Appendix 1. Simulating path-dependant seasonal herd movements

The movement model assumes a Markov process driven by an externally imposed sequence of
states of nature. Let ¢* represent a row vector of length £ whose elements describe the number of
animals observed during season s in each of & habitat zones defining the range of the herd. Let
P’, represent the transition matrix for movement of animals from season s-1 to season s if state of
nature ¢’ is observed in season s. P’, is a square matrix whose elements, p',;, represent the
probability that an animal observed in zone i in season s-1 will move to zone j in season s if state
of nature @’ occurs (%, p’s;; = 1). The expected number of animals in season s, given the observed
distribution ¢* and state of nature a’ is

q=q"P. (AL1)
Deriving the transition probabilities

To derive the seasonal transition matrices, P', and P*,, we started by calculating from each
caribou’s movement record the proportion of time, 7*,; that the animal spent in zone j in season s
of year ¢ and if it had been observed in zone i during the previous period (¢,s-1) for all years and
seasons for which the state of nature a was observed. Since a single animal could have been
observed in multiple zones in a given season, 7*;; represents the percentage of the total days of
season s that a caribou which had been observed in zone i during the previous period spent in
zone j in year ¢ season s. (Note that if s=1, the previous period is the final season of year -1
rather than (z,s-1).) The calculated #*; typically would differ among collared animals in a given
year and season, as well as for the same animal observed across different years with the same
seasonal state of nature. Therefore, to estimate the herd expected transition probability p’,;, we
calculated the weighted average of the ' over the observed animal-seasons, using as weights
the proportions to the time an animal was observed to have spent in zone i the previous season.
That is, if &'*,;, represents the proportion of total days of season s that animal # spent in zone i
during the previous period when the seasonal state of nature was a, the transition probability is

psaij = 2tzn dg_l’tain rSta;'j / 2tzn ds_l’taiir (Alz)

For example, suppose a collared animal had spent 60 percent of the days of season 1 in 1999 in
zone 1, and 40 percent of the days of season 2 in 1999 in zone 2. Suppose the same animal also
had spent 40 percent of the days of season 1 in 2002 in zone 1, and 80 percent of season 2 that
year in zone 2, when the same state of nature occurred as in season 2 of 1999. Suppose another
animal had spent 20 percent of the days in season 1 of 2002 in zone 1, and had spent 20 percent
of the days in season 2 in zone 2 that year. The three rztalz would be 0.4, 0.8, and 0.2, while their
respective weights, d”aln, would be 0. 6, 0.4, and 0.2. The weighted average pzalz given by
equation (A.2) would be (0.24+0.32+0.04)/(0.6+0.4+0.2) = 0.6/1.2 = 0.5.

Simulating the model

Equations (A1.1) and (A1.2) define the expected distribution of animals over time. Simulating
seasonal path-dependent herd-scale movements requires modeling two types of uncertainty: (1)
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uncertainty associated with the state of nature representing seasonal weather along with its
ecological consequences, and (2) uncertainty associated with the movement of animals given the
season and state of nature. To explain the simulation protocol, we start with the example of a
single animal observed in an initial time period (0), corresponding to season s-1 in a simulation
year. Let x° represent a row vector of length k describing the position of the animal among the &
zones in that initial period. The animal will be observed in one of the k zones -- for example,
zone i -- that is, x; = 1; xoj =0, # i. The model starts a new time step by randomly drawing one
of two states of nature for time ¢ with a 50 percent probability. Suppose the state of nature
(seasonal weather) in period 1 is revealed to be condition c. The probability that the animal will
be observed in each of the k zones in period 1 is given by the vector p' such that

p' =x"P.. (A1.3)

To accomplish the move to a new zone with probabilities specified by equation (A1.3), the
model now draws another random number, u, from a uniform distribution between zero and one.
Consider the cumulative probability matrix P*. defined from P’. such that each element p*'; of
matrix P*. equals the row sum from 1 to j of p’.;. That is,

p*scij =pscija G=1)
p¥ei=pi T ¥, (1<j<Kk). (Al.4)

For each row of P*, one destination column ;j will contain the largest p*; for which p*.; < u.
Define Y'. as a square k by k matrix whose elements ylij =1 if j corresponds to the destination for
row i with maximum p*.; < u:

yill = 1> lfp*scy = man p*sczj ‘ (p*scij < M)
v ;i = 0, otherwise. (A1.5)

Finally, the model moves the animal to a position in period 1 described by the vector x':
1_ 0
x=xY. (A1.6)

The sequence is repeated for the next season corresponding to period 2, with a new random draw
for the state of nature and a random move according to the season s+1 transition matrix
associated with the newly revealed state of nature, and so on.

The model scales up from movement of a single animal to movement of the herd by defining a
set of n clusters of animals, each of size m. Each of the m animals in a given cluster moves
together among zones as if it were a single animal, according to the dynamics of equations (A1.3
through A1.6). While all the clusters use the same outcome for the seasonal state of nature in a
given time step, each cluster has its own independent random draw for the vector u, used for
random assignment to zones. The distribution of the herd among zones at time 1 is built up,
therefore, from the sum over n of q,,xln.
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An example (Table Al.1) illustrates an example for one animal in a single time step: fall
migration (August 8 — October 7). Table Al.la shows the transition matrix, P’ for its two
possible climatic states, i.e., whether the first snowfall arrives early or late in the season, and
Table A1.1b shows the associated cumulative probability matrix, P*'. Since animals were never
observed in zones 7, 9, 10, 11 or 12 during the previous season (mid summer) those rows are
omitted from the table. Assume that the animal was in the Chandalar Basin region (Zone 4) the
previous season, and that fall snow came early that year. The model generates a random number
uniformly distributed between zero and one: for example, 0.427. It then goes to the zone 4 row of
the ‘Early snowfall’ cumulative probability table (first row of shaded cells), to find the largest

entry that does not exceed 0.427 (in this case, the third number, 0.107; the model moves the

animal to zone 3 ). If fall snow had been late instead of early, the model would have used the
late snowfall table and searched across row 4 until it found the value 0.359, which would have
kept the animal in zone 4.

Table A1.1 (a) Transition table for fall migration season (Aug 8-Oct 7) for two environmental
conditions: early and late snowfall. (b) Cumulative probability table for model lookup. Shaded

rows indicate the numbers used in the example.

(a) Normalized probability that caribou move into zone:
From zone 1 2 3 4 J ] 7 8 2 i0 i1 12 i3
1 0.018 0.342 0081 0450 0.027 0.027 0.054
E 2 0.038 0.221 0198 0.180 0.247 0.064 0004 0.002 0.038
£ 3 0,027 0329 0.116 0335 0.181 0.011 0.001
Z 4 0.015 0,092 0400 0326 0.001 0.060 0.007
= 5 0020 0146 0083 0453 0.184 0001 0103 0.003 0.007
= 6 0,030 0065 0065 0476 0349 0001 0015
8 0.500 0.500
13 0.224 0.139 0.004 0.633
1 0002 0197 0107 @Ii79 (356 0079 0002 0019 0.065
=~ 2 0005 0170 0120 0225 0343 0.089 0004 0025 0007 0001 0001 0.007
“Es 3 0.006 0160 Q058 0507 0206 0002 0047 0010 0001 0004
% 4 0.023 0086 0251 0382 0145 0011 0047 0017 0003 0035
. 5 0.003 0119 0134 (0494 Ii&8 0011 0086 0.0IF7 0.003 0016
3 6 0.006 0129 0094 (395 258 0.004 0060 0.047 0.007
13 0136 0011 0.852
0.007 0.399 0.730 0840 26i3 0906 0034 0284 0092 0.007 0062 0.924
(b) Cumunlartive probability ==x that caribon move info zone:
From zone I 2 3 4 5] 1 7 8 2 i0 i1 2 i3
1 0.018 0360 0441 0892 0919 0946 0946 0946 0946 0946 09456 0946 1.000
E 2 0.038 0239 0457 0646 0893 0956 0960 0962 0962 0962 0962 0962 1.000
= 3 0.000 0027 0356 0472 0807 0988 0988 0999 1000 1.000 1000 1.000 1.000
= 4 0.000 0015 0107 0516 0.842 0933 0933 09903 00993 (0993 1000 1.000 1.000
= 5 0.000 0020 0166 0249 0701 0.886 0887 0990 0993 0993 1000 1.000 1.000
= 6 0.000 0030 0094 0159 0.634 0984 0985 1.000 1.000 1.000 1000 1.000 1.000
8 0.000 0000 0000 0000 0500 0500 03500 1.000 1.000 1.000 1000 1.000 1.000
13 0.000 0224 0224 0363 0367 0367 0367 0367 0367 0367 0367 0367 1.000
1 0002 0193 0300 0479 0835 0914 ©091¢ 08935 0035 0935 0835 0935 1000
— 2 0005 0175 0305 0530 0873 0962 0966 0991 00992 0993 09935 0993 1000
‘1‘5'"'-, 3 0000  0.006 0166 |22 0731 0937 0939 0986 0995 0995 1000 1000 1.000
§ 4 0000 0023 0109 @359 0741 0857 0.898 0945 0962 0965 1000 1000 1.000
B 5 0000  0.003 0122 0256 0750 0867 0878 08964 09837 0954 [.000 I1.000 1000
= 6 0000  0.006 0135 0229 0624 0882 0886 0947 009093 0993 1000 I1.000 1000
13 0000 0.000 0000 0000 0136 0148 0148 0148 0148 0148 0148 0148 1.000
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The transition tables determine movement of animals into the 13 large zones. To place each of
the m animals in a cluster into the 39 smaller hunting subzones, the model uses the results of the
kernel analysis described in McNeil et al. (2005). That analysis calculated utilization density
grids for the 16 seasonal condition combinations (8 seasons x 2 conditions per season) from the
same satellite collar dataset (McNeil et al. 2005: Table 2). We derived a conditional subzone
transition matrix, /'y, for the relevant season and climate driver from these McNeil et al. (2005)
density grids. The elements of 'y, /’y;., express the probability that an animal will be found in
subzone z, given assignment to the larger zone j. We calculated the conditional subzone
cumulative probability table, H*;, with elements 42*;., as given by equation (A1.7):

h *Scjz _ hSch , (Z — 1),
h*gcjz = hscjz + h*scj,z—la (I<z< g;) (A17)

Once a cluster of animals moves to zone j according to equations (A1.3-A1.6), the model draws a
separate random number for each of the m members of the cluster, looking this number up in the
relevant H*'; table of subzone cumulative probabilities to assign each animal in the cluster to
one of zone j’s gj subzones. The potential to simulate two hierarchical levels of random
movement provides flexibility for modeling spatial heterogeneity of herd dynamics.

Running the model and evaluating model results against empirical observations

We ran 1,000 Monte Carlo simulations, each with 28 animals spanning a 19-year simulation
period: June 1985 - May 2003, using historical seasonal environmental states (Figure Al.1).
Observed calving distributions from June 1985 using (Griffith et al. 2002) initialized the model.
Each model run moved 7 clusters of 4 animals apiece into one of the 13 large zones with seven
random draws per season. Four additional random draws per season for each of the 7 groups
assigned the 4 caribou within each cluster individually to subzones.

Figure Al.1. Environmental conditions by season and year used for historical simulation.

Model year”
Calving

Post-calving
Summer (A and B)
Fall (A and B)
Winter

Spring

* The eight seasons of a model year run from calving in calendar year ¢ through spring of calendar year #+1 (i.e.,
Calving in the first column represents June 1985, while Spring represents April/May 1986). Summer and Fall are
each subdivided into two model seasons (see Table 3 for details). Sample sizes (number of animals collared) for each
seasonal condition ranged from 41 to 93.

Symbol legend:

Late snowmelt or snowfall, shallow snow Early snowmelt or snowfall, shallow snow
Fast vegetation green-up Slow vegetation green-up
High insect abundance Low insect abundance
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We took the output of the 1,000 runs, and computed the sth percentile, soth percentile, 95th
percentile number of caribou in each of the 39 hunting subzones for each year-season, and also
summed the total number of animals over all 1,000 runs. This sum represented a dynamic
simulation of the distribution of 28,000 animals. Since the Porcupine Caribou Herd during this
period averaged around 140,000 animals, multiplying by 5 provides an estimate of the actual
expected total number of animals by subzone. Although the approach outlined above differs from
that of computing density kernels, the simulated caribou abundance by subzone mimics what
would be obtained from computing a conditional density kernel for each season, given the
environmental state and the caribou distribution the previous season.

Presence/absence cross-tabulations with observed satellite collar location data

To confirm that the model had been correctly parameterized and coded, we compared model
simulation output with the original satellite location point data from which it was derived. Using
GIS overlays, we compared the satellite collar data (19,509 individual location points) to the
model output joined to subzone polygons. Next, we compared observed caribou locations (the
satellite data) with predicted distributions (the model) for each season and year by subzone. This
produced a dataset of 5,616 data points — 39 subzones by 8 seasons per year by 18 years — at
different statistical thresholds: 5 percent, 50 percent, and 95 percent. (Although collar data
spanned 19 years, no collars transmitted location data in 1996.)

We cross-tabulated the number of instances (i.e., the number of seasons by subzone and year)
that model predictions and satellite locations agreed or disagreed. In this ‘cross-tab’ analysis
there were four possible outcomes: (a) model predicted animals in the same subzone where
caribou were observed (true positive: +/+); (b) model predicts no animals where no animals were
observed (true negative: -/- ); (c) model predicts no animals where animals were observed (false
negative: -/+); (d) model predicts animals where no animals were observed (false positive: +/-).

The cross-tabulations between the satellite locations and model output showed that the model
generated results that were consistent with the original satellite collar locations. Table A1.2
summarizes the results of the cross-tab analysis. The top panel of the cross-tab analysis compares
the satellite data with output from the 95™ percentile model run (100=most animals in a subzone
that year and season, O=least). There were 2,856 cases (51 percent of 5,616 total subzone-season-
years) in which the model predicted that caribou were absent (i.e., no caribou clusters in that
subzone). In 73 (2.6%) of these were cases, at least one satellite location was recorded, while the
remaining 2,783 cases (97.4%) had no satellite collars present. Hence, using a conservative
model threshold for predicting caribou absence, there was a high correlation with the satellite
data: the model rarely predicted caribou absence when satellite data showed presence.

Of the 1,164 cases in which at least one collared caribou was observed in a subzone-season-year,
Table A1.2 showed that the model assigned caribou to the correct subzone in 1,091 cases
(93.6%), and failed to assign caribou in 73 cases (6.4%). The 5th percentile threshold describes
where the model almost always predicted caribou presence in a given subzone, season, and year.
In the 5th percentile results, the model predicted that caribou were very likely to be present in
only 1.4 (81) percent of subzone-season-year cases. In most of these cases (52, or 64.2%),
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collared animals were also present in the observed dataset (Table A1.2). We concluded that both
the 95th percentile and fifth percentile results from the model were fully consistent with the
empirical observations from which they were derived.

Table A1.2. Cross-tabulation of simulated caribou distribution by observed satellite locations:
5616 subzone-seasons (39 subzones, 8 seasons per year, 18 years), percentiles indicate rank of
simulation runs (0O=least predicted caribou in the subzone that season and year, 100=most)

Percentile =~ Simulated caribou distribution Observed collared animals
run  Model category Comparison No caribou (-) Atleastone (+) TOTAL

95" No caribou ) Subzone-seasons 2783 73 2856
% of model category 97.4 2.6 100
% of total 49.6 1.3 50.9
At least one (+) Subzone-seasons 1669 1091 2760

% of model category 60.5 39.5 100

% of total 29.7 19.4 49.1
50" No caribou (-) Subzone-seasons 4020 586 4606
% of model category 87.3 12.7 100
% of total 71.6 10.4 82.0
At least one (+) Subzone-seasons| 432 578 1010

% of model category 42.8 57.2 100
% of total 7.7 10.3 18.0
5™ No caribou (-) Subzone-seasons 4423 1112 5535
% of model category 79.9 20.1 100
% of total 78.8 19.8 98.6

At least one (+) Subzone-seasons| 29 52 81

% of model category 35.8 64.2 100

% of total 0.5 0.9 1.4

These tests provided confidence that the model did not have internal coding or parameterization
errors that would obviously invalidate it. The tests were insufficient by themselves to evaluate
the model, however, since the tests and model were derived from the same original data.
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