Appendix 1

Figure A1.1. A Standard macroalgal bioassays upon deployment. **B** Macroalgal bioassays collected 24 hours later for every deployment 1996-2010 (and 2011-2013 second annual deployments). This extent of removal was considered 'largely removed'. **C** Macroalgal bioassays collected 24 hours after first annual deployment 2011-2013. Barring the three rocks to the top of the image, this degree of removal would be considered 'largely intact'.

Table A1.1. Functional groups and species assigned to each, observed in Pioneer Bay, Orpheus Island. Facultative herbivores include species that often feed on algae but may have a large dietary component of invertebrates or other prey. These include the primarily invertivorous non-farming

Functional group	Species observed				
	Pomacentrus adelus				
	Pce. bankanensis				
	Pce. chrysurus				
	Pce. wardi				
F 1(,1,,1,,,,1,,,1,,,,1,,,,,,	Abudefduf bengalensis				
Facultative heroivores	Ab. sexfasciatus				
	Ab. vaigiensis				
	Ab. whitleyi				
	Pomacanthus xanthometopon				
	Pca. sexstriatus				
	Stegastes apicalis				
	St. nigricans				
	Dischistodus melanotus				
Farming damselfishes	D. prosopotaenia				
C	Hemiglyphidodon plagiometopon				
	Neoglyphidodon melas				
	N. nigroris				
	Hipposcarus longiceps				
	Scarus altipinnis				
	Sc. flavipectoralis				
	Sc. frenatus				
Scrapers	Sc. ghobban				
•	Sc. niger				
	Sc. rivulatus				
	Sc. schlegeli				
	Sc. spp.				
Enconstan	Chlorurus spilurus				
Excavators	Ch. microrhinos				
	Naso unicornis				
Browsers	Kyphosus cinarescens				
	Platax pinnatus				
	Pl. teira				
Grazing surgeonfishes	Acanthurus spp.				
Grazing rabbitfishes	Siganus corallinus				
	Sig. doliatus				
	Sig. lineatus				
	Sig. puellus				
	Sig. punctatus				
	Sig. vulpinus				

damselfishes (Pomacentridae) and ngelfishes (Pomacanthidae). Farming lamselfishes (Pomacentridae) are a pecialist group which defend erritories of algal turfs from other herbivorous fishes; their diet is likely to include a portion of the algae they arm however the primary target is nfauna and detritus accumulated within (Wilson and Bellwood 1997, Ceccarelli et al. 2005). Scraping and excavating are the two primary modes of feeding in the parrotfishes Labridae, Tribe: Scarini) defined by Bellwood and Choat 1990, Bonaldo and Bellwood 2009). The former emoves EAMs leaving the carbonate eef matrix largely intact while the atter also removes portions of the arbonate reef matrix while feeding. Browsers prey upon the thalli and ronds of macroalgae and may be responsible for reversing shifts to nacroalgal dominance. Grazing urgeonfishes feed upon all components of EAMs while leaving lgal holdfasts and the reef matrix essentially untouched (Purcell and Bellwood 1993). Grazing rabbitfishes arget similar prey to grazing urgeonfishes, however they often eed on material from crevices on the eef (Brandl et al. 2014, Brandl and Bellwood 2015).

Figure A1.2. Taxonomic MDS on biomass of species; vectors calculated using multiple partial correlations in PRIMER 6.0 PERMANOVA +. 1 way ANOSIM with sites pooled: Global R=0.39. No groupings are apparent.

Figure A1.3. Functional group MDS of biomass data of seven functional groups of herbivorous fishes (see Table S1); vectors calculated using multiple partial correlations in PRIMER 6.0 PERMANOVA+. 1 way ANOSIM with sites pooled: Global R = 0.2. No groupings are apparent.

Table A1.2. The taxonomic composition of the herbivorous fish assemblage at each sampling period. Numbers represent the mean percentage of biomass of the herbivorous fish assemblage made up by each family. Numbers in parentheses are standard errors (n = 12 replicate censuses per period [sites pooled]).

Family	2005	2012	2013	
Acanthuridae	5.06 (2.00)	9.86 (2.86)	3.47 (1.79)	
Ephippidae		2.15 (1.80)		
Kyphosidae		2.11 (1.65)		
Labridae	67.66 (6.07)	55.62 (4.26)	71.10 (4.95)	
Pomacanthidae		4.73 (2.00)	8.32 (3.07)	
Pomacentridae	5.10 (3.32)	3.61 (0.75)	4.46 (1.72)	
Siganidae	22.18 (4.55)	21.91 (3.40)	12.65 (2.71)	

Table A1.3. Two-way ANOVA of mass standardised bite data of grazing herbivores on $1m^2$ plots of EAM on the reef crest at Orpheus Island (sites pooled as no significant difference was found, data square-root transformed to meet assumptions of the test).

	SS	DF	MS	F	р
Year	74.42	2	37.21	32.15	< 0.0001
Taxon	37.41	1	37.41	32.32	< 0.0001
Year × Taxon	20.63	2	10.31	8.910	< 0.001
Residual	77.55	67	1.158		

Table A1.4. Two-way ANOVA of turf length bioassay data, comparing lengths of algal turfs on EAM covered rocks moved from the reef flat to the crest (treatment) with controls moved and replaced on the flat. pooling site where it was found to have no effect (sites pooled as no significant difference was found, data Log10(n+1) transformed to meet assumptions of the test).

	SS	DF	MS	F	р
Year	0.955	2	0.477	52.38	< 0.0001
Treatment	0.110	1	0.110	12.09	< 0.001
Year × Treatment	0.392	2	0.196	21.49	< 0.0001
Residual	0.674	74	0.009		

Table A1.5. Repeated measure ANOVA of sediment load over time and material (particulate vs. sediment).

	SS	DF	MS	F	р
Year × Material	0.639	1	0.639	4.546	0.047
Material	32.59	1	32.59	232.0	< 0.0001
Year	5092	1	5092	34.62	< 0.0001
Subjects (matching)	2648	18	147.1	1047	< 0.0001
Residual	2.529	18	0.141		

Figure A1.4. Grain size distribution of all sediment (circles) and insoluble fraction (siliceous material; squares) of 10 replicate benthic sediment samples taken from Pioneer Bay reef crest. On average 34.6 ± 4.2 % (mean \pm standard error) of each sediment sample was siliceous material, all of which was in the <63 µm grain size category. On average 70.9 ± 2.2 % of all sediment in this grain size class was siliceous material.

LITERATURE CITED

- Bellwood, D. R., and J. H. Choat. 1990. A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. *Environmental Biology of Fishes* 28:189–214.
- Bonaldo, R. M., and D. R. Bellwood. 2009. Dynamics of parrotfish grazing scars. *Marine Biology* 156(4):771–777.
- Brandl, S. J., and D. R. Bellwood. 2015. Coordinated vigilance provides evidence for direct reciprocity in coral reef fishes. *Scientific Reports* 5:14556.
- Brandl, S. J., A. S. Hoey, and D. R. Bellwood. 2014. Micro-topography mediates interactions between corals, algae, and herbivorous fishes on coral reefs. *Coral Reefs* 33:421–430.
- Ceccarelli, D. M., G. P. Jones, and L. J. McCook. 2005. Foragers versus farmers: Contrasting effects of two behavioural groups of herbivores on coral reefs. *Oecologia* 145(3):445–453.
- Purcell, S. W., and D. R. Bellwood. 1993. A functional analysis of food procurement in two surgeonfish species, Acanthurus nigrofuscus and Ctenochaetus striatus (Acanthuridae). *Environmental Biology of Fishes* 37(2):139–159.
- Wilson, S. K., and D. R. Bellwood. 1997. Cryptic dietary components of territorial damselfishes (Pomacentridae, Labroidei). *Marine Ecology Progress Series* 153:299–310.