 500-m growth surface.

of growth. However, actual growth proceeded in
somewhat larger blocks (Fig. 2A), mostly in areas
with a high predicted probability of growth.

Urban growth prediction for 1992–1998 using
models based on a 500-m growth surface

The models using the 500-m growth surface were
much poorer than those using the 3000-m growth
surface, especially in the predictions of cells with

urban growth. The models gave high weight to
streets and highways (Fig. 4D–F). The transition
matrices (Table 5B) showed the classification error
for the three models with best global fit: m7de5,
m8de10, and m12de10/40. Model m7de5 gave minor
classification error with 8.7% of cells classified
incorrectly. Nevertheless, model m8de10 gave the
best classification for cells with urban growth, with
a classification error of 37% (3205 of 5087 cells).
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DISCUSSION

Mechanisms of urban growth in Los Ángeles

Our results show that the urban growth of mid-cities
can be successfully described by variables related
to accessibility and the neighborhood density of
urban elements at different spatial scales. The
validation of the statistical models constructed using
data from the 1978–1992 period and validated for
the 1992–1998 period showed that some 90% of all
observed land cover transitions were correctly
predicted by the best models. This relatively high
classification accuracy is comparable to that of the
logistic models of Allen and Lu (2003). We
identified three major factors influencing urban
growth in Los Ángeles: accessibility, diffusion
growth in the immediate neighborhood of the city,
and traffic nodes.

Accessibility

All of the models analyzed were consistent in
confirming the heavy dependence of Los Ángeles’s
urban growth on variables related to accessibility,
quantifying its force and direction. There was
indeed substantial growth in the area east of the 1992
city related to the proximity of road infrastructure
(Fig. 4A–C). The relationship established between
urban growth and the distance from highways and
access roads, for example, follows the typical
distance decay function in which the probability of
land-use change decreases with increased distance.
However, we also found a significant effect of the
density of the urban road network at the local scale
up to 1200 m, which suggests that not only large-
scale accessibility because of highways and access
roads is important, but also small-scale accessibility
because of a dense local urban road network.

The distance from rural roads was not considered
in the logistic regression. This was because the
frequency of cells with urban growth was not
associated with specific distance ranges regarding
these elements, and, consequently, growth was not
significantly different than random. This is
consistent with our analysis because the majority of
rural roads do not offer good accessibility to centers
of consumption and services, which are mostly
located in the downtown area.

Diffusion growth in close proximity to the existing
city

The occurrence of a large part of urban growth
adjacent to already established and consolidated
urban areas was also observed and quantified by
variables describing the density of urban area in the
local neighborhood of 300–600 m because these
new urban areas can easily be connected to the
existing roadway network. Consequently, the
inhabitants can easily access all the required goods
and benefit from all the previously established
services. Indeed, most of the observed growth
occurred as diffusion growth extending from the
already existing urban areas in a gap-filling manner.
An example is a large gap located at the middle west
of the 1992 city that was completely filled 1998 (Fig.
2A).

In Los Ángeles, as in other mid-cities of central
Chile such as Chillán, Temuco, Valdivia, and Puerto
Montt, most important township, provincial, and
regional urban services and amenities are located in
or near the city’s historic downtown. Clearly, these
areas weigh heavily on the type of growth
experienced and resulting patterns of land use.
Therefore, their connectivity or accessibility
assures the provision of urban services and
amenities for the population. However, the
differentiated behavior of the roadway network on
urban growth should be pointed out because certain
types of roads promote changes in land use and
associated activities. In most of our models, access
roads to the city best explained the probability of
land-use changes. The city’s structuring roadways,
i.e., the roads that directly connect the historic
downtown to the main access roads into urban and
adjacent rural areas, are particularly relevant. This
type of road largely explains urban growth by the
aggregation of areas to the existing urban tract.

Traffic nodes

Urban growth occurring farther from the city’s
downtown area is found adjacent to main access
roads in areas that constitute communication and
transportation nodes that are especially apt for
industrial activities, the storage of goods, and the
transformation of raw materials originating from
rural sectors of the township and the Biobío
Province. This location is geographically ideal, with
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access to markets of consumption and urban work,
as well as services and amenities. Furthermore, the
location of industries around these nodes is also
advantageous because the nodes offer access to the
region’s main ports, especially in the case of forestry
production, and other similar urban centers such as
Chillán and Temuco.

Environmental variables

Natural elements such as rivers and topographic
conditions do not greatly interfere with the city’s
growth and structuring process. In other words,
natural elements do not act as thresholds, nor are
they driving forces of Los Ángeles’s urban growth.
In fact, most rivers that cross Los Ángeles have been
artificially channeled and rerouted from their
natural trajectories. This finding is in contrast to
those of other studies (e.g., Brown et al. 2002,
Pijanowski et al. 2002) that have found that access
to water bodies such as lakes and rivers or aesthetic
values such as the quality of the view influence
growth trajectories. However, water bodies in Los
Ángeles are rather minor landscape elements
compared to the dominating Lake Michigan in the
study by Pijanowski et al. (2002). Of the modeled
environmental variables, the soil type was
significant in all adjusted models, mainly because
of the predominance of certain soil types in which
the greatest frequencies of land-use change
occurred. Nearly half of the recent changes in land
use took place on flat and deep soils that are well
drained and pose no limit to agricultural
applications. This indicates that urban growth in Los
Ángeles, as in most Chilean cities, is taking place
on the most productive agricultural tracts
(CONAMA-CONAF-BIRF 1999). This is highly
relevant considering that nearly one-quarter of the
terrain planned or normalized in local urban
planning instruments is projected on areas apt for
agricultural use (Soto and Ulloa 1997, Henríquez et
al. 2006, Azócar et al. 2007). In other words, it seems
apparent that the rural areas bordering the outer
urban limits, or even those farther from the city, are
subjected or submitted to the pressures of real estate
and industrial development and that, in fact, they
are not only perceived in terms of their agricultural
productivity, but also in terms of the future land rent
that urban activities could yield compared to their
present agricultural activities.

Further growth of Los Ángeles

Both the density of the roadway networks and
previously established urban areas explain a good

portion of urban growth. Future growth is more
likely in areas adjacent to already consolidated
urban sectors that have good accessibility and
connectivity, especially in relation to the services
and amenities located in the more central areas. This
is relevant for residential urban activities,
specifically public housing projects developed
under public policies for low-income and middle-
class sectors. However, middle- and high-income
groups are requiring urban land that is ever farther
away from downtown, on the periphery of or in
contact with rural areas. In effect, some models, e.
g., m12de10/40 or m11de40, include the density of
industrial areas as a disincentive for urban growth
for specific uses, mainly residential. Therefore, real
estate projects are less likely to develop close to
areas presently used for industry.

Noncontinuous growth

Most of the cells incorrectly classified as urban
growth were located in the immediate neighborhood
of the 1992 city or close to access roads and
highways (Fig. 4A–C). This points to a mechanism
driving the urban growth of Los Ángeles that is not
well accounted for by our models. Growth does not
work as small-scale, cellwise diffusion, as
suggested by the smooth probability surface of our
models, but rather appears as a stochastic process
in which larger blocks are urbanized in areas
classified by the model as highly susceptible for
growth. This is probably related to the particular
method of urbanization in which houses are not
constructed individually by individual owners, but
rather as large multihouse developments on blocks
of land of a certain minimal size. In this context, the
decision to urbanize or not to urbanize may also be
related to the size of a property or other factors such
as urban planning, which were not included in our
models. However, our models clearly depict the
areas highly susceptible to urban growth. If we
waited long enough, we suspect that all highly
susceptible remaining gaps would eventually be
filled.

This result suggests that subsequent modeling
should consider the stochastic blockwise character
of the observed urban growth. One possibility for
this is to extend the present models to simple, rule-
based, stochastic cellular models (e.g., Allen and Lu
2003) in which blocks of nonurbanized 30 × 30 m
cells are defined based on criteria such as property
size, and the logistic model is used to assign each
block a probability of change. Random draws then
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decide in a stochastic manner whether the block will
be urbanized in the next time step.

The issue of spatial scales

Compared to other recent models in which
expanded logistic regression methods were used to
analyze the urbanization process (e.g., Brown et al.
2002, Allen and Lu 2003) we decided to use logistic
regression in our initial modelling step, but to place
special emphasis on deriving appropriate predictive
variables and on the issue of scale. Urbanization is
certainly a multiscale process. For example, the
attractiveness of a new middle-class urban
development may be reduced if there are many
industrial areas within a distance of 1 or 2 km, but
it may be enhanced if there is a high density of urban
roads within a distance of several hundred meters.
Distance variables cannot account for critical spatial
scales related to the presence of certain elements
such as roads or urbanized areas. Instead, this
requires the construction of neighborhood variables
that indicate the density of these elements at
different spatial scales.

To study the influence of the different types of
variable we constructed a sequence of models
starting with more traditional models containing
only distance variables and environmental
variables. We then included neighbourhood
variables at different spatial scales in subsequent
steps. This exercise clearly demonstrated that both
traditional distance variables and neighborhood
density variables at various spatial scales are
required to appropriately capture the multiscale
urban growth process.

We also investigated the impact of spatial scale on
the construction of the dependent variable. The
logistic model constructed using the 3000-m growth
surface predicted a high probability of growth in the
immediate neighborhood of the city, with little
power to discriminate the blocks of land that were
actually urbanized from those that were not
urbanized but had a high probability of becoming
urbanized (Fig. 4A–C). Initially, we attributed this
shortcoming of the model to the fact that we sampled
the areas of no growth from a relatively wide area
around the city’s perimeter, thus having relatively
few data points from locations in the immediate
neighborhood of the city (Fig. 3D) with which to
discriminate more subtle effects. We therefore
repeated the analyses using a smaller growth surface

of 500 m from the city’s perimeter (Fig. 3D) in the
hope of finding some variables that would be able
to depict a higher probability for blocks of cells in
the immediate neighborhood of the city that showed
growth. However, analyses of models using the 500-
m growth surface did not yield any improvement,
but in fact, produced much poorer models. This is
a valuable lesson that outlines the importance of
selecting the appropriate numbers of cells with a
value of 0 for the response variable.

The reason for the failure of the models constructed
using the 500-m growth surface might be that the
data points selected to be representative of no
growth were not really representative and missed
important combinations of variables, thus providing
a poor training data set. In other words, our results
show that the probability of urbanization in Los
Ángeles is not only determined by the conditions in
the immediate 500-m neighborhood of the city, but
must also be put into perspective with regard to the
conditions of more distant locations.

The lack of model improvement using the 500-m
growth surface indicates that, whereas the 3000-m
model clearly points to areas of high susceptibility
for urbanization, the actual urbanization process
likely proceeds in a stochastic blockwise manner,
as described above. Whether this process is really
stochastic or is driven by factors not quantified by
the variables included in our models, such as the
shape of rural properties, urban planning, and land
prices, will be the subject of forthcoming studies
and modeling efforts. In any case, our models
contributed to identifying this question.

Subsequent modeling steps

An important challenge for future modeling efforts
is to understand the observed blockwise growth
pattern in which houses are not constructed
individually, but rather as larger multihouse
developments. Our models did not consider factors
related to this growth pattern. However, our findings
clearly depict the areas susceptible to this type of
urban growth.

It is also necessary to identify the variables and
factors that allow the construction of predictive
models that are able to provide more detailed
information regarding the urban growth dynamic in
residential and industrial areas and, especially, the
role of some local factors in growth processes. One
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such challenge will be the construction of models
that can discriminate among the growth of
industrial, commercial, and residential areas and, in
the latter case, among neighborhoods according to
their social groups and income levels. Such models
would allow an understanding of the differences and
similarities among different urban downtown areas
of similar or different ranges and hierarchies. It will
also be necessary to incorporate the temporal
dimension into the modeling to analyze the dynamic
with which the changes in use occur along a defined
time line. These analytical approaches and
techniques can contribute significantly to defining
future scenarios of urban development and
identifying the causal factors or driving forces of
growth or decline in a city or group of cities, as well
as visualizing tendencies in land use and the
corresponding economic, social, and environmental
effects.

Application of our approach

Logistic regression is basically a nonspatial
modeling technique. We therefore placed special
emphasis on issues of space and critical spatial
scales. Our approach to this was grounded in studies
of the habitat selection of large carnivores (Schadt
et al. 2002, Naves et al. 2003) and is thus not limited
to studies of urban growth or to the particularities
of the selected city of Los Ángeles, Chile. Critical
steps in the application of our approach to other
regions in and outside of Chile are (1) the selection
of variables that represent well defined hypothesis
of urban growth in the particular study area and the
construction of scale-dependent neighborhood
density variables at appropriate scales; (2) the use
of a variable reduction approach that groups all
possible models arising from different scales and
types of variables into blocks; (3) the use of
alternative growth surfaces to find the appropriate
scale for the selection of cells with a value of 0 of
the dependent variable; and (4) the mitigation of
spatial autocorrelation in the construction of the
dependent variable.

Our approach is appealing in its simplicity and
power; other models that provide similarly accurate
results are hybrid models (e.g., White and Engelen
2000, Allen and Lu 2003), and the small spatial scale
makes it useful not simply in the field of
conservation, but also in urban planning. Although
it has long been known that access to roads drives
the development of urban growth in Chile and that

flat topography and well-drained soil are preferred
for urbanization (e.g., Mumford 1951), new insight
and understanding is provided by our approach,
which is able to identify critical scales in driving
variables, e.g., the density of industrial areas or the
urban roadway network within a 1200-m
neighborhood or the density of urbanized cells
within a 300-m neighborhood. Such understanding
could be used to identify factors that tend to favor
growth close to the urban core, thereby mitigating
sprawling suburban expansion. An example of this
is the diffusion growth that occurs in close proximity
to existing urbanized areas.

CONCLUSIONS

Our results show that the urban growth of mid-cities
can be successfully described by variables related
to the accessibility and neighborhood density of
urban elements at different spatial scales. In effect,
all the models analyzed confirmed the dependence
of Los Ángeles’s urban growth on variables related
to accessibility. Nevertheless, not only distances
variables proved to be important for modeling the
spatial growth patterns, but also scale-dependent
density variables. Urbanization is a multiscale
process, and distance variables alone cannot
properly account for spatial scales in the density of
certain elements such as roads or urbanized areas.
Clearly, it is not a novel finding that variables related
to accessibility explain urban growth; however, our
approach was able to identify critical scales at which
these variables operate, providing new insight and
understanding. This is useful information for
planners to control or decrease the potential impacts
of urban sprawl.

Urban growth often occurred as diffusion growth
extending from already existing urban areas in a
gap-filling manner. Our results suggest that an
important part of the city’s future growth may occur
in areas adjacent to already consolidated urban
sectors, thereby mitigating sprawling suburban
expansion. The driving variables of this type of
growth are good accessibility and connectivity,
especially in relation to the services and amenities
located in the more central areas.

The current urban growth of Los Ángeles shows that
the urban planning policies have been largely
overcome by private interests beyond the planned
urban area. As a consequence, city sprawl has
occurred partly in a diffuse manner. This, along with
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other effects, has caused the increasing socio-spatial
segregation of the population and the permanent
modification of urban planning instruments. For
example, middle- to high-class neighborhoods
appear on the urban periphery and benefit from good
accessibility, green areas, and spatial attributes that
highlight the economic condition of the occupants.
In contrast, low-income neighborhoods are often
found in areas with poor accessibility, low esthetic
value, e.g., few green areas, and in areas with spatial
disadvantages, e.g., near landfills or flood areas.
Although local authorities are aware of the
unsustainable nature of the growth dynamic, they
have limited tools and resources to generate
strategies that reverse the observed tendencies.

To understand the city’s current and future growth
patterns and to identify the factors that influence it
can be very important for generating sustainable
urban development strategies. Appropriate land-use
planning in rapidly growing mid-sized cities
requires normative support that is expressed in the
compliance with and respect for urban development
policies. While effective congruence between the
political will to develop a harmonious city and the
concrete events carried out by public and private
persons is lacking, all efforts will be futile. Because
these mid-cities are still managed on a human scale,
urgent measures are justified to prevent repeating
the errors made in the development of large cities.

Responses to this article can be read online at:
http://www.ecologyandsociety.org/vol12/iss1/art13/responses/
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