APPENDIX 1. Details of variables used to calculate fit measures and their variation among basins.

Table A1.1 River basins in dataset with codes for river basins (country) used in figures in appendix.

Code	River basin name / country
1	Biobio/Chile
2	Catamayo/Peru
3	Catamayo/Ecuador
4	Cauca/Colombia
5	Quaraí/Brazil
6	Cocibolca/Nicaragua
7	Baker/Chile
8	Cuareim/Uruguay
9	Guayas/Ecuador
11	Norrström/Sweden
12	Nura/Kazahstan
13	Okavango/Namibia
14	Thames/UK
15	Kyoga/Uganda
16	Niger/Mali
17	BangPakong/Thailand
18	Volga/Russia
19	Brahmaputra/Bhutan
20	Brahmaputra/India
21	Brahmaputra/Nepal
22	Tisza/Hungary
23	Guadiana/Spain
24	Elbe/Germany
25	Rhine/TheNetherlands
26	Amudarya/Uzbekistan
27	Orange/SouthAfrica
28	RedRiver/Vietnam
29	Olifants/SouthAfrica

Table A1.2 Variables and expressions used to calculate derived fit measures. Numbers following letter 'q' refer to questions in the Twin2Go questionnaire which are briefly summarized in lists below each expression.

Fit Measure	Contributing variables and full expressions for calculating derived measures
F1 Allocation	C1 Water scarcity =1-($(5-q59)/4+(5-q60)/4+(5-q61)/4+(5-q62)/4+(5-q58)/4+(4-q56)/3+(4-q90)/3)/7$
	 58 national per capita theoretical maximum 59 water avail at basin level 60 annual renewable water supply per person 61 projected renewable water supply in 2025 62 relative water stress index (supply vs demand) 56 climate moisture index 90 Groundwater use
	I1 Capacity to manage shortages = $((3-q13)/2+(3-q14)/2+(3-q15)/2+(3-q16)/2+(4-q95)/3+(4-q96)/3+(4-q2)/3)/7$
	 13 irrigation water priced 14 household water priced 15 industry water priced 16 tradeable permits 95 hydro monitoring 96 groundwater understanding 2 water use rights clear F1 Allocation = I1/(C1+1)
F2 Integration	C2 Complexity of uses & users = ((4-q43)/3+(4-q44)/3+(5-q46)/4+(5-q69)/4+(5-q72)/4+(3-q67aGrp)/2)/6
	 43 proportion in rural areas) 44 Development (HDI) 46 Per capita GDP 69 access to drinking water 72 access to sanitation 67a basin size
	I2 Capacity to integrate/coordinate uses = $((3-q5)/2+(3-q24)/2+(3-q25)/2+(3-q26)/2+(5-q1)/4+(3-q6)/2+(3-q7)/2+(5-q34)/4+(5-q35)/4+(3-q36)/2+(3-q76)/2+(5-q47)/4+(4-q3)/3)/13$
	 5 integration of domestic water legislation 24 formalized IWRM principles 25 status of implementation 26 capacity to implement 47 Effective formal institutions (CPI) 76 Efficient & effective 6 multilevel structure 34 vertical coordination 35 horizontal coordination

	36 role of local governments1 domestic water law7 administrative structure
	3 law traditional uses F2 Integration = $I2/(C2+1)$
F3 Conservation	C3 Threats to ecosystems = 1- ((3-q65)/2+(3-q66)/2+(5-q62)/4+(4-q87)/3+(4-q88)/3+(4-q89)/3)/6
	 62 Water Stress index 65 extent of flow/channel modification 66 impact of land on hydrological processes 87 Aquatic biodiversity 88 Invasives 89 Surface/groundwater quality
	I3 Capacity to manage ecosystem threats = $((5-q4)/4+(3-q17)/2+(3-q18)/2+(3-q19)/2+(3-q20)/2+(3-q21)/2+(2-q28)/1+(3-q92)/2+(3-q93)/2+(3-q94)/2)/10$
	 4 flow availability/ecol requirement law 17 polluter pays 18 environmental subsidies 19 payments for ecosystem services 20 tradeable permits 28 integration of wetlands 21 environmental tax 92 water allocated for ecosystems 93 pollution incidents 94 water quality monitoring
	F3 Conservation = $I3/(C3+1)$
F4 Basin management	C4 Difficulty of basin-level management = $1 - ((5-q60)/4 + (3-q66)/2 + (5-q59)/4 + (5-q62)/4 + (q67aGrp-1)/2 + (4-q90)/3 + (2-q67b)/1)/7$
	 66 land use impacts 67b transboundary (1=Yes) 67a basin size (larger is more difficult) 59 water avail at basin level 60 annual renewable water supply per person 62 relative water stress index (supply vs demand) 90 groundwater
	I4 Capacity to manage at basin level = $((4-q8)/3+(4-q10)/3+(3-q11)/2)/3$
	8 basin organization 10 legislated basin principles 11 water basin strategies F4 Basinization = I 4/(C4+1)
F5 Participation	C5 Diversity of interests = 1-(1-abs(q43-3)/2+(5-q45)/4)/2 45 Income equality (GINI) – higher inequality => more diverse interests

	43 Population rural (intermediate fraction => more diverse interests)
	I5 Capacity to engage stakeholders and public = $((5-q74)/4+(3-q79)/2+(3-q80)/2+(3-q50)/2+(3-q51)/2+(3-q75)/2+(3-q49)/2+(3-q77)/2)/8$
	74 participatory decision-making practice 79 deliberative engagement opportunities 80 inclusiveness of stakeholder participation 50 participatory decision-making on books 51 transparency regarding allocation on books 75 transparent allocation in practice 49 Presence of avenues of dissent 77 equitable & inclusive F5 Participation = 1 5/(C5+1)
F6 Adaptation	C6 Variability and uncertainty = 1-((3-q57)/2+ABS(3-q67)/2)/2 57 climate moisture variation 67 uncertainty of projections (mid) I6 Capacity to manage variability, uncertainties and change = ((3-q29)/2+(3- q30)/2+(3-q31)/2+(3-q32)/2+(3-q33)/2+(3-q54)/2+(4-q81)/3+(5-q82)/4+(3- q83)/2+(4-q84)/3+(5-q85)/4+(3-q86)/2+(4-q95)/3+(3-q94)/2+(3-q96)/2)/15
	 29 practices for dealing with uncertainties 30 reversible and flexible options 31 safety margins 32 use scenarios 33 climate variability & change 81 climate change strategy 82 adaptation knowledge 83 awareness of water managers 84 coordinated climate plan 85 operational activities 86 ways to deal with variability 54 IWRM & CC predictability 94 Water quality monitoring 95 Hydro-meteorological monitoring 96 Understanding of groundwater resources
	F6 Variation = $I6/(C6+1)$

Figure A1.1 Variation in the condition and institutional components of the allocation fit measure across 28 basins. Darker and more solid circles indicate higher relative fit score. Numbers indicate basins as listed in Table A1.1.

Figure A1.2 Variation in the condition and institutional components of the integration fit measure across 28 basins. Darker and more solid circles indicate higher relative fit score. Numbers indicate basins as listed in Table A1.1.

Figure A1.3 Variation in the condition and institutional components of the conservation fit measure across 28 basins. Darker and more solid circles indicate higher relative fit score. Numbers indicate basins as listed in Table A1.1.

Figure A1.4 Variation in the condition and institutional components of the basinization fit measure across 28 basins. Darker and more solid circles indicate higher relative fit score. Numbers indicate basins as listed in Table A1.1.

Figure A1.5 Variation in the condition and institutional components of the participation fit measure across 28 basins. Darker and more solid circles indicate higher relative fit score. Numbers indicate basins as listed in Table A1.1.

Figure A1.6 Variation in the condition and institutional components of the adaptation (or variation) fit measure across 28 basins. Darker and more solid circles indicate higher relative fit score. Numbers indicate basins as listed in Table A1.1.

