
Appendix 6. Intuition underlying our hypotheses and proofs. 
 
We rely on methods from repeated game theory and focus on the conditions under which 
different equilibrium outcomes can be sustained in the different treatments, i.e. we look at 
which resource stock sizes the group could possibly sustain for the entire game. Please see 
Lindahl et al. (2012, 2014) for a more detailed description of the game situation. 

The subjects of our experiment play a dynamic CPR game with an indefinite time horizon 
(Carmichael 2005), i.e. they know that the game will end at some point but not exactly when. 
At each stage (round) of the game, each subject (player) i in the group has, however, an 
individual perception about the likelihood whether or not the game will last another round (we 
can also call it a discount factor), which we denote δi (Fudenberg and Tirole 1998). These 
subjective probabilities will be crucial, which will become clearer as we go on.  

Assume the following strategy for each player 𝑖 ∈ 1,… , 𝑛 , where n is the total number of 
players in the group: a) In the first round, take 50 − 𝑥 𝑛 units of the resource stock (to reach 
a stock size of x) and then, from the second round and onwards, take 𝐻! 𝑛 units1,2, where Hx 
denotes the sustainable yield to keep stock size x. b) If in some round t someone in the group 
deviates from this strategy (i.e. the new stock size is not x), then deplete the resource stock in 
the next round, t+1, i.e. claim (harvest) the entire resource stock. The maximum possible 
amount to claim is the current resource stock size (see Instructions in Appendix 1 for equation 
of individual payment calculation in case of depletion). Hence, for the deviating player in 
round t, the optimal deviation is to claim the entire resource stock (xt) in period t. Equation 
(A6.1) gives the payment (payoff) PDC of a player i who deviates when all other players in the 
group play according to the strategy described above (i.e. cooperate), hjt represents the 
claimed harvest of player j (who plays according to the strategy), where j ≠ i. 
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If all players deplete the resource in the same round, the associated payoff for each player is 
xt/n. Let 𝛿! denote the expected discounted value of one unit harvested capturing the 
subjective discount factor of player i that the game will continue for one more round (in round 
t). Equation (A6.2) shows the total payoff, for player i who follows the strategy for the entire 
game, given that all other players do so as well. The first term refers to the payoff, P(n,δi), in 
the first round (round 0) and the second term to the sum of the continuation payoffs in all 
subsequent rounds. 
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         (A6.2) 

The regeneration rate Hx (i.e. the sustainable yield to keep stock size x) is, however, in the risk 
treatments not known with certainty for stock sizes  𝑥 ∈ 10,11,12,… 19 . We refer to the 

                                                
1 Note that we focus only on strategies supporting equal sharing equilibrium outcomes (if an equilibrium is 
sustained, it is based on equal shares of the resource stock size) because this is actually consistent with what we 
observed in the experiment. Whereas some of these equal sharing groups shared the harvest equally in each 
round, others used a rotating scheme to share the harvest equally over time. 
2 Note that in the risk treatments, for the range of resource stock sizes where the regeneration rates differ 
(𝑥 ∈ 10,11,12,… 19 ) the actual scenario played (scenario A (no threshold) or scenario B (threshold)) will be 
revealed after the first round because the regeneration rates differ. 



probability of a threshold (scenario B) as Pr  (𝑇) and to the probability of no threshold 
(scenario A) as 1 − Pr  (𝑇). Further, we denote regeneration rate when there is a threshold as 
𝐻!! and when there is no threshold as 𝐻!!". Equation (A6.2) can then be rewritten:   
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Here, the expected utility (EU) from the uncertain continuation payoff can belong to a risk-
neutral, averse or seeking player. From Equations (A6.1-A6.3), we can derive the necessary 
conditions for the outcome (a sustained stock size of x) to be sustainable as an equilibrium 
outcome: In the very first round, the payoff for a player who follows the described strategy 
for the entire game (given the other players do so as well) must be equal to or bigger than the 
payoff the player would get by deviating, i.e. depleting the resource stock, in the very first 
round. To save space, let 𝐸𝑈 𝐻! 𝑛  denote 𝐸𝑈 Pr  (𝑇 𝐻!! + 1 − Pr  (𝑇) H!!") 𝑛 . In the very 
first round, no player deviates if Equation (A6.4) holds: 
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It is easy to verify that the critical discount factor 𝛿 𝑥  of a risk averse player is for 
𝑥 ∈ 10,11,12,… 19  higher than that of a risk neutral player because 𝐸𝑈!"#$%# 𝐻! 𝑛 <
𝐸𝑈!"#$%&' 𝐻! 𝑛 . Exactly how much higher will depend on the assumptions one makes on the 
level of risk aversion. (For a risk seeking player, the critical discount factor would be lower 
than that of a risk neutral player.) 

In the subsequent rounds, because the players face the same game in each round, it is 
sufficient to check that the continuation payoff at time t is equal to or larger than the deviation 
payoff. Note that in subsequent rounds, there is no longer any uncertainty about the 
regeneration rate because the true scenario will be revealed after the first round. Thus, the 
following needs to hold:  
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For all parameters in our model, we have verified that if Equation (A6.4) holds, then Equation 
(A6.5) also holds (these calculations are available upon request). In Table A6.1, we present 
the critical discount factor, from Equation (A6.4), for all resource stock sizes for all four 
treatments. The risk treatments discount factors are based on risk neutral players. 

The first observation we can make is that if all players in a group, for all rounds of the game, 
believe that the game will last another round with a high enough probability (𝛿! ≥ 𝛿 𝑥 ), then 
each resource stock size of the game, 𝑥 ∈ 5,6,7,… ,50 , can be sustained as an equilibrium 
outcome. This critical value (𝛿 𝑥 ) varies with the regeneration rate of the resource stock. To 
stay at a given stock size, the group can harvest an amount exactly corresponding to the 
regeneration rate at that stock size. So if the group is at a given resource stock size, and if the 
regeneration rate is relatively high, the incentive to deviate and deplete the resource stock is 
low because the expected value of the sum of future payoffs is also relatively high (the group 
will be able to harvest a high amount of resource units each round). This means that the 
critical value of the subjective discount factor can be lower. From Lindahl et al., we know that 
the critical value 𝛿 𝑥  will be the same in all treatments for those resource stock sizes where 
the regeneration rate is the same. Thus, it will be the same for stock sizes of 𝑥 ∈ 5,6,7,8,9 ∪
20,21,22,… ,50 .   

For resource stock sizes where the regeneration rates potentially differ, i.e. for 
𝑥 ∈ 10,11,12,… ,19 , 𝛿 𝑥  will be higher the more likely a threshold is (because the expected 
regeneration rate is lower). This is illustrated in Figure A6.1 (see also Table A6.1) where we 
have depicted these critical values for 𝑥 ∈ 5,6,7,8,9 ∪ 20,21,22,… ,50  and for all four 
treatments (for a game with 4 players).  

 
Fig. A6.1. Comparison of the critical values of the discount factor for the threshold (T), 
high-risk (HRT), medium-risk (MRT) and low-risk (LRT) treatment with four players. 

 

Between stock sizes of 10 and 19, the incentive to deviate is higher and increasing with the 
probability of a threshold because the probability is high that the regeneration rate could 
become low. Thus, stock sizes between 10 and 19 (the range where the group would cross the 
threshold and where we find severe overexploitation according to the definition) are harder to 
sustain throughout the game the higher the probability of a threshold is.  
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To be able to formulate hypotheses based on Table A6.1, we need to make some assumptions 
about the distribution of the discount factors of the players in the game. We denote this 
distribution F(δi). We need to assume, for example, that the range of the critical values for the 
discount factors, which is in the range between 0.930 and 0.995, is a subset of the range of 
F(δi). Moreover, the distribution F(δi) is independent of treatment. Whereas the latter 
assumption is relatively straightforward, the former may need some elaboration. If the first 
assumption does not hold, i.e. if the discount factors of all players are below (above) the range 
of critical values, then no (all) equilibrium(s) can be sustained in the game and we would not 
see a distinction between the treatments. 

Table A6.1. Critical discount factors for all resource stock sizes for all four treatments. 
Stock 
size T HRT MRT LRT   Stock 

size T HRT MRT LRT 

5 0.987 0.987 0.987 0.987   28 0.934 0.934 0.934 0.934 
6 0.987 0.987 0.987 0.987   29 0.936 0.936 0.936 0.936 
7 0.987 0.987 0.987 0.987   30 0.950 0.950 0.950 0.950 
8 0.988 0.988 0.988 0.988   31 0.951 0.951 0.951 0.951 
9 0.988 0.988 0.988 0.988   32 0.952 0.952 0.952 0.952 
10 0.977 0.976 0.971 0.967   33 0.953 0.953 0.953 0.953 
11 0.978 0.977 0.972 0.968   34 0.954 0.954 0.954 0.954 
12 0.978 0.977 0.973 0.969   35 0.967 0.967 0.967 0.967 
13 0.979 0.978 0.973 0.969   36 0.968 0.968 0.968 0.968 
14 0.979 0.978 0.974 0.970   37 0.969 0.969 0.969 0.969 
15 0.990 0.986 0.970 0.954   38 0.969 0.969 0.969 0.969 
16 0.990 0.986 0.970 0.955   39 0.970 0.970 0.970 0.970 
17 0.990 0.986 0.971 0.956   40 0.982 0.982 0.982 0.982 
18 0.990 0.987 0.972 0.957   41 0.982 0.982 0.982 0.982 
19 0.991 0.987 0.972 0.958   42 0.983 0.983 0.983 0.983 
20 0.939 0.939 0.939 0.939   43 0.983 0.983 0.983 0.983 
21 0.940 0.940 0.940 0.940   44 0.983 0.983 0.983 0.983 
22 0.942 0.942 0.942 0.942   45 0.995 0.995 0.995 0.995 
23 0.943 0.943 0.943 0.943   46 0.995 0.995 0.995 0.995 
24 0.944 0.944 0.944 0.944   47 0.995 0.995 0.995 0.995 
25 0.930 0.930 0.930 0.930   48 0.995 0.995 0.995 0.995 
26 0.932 0.932 0.932 0.932   49 0.995 0.995 0.995 0.995 
27 0.933 0.933 0.933 0.933             

Note: T denotes threshold, HRT high-risk, MRT medium-risk and LRT low-risk treatment. The discount 
factors of the latter three treatments (risk treatments) are based on risk neutral players. 
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