Appendix 2

The appendix includes:

- 1. Table summarizing the different choices made for each step in the lake problem (Table A2.1)
- 2. Table listing the various objectives analyzed before arriving at the five objective problem formulation (Table A2.2)

SNo.	Steps in Figure 2	Choice(s) made for the lake problem	
1.	Elicit system model, decisions,	Model: Lake model by Carpenter et al.	
	uncertainties, objectives, and	(1999)	
	constraints	Decision: time series of anthropogenic	
		phosphorus input to the lake	
		Uncertainties: standard (10000 SOWs) and	
		deep (90000 SOWs)	
		uncertainty	
		Objectives: five objectives described in	
		Appendix 3	
		Constraints: single constraint on reliability	
2.	Test alternative problem	Three alternative problem formulations	
	formulations	selected for testing	
3.	Identify tradeoffs under well	Tradeoffs identified by using the BORG	
	characterized uncertainty	MOEA described in Appendix 1	
4.	Define robustness based on	Definition adapted to satisfy multiple	
	stakeholders' performance	performance requirements under two	
	requirements	assumptions definitions of uncertainty	
		(Appendix 3)	

Table A2.1 Comparing various approaches towards managing a threshold-based ecosystem

SNo.	Objective	Rationale for	References/ motivations
		including/excluding	<u> </u>
1.	Bentham's formulation of utility (expectation based approach)	Used in most analysis of the lake problem in literature	Carpenter et al. (1999), Brozovic and Schlenker (2011)
2.	Rawl's formulation of utility (max-min approach)	An alternative definition of utility used in some studies, removed due to mathematical challenges in optimizing this objective as it tends to solely focus on the worst case causing it to depend upon the chosen uncertainty representation	Rawls (1971), Tol (2000)
3.	Discounted financial benefits	An attempt to break up the utility function into its	
4.	Discounted losses	components, later discarded as: a. discounted losses are heavily correlated with objective (7), b. the standard MEU approach is lost	
5.	Undiscounted expected utility of present stakeholders	Represent stakeholders separated in time without any discounting	Brundtland and Development (1987), Holling (1973)
6.	Undiscounted expected utility of future stakeholder		
7.	Average levels of phosphorus in the lake	Represents the preference to solely focus on the ecosystem under analysis	Admiraal et al. (2013)
8.	Reliability	Represents the preference to prevent irreversible changes in multistate ecosystems	Bennett et al. (2008), Carpenter and Lathrop (2008)

Table A2.2 Various objectives analyzed before arriving at the five-objective formulation

References

- Admiraal, J. F., A. Wossink, W. T. de Groot, and G. R. de Snoo. 2013. More than total economic value: How to combine economic valuation of biodiversity with ecological resilience. Ecological Economics 89:115-122.
- Bennett, E., S. Carpenter, and J. Cardille. 2008. Estimating the Risk of Exceeding Thresholds in Environmental Systems. Water, Air, and Soil Pollution 191:131-138.
- Brozovic, N., and W. Schlenker. 2011. Optimal management of an ecosystem with an unknown threshold. Ecological Economics 70:627-640.
- Brundtland, G. H., and W. C. o. E. a. Development. 1987. Our common future : report of the World Commission on Environment and Development. Oxford University.
- Carpenter, S., D. Ludwig, and W. A. Brock. 1999. Management of Eutrophication for Lakes Subject to Potentially Irreversible Change. Ecological Applications 9:751-771.
- Carpenter, S. R., and R. C. Lathrop. 2008. Probabilistic Estimate of a Threshold for Eutrophication. Ecosystems 11:601-613.
- Holling, C. S. 1973. Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics 4:1-23.
- Rawls, J. 1971. A Theory of Justice (original edition). Harvard University Press.
- Tol, R. J. 2000. Equitable Cost-Benefit Analysis of Climate Change. Pages 273-290 *in* C. Carraro, editor. Efficiency and Equity of Climate Change Policy. Springer Netherlands.