
Appendix 1. Supplementary information regarding a structured decision making (SDM) 

process to inform management of tidal marshes in San Francisco Bay (SFB), California 

USA. 

 

 

METHODS  

 

Study Area 

A tremendous amount of information is available on the internet about the San Francisco 

Bay estuary including tidal marshes.  For detailed maps and information about SFB (see  

http://www.sfei.org/content/ecoatlas_habitats, EcoAtlas of Baylands).   

 

Problem framing: 

 

Guidelines for workshop were to: (1) limit the number of expert panelists to 10-15; (2) 

require them to attend the entire 5-day session; and (3) preferentially invite resource 

managers, planners, and policy makers over scientists to focus more on defining the 

management questions and objectives.   

 

We then developed a series of questions related to our problem statement: 

 

• When and where should restoration or adaptation occur? 

• How do we evaluate cost-effectiveness of actions? 

• Is there a way to maximize or optimize benefits? 

• What are the considerations of time and spatial scales for this problem? 

• How do we compare the cost of restoration with the wetland benefits and  

services gained over the short- and long-term? 

• Should we focus on preserving existing marshes or on creating or re-establishing 

them?  

• Should there be a focus on particular target species? 

 

 

RESULTS 

 

Consequences 

 

With the exception of human benefits that were only evaluated for 2020, the fundamental 

objectives were evaluated at both the 2020 and 2050 time horizons. In addition to 

simplifying the decision model, focusing solely on the shorter-term horizon for human 

benefits is consistent with the limited timeframe for projections of human health due to 

coastal hazards under climate change. 

http://www.sfei.org/content/ecoatlas_habitats


 

We assigned a measureable attribute to each objective along with external factors so that 

consequences of alternative management strategies could be evaluated (Table A1.1, Main 

Document Table 2).  For likelihood of recovering endangered species, we chose as an 

example the California Ridgeway’s Rail (henceforth Clapper Rail; Rallus obsoletus 

obsoletus), a federally endangered and secretive marsh bird that is representative of 

species requiring mid to high-elevation tidal marsh.  For recovery of the Clapper Rail, we 

used the likelihood of meeting its habitat requirements defined in the tidal marsh 

recovery plan (USFWS 2009).   

 

To incorporate important tidal marsh ecosystem services in the decision analytic 

framework we developed two multi-attribute indices (Main Document Table 2).  First, an 

index of marsh ecosystem integrity was based on five attributes including the area of 

marsh within three elevation classes (i.e., low, mid, and high), native plant species 

richness, and accretion rate.  Our marsh ecosystem index (0 to 5) was the sum of scores 

for the five individual ecosystem attributes; each ecosystem attribute received a score of 

0 to 1 where 1 was the most desired outcome.  The marsh ecosystem index was 

developed to be independent of Clapper Rail habitat requirements.  Second, an index of 

human benefits incorporated three attributes including the incidence of mosquito-borne 

diseases, condition of human infrastructure with respect to flooding, and recreational 

opportunities in tidal marshes.  As with the marsh integrity index, each attribute of the 

human benefits index received a score of 0 to 1 for least to most desirable and was then 

summed for a total human-benefit score of 0 to 3.  When modeling outcomes resulting 

from the alternative management strategies with respect to the fundamental objectives at 

each time horizon, we accounted for uncertainty regarding the available budget and the 

annual frequency of intense storms (Table A1.2).  

 

Our BDN was comprised of 10 nodes, including a utility node, a decision node, and 8 

stochastic nodes (Main Document Figure 4; Table 2).  The Netica file containing the 

BDN can be accessed in Appendix 2.  Of the stochastic nodes, one represented external 

storms and two represented operating budgets under two time frames (i.e., 2012-2020 and 

2020-2050).  SLR was treated as a constant linear increase in this prototype due to the 

shorter time horizon and because SLR is expected to have a gradual increase through 

2050.  Five of the other stochastic nodes represented fundamental objectives regarding 

Clapper Rail recovery, marsh ecosystem integrity, and human benefits.  The remaining 

stochastic node was the budget from 2021-2050, which represented the only means 

objective in the network.  Predictor variables were represented by arrows going into each 

stochastic node within the BDN (Main Document Figure 5).  To our knowledge, there 

were no mathematical predictive models available to parameterize the probabilistic 

relationships in our BDN.  For the purposes of rapid prototyping and in minimizing the 



required predictions to elicit from the panel, we discretized the continuous stochastic 

nodes for the analysis into two categories each (Main Document Table 4).   

 

For a baseline parameterization of our BDN, we elicited expert judgments from 

stakeholders and scientists on the panel for quantifying the likelihood of optimistic and 

pessimistic scenarios for external influences along with the likelihood of possible 

outcomes for the objectives.  These likelihoods were entered in probabilistic contingency 

tables for each of the 8 stochastic nodes.  For the external factors, the contingency table 

had just one probability for each of the two possible levels representing belief weights 

that sum to 100 and represent alternate hypotheses about the magnitude of these factors.  

The objectives, however, required specification of a larger set of probabilities for their 

predicted outcomes.  For example, there were 2×2×2×5=40 possible combinations of 

predictor states for the 2050 marsh ecosystem index, which was a function of the 2020 

marsh ecosystem index, 2021-2050 budget, frequency of storms, and the allocation 

strategy, respectively.  For each of the possible predictor states regarding the 2050 marsh 

ecosystem index, each expert was asked to assign a probability that the marsh ecosystem 

index would be 0-3 as opposed to 4-5.  

 

Consistent with the Delphi method stakeholders and scientists on the panel provided 

independent predictions for stochastic nodes representing fundamental objectives with 

the exception of human benefits at 2020, which were elicited by consensus across the 

panel for the sake of rapid prototyping.  Likewise, predicted likelihoods for levels of 

storms and budgets were elicited as a group.  For probabilities that were elicited 

individually, we evaluated the logical consistency of the original elicited predictions from 

each panel member.  For example if probability of Clapper Rail recovery was 0.9 when 

assuming low frequency of intense storms, then probability of rail recovery under high 

frequency of intense storms must be ≤ 0.9 because of the potential negative (but not 

positive) impacts of storm events on rail habitat.  Whenever such logic was violated, we 

corrected the probabilities to ensure logical consistency.  Elicitation fatigue is an 

important source of bias when experts are asked to provide many predictions in a short 

period of time.  

 

Summary statistics of individually elicited and corrected predictions were provided to the 

expert panel.  Panel members were then offered the opportunity to revise their predictions 

in light of these, but in our case, none of them did so.  In addition to incorporating 

elicited predictions as a baseline parameterization, the BDN allowed for sensitivity 

analyses to examine the relative importance of alternate sources of uncertainty about 

management effectiveness and environmental dynamics (see Sensitivity analyses).   

 

Tradeoffs and optimization  



 

An important element of our decision analysis was accounting for tradeoffs among 

multiple fundamental objectives.  To quantify these tradeoffs, we asked the panel of 

decision-makers and stakeholders to independently express a utility value representing 

their relative preference for each of the 2
5
=32 possible outcomes across the five measures 

for the fundamental objectives (Table A1.2).  Fundamental objectives were represented in 

our BDN by stochastic nodes with arrows connecting to the utility node (Main Document 

Figure 4).  Utility values were elicited on a scale from 0 to 100, where 0 represented the 

least favorable and 100 the most favorable outcome.  Taken as an example, we asked 

each team member to assign a utility value to the possible outcome where marsh integrity 

is low in 2020 but high in 2050, California clapper rail is not recovered in 2020 nor 2050, 

and human benefits are low in 2020.  Panelists filled out their utility value then for every 

possible outcome with respect to the five fundamental objectives. 

 

Again consistent with the Delphi method, stakeholders on the panel were asked to 

independently assign their utility values to alternative outcomes in terms of the 

fundamental objectives.  Likewise, we offered stakeholders the opportunity to revise their 

utilities following a group discussion, but none did.  To arrive at a consensus utility value 

for each possible outcome, we presented participants with summary statistics on each set 

of elicited utility values across team members.  As with the predictions (see 

Consequences, above), panelists were offered to modify their elicited utility value 

following a group discussion, but they were satisfied with the original values and 

declined. As with the predicted probabilities, we evaluated the logical consistency of the 

original elicited utilities from each stakeholder.  For example if a stakeholder assigned a 

utility of 10 to a case where all outcomes were pessimistic except for human benefits, 

then all cases with an optimistic outcome for human benefits should receive a utility of 

≥10.  Whenever such logic was violated, we corrected the utilities to ensure logical 

consistency. The panelists agreed to use the average of the final elicited utilities across all 

experts to reflect the utility of a given potential outcome, giving equal weight of 

importance to each expert.  We used the upper and lower 95% confidence intervals 

among elicited utilities for computing the corresponding upper and lower 95% 

confidence intervals for expected utilities among alternative allocations to account for the 

variation in utilities among experts. 

 

We used Netica to compute the expected utility for each of the allocation strategies based 

on the elicited likelihoods of external effects and predicted outcomes along with the 

elicited utility values.  The expected utility from an allocation was the value a decision 

maker would expect to realize following implementation of that allocation and was on the 

same unit scale as the elicited utilities, which ranged 0-100.  The maximum expected 

utility across alternative allocations then indicated the optimal decision. 



 

Sensitivity analyses 

 

We conducted two sets of one-way sensitivity analyses where we adjusted one factor at a 

time within the BDN to investigate its effect on decision-making.  First, we evaluated 

how expected utilities, and therefore how the optimal decision, changed under alternative 

assumptions representing knowledge about the system. For this purpose we toggled 

predictions one at a time between their low and high values for each of the stochastic 

nodes representing external factors and objectives.  After each perturbation, expected 

utilities were recalculated.  For example for the Clapper Rail perturbation, we computed 

the expected utilities when Clapper Rails were assumed to be recovered by 2020 and 

computed the expected utilities again assuming rails were unrecovered by 2020 while all 

other stochastic nodes retained their baseline parameterization.  Across the 8 stochastic 

nodes, we conducted 16 perturbations.  If the strategy that was optimal under the baseline 

parameterization still had the maximum expected utility following perturbations of a 

particular node, then we concluded the decision was robust to that source of uncertainty.  

Otherwise, we concluded the decision was sensitive to that stochastic node.  

 

Second, we examined how expected utilities changed under alternative scenarios 

regarding the utility values placed on potential outcomes.  To this end we constructed 

alternative scenarios representing three types of advocacy, with each advocacy scenario 

corresponding to one of three focal fundamental objectives.  The advocacy scenarios 

were developed to illustrate the potential for a stakeholder campaign to advocate a 

preference for a particular objective and how this would change the optimal decision, if at 

all.  For example, Clapper Rail Advocacy was constructed to illustrate the consequences 

of hypothetically enhancing stakeholder preference for long-term Clapper Rail recovery 

over the other objectives.   To represent this scenario, we selected the maximum utility 

across participants for each possible outcome where the Clapper Rail is recovered by 

2050 and the minimum utility for outcomes when rails were unrecovered.  This set of 

modified utilities was then entered into the utility node of the BDN, and expected utilities 

were recomputed.  Scenarios for Marsh Advocacy and Human Benefits Advocacy were 

constructed in an analogous fashion representing advocacy for long-term marsh integrity 

and short-term human benefit.  These three scenarios provided a contrast to the Status 

Quo Advocacy, which was represented by the average utility across participants for each 

potential outcome under the baseline parameterization (Figure A1.1, A1.2).   

 

The optimal allocation was robust when perturbing stochastic nodes or adjusting 

advocacy scenarios individually (Figures A1.1 and A1.2).  Exceptions occurred when 

conducting a two-way sensitivity analysis by simultaneously assuming the Marsh 

Advocacy scenario and optimistic scenarios for storms or for marsh integrity at 2020, 



which resulted in the Marsh Migration allocation strategy becoming the optimal 

decision (not shown in Figure A1.1).  Resolving the uncertainty about storm frequency or 

marsh integrity at 2020 under the Marsh Advocacy scenario would be expected to 

increase expected utility by an EVPI <0.4 on a scale of 0 to 100.  This quantity is the 

Expected Value of Perfect Information (EVPI), which is the value of resolving a 

particular source of uncertainty. In cases where perturbations did not change the optimal 

decision, EVPI equaled zero.  

 

 

Spatiotemporal linkages 

 

Conservation of coastal ecosystems is complicated not only by socioecological 

complexity, but also by having decisions that are enacted among numerous spatial units 

and whose consequences are linked across space and time (Wilson et al. 2011).  Our 

framework was intended as an initial prototype and a case study that considered the entire 

SFB estuary as a single management unit and temporal allocation options that were 

prescriptive rather than adaptive.  Scaling up the effects of conservation strategies from 

individual management units to regional scales is a great challenge on its own (Mattsson 

et al. 2012).  Recognizing that biophysical processes and management constraints vary at 

intermediate subregional scales within SFB (Goals Project 1999), this subregional level 

may provide a critical lynchpin for linking the local management strategies to regional-

scale outcomes.  This challenge of linked spatial scales combined with the challenge of 

developing a matrix of optimal strategies across space and time poses a difficult problem, 

but one that can be solved with the tools and methods available in the literature and in the 

SDM toolbox (Conroy and Peterson 2012, Runge et al. 2011, Wilson et al. 2011).  A 

starting point may be to identify optimal strategies to allocate climate restoration actions 

across space and time through 2050, as the Climate-Smart Restoration strategy was 

optimal under our aspatial decision analytic framework (Runge et al. 2011, Wilson et al. 

2011, Conroy and Peterson 2012,).  A more robust and transparent strategy would 

explicitly account for these spatiotemporal linkages in the consequences of decisions for 

conserving the resilience of the SFB ecosystem and the services it provides. 

 

 

 

Table A1.1.  Draft objectives that were later refined and 

condensed for the prototype decision model. 

Draft objectives 

Increase understanding of climate change forcing on wetland processes‡ 

Increase understanding of where and how wetlands will migrate and persist‡ 



 

 

 

 

 

 

 

 

 

 

 

 

Table A1.2.  Utility values elicited from stakeholder panel.    

Averages presented as mean ± standard deviation. 

 

Outcome scenarios† 

 

Stakeholder utility values‡ 

Marsh 

Integrity 

in 2020 

Marsh 

Integrity 

in 2050 

Rail 

recovery 

by 2020 

Rail 

recovery 

by 2050 

Human 

benefits 

in 2020 

 1 2 3 4 5 6 7 8 9  Average 

low low no no low  0 0 0 0 0 0 0 0 0  0 ± 0 

low HIGH no no low  5 5 10 20 50 10 40 1 10  17 ± 17 

Provide transition areas to allow for wetlands to migrate upslope with SLR 

Maintain and expand tidal wetlands functions and services in light of future climate change 

Increase wetland resiliency against extreme climatic events 

Manage tidal wetlands to maximize biodiversity, diversity of wetland types 

Recovery of endangered species 

Ensure habitat persistence and quality for endangered species 

Reduce non-climate stressors to increase resiliency (subset of wetland functions and services) 

Maintain human services 

Clearly articulate a justification for wetlands protection, management and restoration† 

Be open to innovate ideas for restoration and augmentation of wetlands† 

Develop engineering methods to sustain marsh plain, such as dredge or upland sediment use 

Understand tradeoffs of linked consequences of mud flat, marsh and upland transition‡ 

†Process objective – a goal to improve the planning process for reaching decisions 

‡Knowledge objective – a goal describing the need for information to support making decisions 



low low YES no low  10 5 5 20 18 5 20 20 5  12 ± 7 

low HIGH YES no low  30 10 15 40 50 10 40 50 10  28 ± 17 

low low no YES low  10 6 10 40 45 5 60 20 10  23 ± 20 

low HIGH no YES low  30 10 35 50 85 15 70 40 15  39 ± 26 

low low YES YES low  20 11 15 50 55 8 75 78 20  37 ± 28 

low HIGH YES YES low  50 15 35 70 85 15 80 85 25  51 ± 30 

low low no no HIGH  20 5 10 40 10 7 30 5 5  15 ± 13 

low HIGH no no HIGH  60 25 45 40 60 13 60 37 10  39 ± 20 

low low YES no HIGH  30 20 16 40 18 10 40 70 15  29 ± 19 

low HIGH YES no HIGH  70 70 60 50 60 13 65 80 20  54 ± 23 

low low no YES HIGH  40 35 25 50 50 7 68 40 15  37 ± 19 

low HIGH no YES HIGH  70 70 70 70 85 15 85 70 20  62 ± 26 

low low YES YES HIGH  40 50 30 50 55 10 75 80 30  47 ± 22 

low HIGH YES YES HIGH  80 75 70 80 85 20 95 90 35  70 ± 25 

HIGH low no no low  20 5 20 20 20 5 10 20 40  18 ± 11 

HIGH HIGH no no low  40 10 55 50 65 18 50 37 50  42 ± 18 

HIGH low YES no low  30 10 16 40 18 5 20 50 40  25 ± 15 

HIGH HIGH YES no low  50 15 70 60 65 18 60 60 60  51 ± 20 

HIGH low no YES low  30 10 20 50 45 5 65 50 45  36 ± 20 

HIGH HIGH no YES low  50 15 60 60 90 25 75 80 70  58 ± 25 

HIGH low YES YES low  40 11 50 50 60 8 75 78 50  47 ± 25 

HIGH HIGH YES YES low  70 20 95 80 90 25 85 100 80  72 ± 29 

HIGH low no no HIGH  60 10 16 50 10 7 45 20 40  29 ± 20 

HIGH HIGH no no HIGH  90 55 65 70 65 35 65 37 60  60 ± 17 

HIGH low YES no HIGH  60 45 16 50 18 10 55 70 50  42 ± 22 

HIGH HIGH YES no HIGH  90 85 85 70 65 50 85 80 70  76 ± 13 

HIGH low no YES HIGH  80 65 60 50 80 10 68 70 60  60 ± 21 

HIGH HIGH no YES HIGH  90 95 95 80 100 75 95 80 70  87 ± 11 

HIGH low YES YES HIGH  80 65 75 80 80 10 90 90 60  70 ± 25 

HIGH HIGH YES YES HIGH  100 100 100 100 100 100 100 100 100  100 ± 0 

†Outcomes presented as binary levels of five attributes of fundamental objectives including an index of marsh integrity, recovery 

of California clapper rail, and an index of human benefits from tidal marshes. 

‡Utility values for the worst-case and best-case scenarios were fixed at 0 and 100, respectively.  Stakeholder identities are 

anonymized to protect their anonymity.  One member recused themselves from the elicitation. 



Figure A1.1. Changes in expected utilities based on a one-way sensitivity analysis 

among four advocacy scenarios for conservation and restoration of tidal marshes in San 

Francisco Bay through 2050.  Three advocacy scenarios (A-C) were represented by 

choosing one of nine elicited utility values among stakeholders for each outcome.  For 

example, in the Clapper Rail Advocacy scenario (A), the maximum utility among experts 

was chosen for each outcome where the California clapper rail was recovered in 2050, 

otherwise the minimum utility was chosen.  This method was used to select a set of 

perturbed utilities that were used to generate the expected utilities for alternative 

strategies under each advocacy scenario.  In graph D, each bar height and whisker 

represents the mean and 95% confidence interval estimated from the distribution of 

elicited utilities among stakeholders. No whiskers are shown in the remaining graphs, as 

they each represent a single set of perturbed utility values.  The Climate-Smart 

Restoration allocation strategy had the highest expected utility among the alternatives 

under all four advocacy scenarios. 

 

 

 
 

 

 

 

 

 

 

 

 

 



Figure A1.2.  Changes in expected utilities based on a one-way sensitivity analysis 

among contrasting assumptions regarding predictions for stochastic nodes in a Bayesian 

decision network to inform conservation and restoration of tidal marshes in San Francisco 

Bay.  Bar heights were based on a baseline parameterization of the stochastic nodes; the 

perturbed node is identified at the top of each graph. Upper dashed line and lower solid 

lines represent optimistic and pessimistic perturbations of the predictions, respectively. 

 

 

 


