Habitat restored	Identity of	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	References
and objectives	restoration project	Within planning	Between planning	Within	Between	Within monitoring	Between monitoring	
			and implementation	implementation	implementation and	_	and planning	
					monitoring			
Alpine heathland:	Dovre Mountain,	Interaction between	NDEA planned and	Methods based on	Monitoring results	Monitoring	The project owner	Martinsen and
removal of roads,	Norway	Norwegian Defence	operated the	previous	reported back to	established as a pilot	posted annual reports	Hagen 2010,
military		Estates Agency	project, and met	experiences.	people responsible for	project 4 years before	on the web and	Hagen and Evju
infrastructure,		(NDEA) and experts	with authorities,	Collaboration	the implementation	restoration.	distributed	2013,
explosives and		during the initial	municipalities,	between the project	(ecologists, machine	Vegetation data gave	newsletters. Scientists	Forsvarsbygg
pollutants,		planning process	tourist companies	owner, ecologists	drivers, project	feedback on	reported on websites	2015
restoring landscape		resulting in more	and hunters. NDEA	and contractors led	owner) resulting in	restoration methods	and conferences.	
structures and		specific plans	evaluated the	to some	minor modifications	(in particular the use	Modifications were	
vegetation			implementation and	modification of	and adjustments on	of turfs, seeds and	proposed to project	
			the outcome was	procedures and	site	fertilizer). Data	owner. The	
			used for further	logistic adjustment		integrated into steps 3	cooperation	
			planning of	for large-scale		and 4	procedure applied to	
			subsequent project	application			related projects, e.g.,	
			phases				hydropower and road	
							construction	
Alpine heathland:	Nalunaq gold mine,	Evaluation of clean-	Stakeholder	It was decided not	Informal but good	Ten monitoring	Monitoring program	Dominy et al.
removal of	Greenland	up and restoration	meetings and public	to use non-native	communication and	reports produced,	evaluated and	2006. Bell and
structures on a		plans between the	hearings processing	seeds or plants to	support were supplied	evaluating elements in	changed due to	Kolh 2013
former mine site		mining company	original and revised	avoid unnatural	to the monitoring	aquatic and terrestrial	changes in mining	
		and central	documents. The	conditions and	team from the mining	environments.	techniques, i.e.,	
		authorities	Environmental	invasive plants;	staff at Nalunaq	Monitoring will	emphasizing cyanide	
			Impact Assessment	therefore only		continue at least 3	after 2009. Based on	
			was revised when	barren land was left		years after the closure	monitoring results it	
			production	to be colonized by		and was planned to	was possible to	
			procedures were	local plants		take place during	change demands	
			changed after 2009			2014-2016	towards the mining	
							company	
Birch woodland:	Hekluskógar,	Meetings with	Project	Internal follow-up of	Landowners,	Original plans included	Simple annual reports	Aradottir 2007,
reforestation to	Iceland	farmers and other	implementation	implementation,	contractors and other	regular monitoring of	posted on project	Óskarsson 2009
enhance resilience		stakeholders,	discussed in a	mostly regarding	practitioners reported	ecosystem	website, and project	a, b, 2011,
to ash deposition		presenting project	stakeholder group	planting of seedlings	planting and	development and	information reported	Berglund et al.
		ideas. Some areas	and with a wider	by contractors and	revegetation activities	assessment of socio-	at conferences	2013, Hunziker
		excluded from the	audience, resulting	landowners and	to project manager.	economic impact. Lack	together with	et al. 2014.
		project due to	in amendments of	other practicalities.	Monitoring results	of funding restricted	monitoring results.	Hekluskógar
		farmers' concern	plans	This often led to	provided feedback to	monitoring to seedling	Plans adapted based	2015.
		about continued use		adjustments of	implementation	survival	on monitoring results	
		of grazing commons		implementation			if needed	
Rangeland:	Farmers Heal the	Interaction between	SCSI district officers	Individual farmers	During annual or	The annual, subjective	Next year's work	Schmidt 2000,

Appendix 1. Identified evaluation steps in major ecological restoration projects in the northern hemisphere.

revegetating eroded areas by adding seeds, fertilizer and mulch	Land, Iceland	the Soil Conservation Service of Iceland (SCSI) and farmers during the initial planning process resulting in an adjusted approach	discussed and adjusted restoration plans based on farmers' feedback. SCSI district officers also evaluated whether activities were implemented as planned	adjusted their methods when needed due to practical restrictions. SCSI district officers and farmers discussed and sometimes modified methods	biannual visits farmers informed SCSI district officers about their restoration interventions, making revisions of subsequent interventions possible	assessment is informal and limited documentation is produced. This has been identified as too weak, and currently objective evaluation methods are being developed and tested	based on outcome of assessment. Results of questionnaires and informal interviews with participants have influenced project management	Elmarsdottir et al. 2003, Arnalds 2005, Berglund et al. 2013, Petursdottir et al. 2013a, b
Forest: burning, storm simulation, and cutting or wounding trees	Green Belt LIFE, Finland	Plans adapted after field conditions and research needs. Impact of reindeer grazing on plant regeneration included in the planning	Planners, practitioners and scientists discussed practicalities. Meetings for local people informed about restoration. Fire brigades and border patrols were informed about burnings. Technical evaluation carried out according to EU- LIFE standards	Established restoration methods applied by the coordinator and the researchers. Burning needed instant evaluation as it depends on weather conditions and could be implemented only during a short time frame	Location of monitoring gear conveyed to practitioners to avoid damage during implementation. For practical reasons, such as space requirements for burning, or mistakes made by the harvester in the tree cutting sites, control and restoration monitoring sites had sometimes to be moved	Different variables measured in different years, e.g., burning impact on trees not seen until after several years, but for the ground it was the opposite. Monitoring focused on species thought to respond to restoration. Research plots established to monitor new mineral soil patches after storm simulation	Scientists made results available through meetings, seminars, and discussions in the Finnish Restoration Board. Modifications proposed by scientists could not be applied to this project, but have been considered for later restoration projects	Similä and Junninen 2012; Hekkala et al. 2014a, b
Grassland: decreasing cover of invasive plants and reintroducing native species	Northern Great Plains, Canada	Interested landowners or government agencies were chosen as partners. Funds including evaluation were raised	Planners and practitioners discussed feasibility of plans with respect to site accessibility, required personnel, and available machines and methods	Methods were adjusted based on field experience, e.g., increasing soil-seed contact by removing extant vegetation improved the outcome of restoration	This step provided a chance to add variables based on field work, e.g., incorporate later ideas about nutrients or soil water by measuring their availabilities	Unexpected responses could be incorporated, e.g., counting flowering individuals of prominent target species	Discussion with stakeholders at special seminars and other practitioners at more general restoration conferences	Heidinga and Wilson 2002, Ambrose and Wilson 2003, Bakker et al. 2003, Wilson and Pärtel 2003, Bakker and Wilson 2004, Wilson et al. 2004, MacDougall et al. 2008, Wilson and Pinno 2013
Montane grassland: removal or reduction in grazing to favor grass cover and stop erosion	Trotternish, Skye, Scotland	Interaction between the Scottish Government, landowners and scientists during the initial planning process resulted in adjustments of	Planners and landowners discussed the restoration plan. Input from farmers determined location and maintenance of fences	Methods involved two types of fences, excluding sheep and rabbits or just sheep. The project was like a trial, and monitoring was evaluated, but not	Information about exclosures, treatments, sheep numbers and control plots were communicated to the monitoring team	Vegetation found to be slow to recover (11 years), so monitoring project was extended by six more years	Results made available to Scottish Natural Heritage. Possible influence of climate change and social economic changes with reduction in sheep due to aging of	Hewison et al. 2016

		approach		implementation			crofters and changes in agri-environmental schemes	
Peatland: removal of redundant trees and blocking of ditches	Green Belt LIFE, Finland	Plans adapted to site conditions and, as far as possible, to research needs	Planners, practitioners and scientists discussed project practicalities. Meetings with local people informed about restoration actions. Technical evaluation carried out according to EU- LIFE standards	Established restoration methods applied by the coordinating organization. Whole tree cutting introduced and carried out by the researchers interested in the method	Location of groundwater wells for monitoring purposes conveyed to practitioners to avoid damage during tree harvest, blocking of ditches and placement of logging residue during project implementation	Monitoring established to respond to spatial questions in future even though there was no spatial expert in the monitoring group. New research plots established in restored ditches, as they served as new habitat types not existing before restoration	Scientists made results available through meetings, seminars and discussions in the Finnish Restoration Board. Modifications discussed for later projects. Practical reasons hindered whole-tree harvesting although monitoring indicated it to be more effective than current stem harvest	Laine et al. 2011, Tarvainen et al. 2013, Similä and Aapala 2014
Peatland: blocking of ditches	Caithness and Sutherland, Scotland	Landowners, scientists and conservationists collaborated to agree on plans and find funding sources. During preparation of a management strategy, also practitioners were involved	Planners and landowners discussed location and extent of restoration sites, restoration methods, and potential impacts of water level rise. Restoration plan changed when needed	No formal but probably unconscious evaluation during implementation, e.g., to check if drains were successfully blocked	Information of what drains were blocked where and what management was carried out was compared to original plans and communicated to monitoring teams	Evaluation mainly done post restoration	Lack of long-term monitoring and lack of baseline data were major concerns	Lunt et al. 2010, Life peatlands project 2015t
River: removal of channelization structures and meadow drainage	Skjern River, Denmark	Landowners, NGOs and a stakeholder advisory committee were involved. Modifications were made, e.g., it was decided not to lead the river flow through a lake to protect migrating salmon and trout from predatory pike	An Environmental Impact Assessment was made and a construction law was adapted in Parliament. Public hearings gave input to work description, including technical evaluation. The advisory committee gave input and minor modifications were made	Tenders were requested in two steps, making changes possible in the second step. A soil movement program was modified and a planned lake was enlarged. Artificial grass mixtures were seeded to increase grass productivity and promote domestic cattle grazing contracts	A short term monitoring program began right after the construction work. Any important changes compared to the original plans are not known	Monitoring began right after construction works. Monitoring programs and assessments were set-up to evaluate project outcomes. A LIFE project aiming at improving the grassland-habitats was initiated. This could not be fully accomplished due to some areas being too wet. EU accepted this deviation	Monitoring, surveys and analyses led to scientific papers on project outcomes. Project boundaries adjusted due to wetness in nearby land and landowners compensated. Grazing strategies modified. Parts of project area set aside for open- ended succession. Conflicts among stakeholders continually addressed	Pedersen et al. 2007a, b, 2010, 2014, Feld et al. 2011

River:	Vindel River LIFE,	Restoration plans	Planners and	Methods developed	Practitioners updated	Fish populations and	Scientists made	Helfield et al.
removal of timber-	Sweden	adapted to	practitioners	over years, e.g.,	scientists on	riparian vegetation	results available	2007, Palm et al.
floating structures,		landowner	discussed plans with	methods for	performed actions to	monitored. Biotic	through websites and	2007,
creation of fish		reactions: planners	respect to site	applying coarse	facilitate monitoring.	responses found to be	conference	Gardeström et
spawning beds and		started working	accessibility,	sediment and large	Scientists proposed	slow or absent. Biotic	presentations.	al. 2013, Polvi et
diversification of		with the most	personnel,	wood into channels	modifications to	monitoring methods	Modifications	al. 2014,
channel		cooperative ones,	machines and	and for constructing	implementation, e.g.,	modified and	proposed by scientists	Hasselquist et al.
morphology		leaving recalcitrant	methods. Plans	fish spawning beds.	that available	extended to account	to practitioners were	2015, Nilsson et
		landowners to later	presented for	Methods modified	sediment was not	for this slow response	also communicated to	al. 2015, Vindel
			landowners.	based on gained	coarse enough for		planners	River Life 2015
			Technical evaluation	insights Discussions	recreating channel			
			carried out	in the field with	structures			
			according to EU-LIFE	contractors,				
			standards	planners and				
				scientists				

LITERATURE CITED

- Ambrose, L. G., and S. D. Wilson. 2003. Emergence of the introduced grass *Agropyron cristatum* and the native grass *Bouteloua gracilis* in a mixed-grass prairie restoration. *Restoration Ecology* 11:110–115.
- Aradottir, A. L. 2007. Restoration of birch and willow woodland on eroded areas. Pages 67–74 in G. Halldorsson, E. S. Oddsdottir and O. Eggertsson, editors. *Effects of afforestation on ecosystems, landscape and rural development*. TemaNord 2007:508, Reykholt, Iceland, June 18–22, 2005.

http://norden.diva-portal.org/smash/record.jsf?pid=diva2%3A702668&dswid=4935

Arnalds, A. 2005. Approaches to landcare: a century of soil conservation in Iceland. Land Degradation and Development 16:113–125.

Bakker, J. D., and S. D. Wilson. 2004. Using ecological restoration to constrain biological invasion. Journal of Applied Ecology 41:1059–1065.

- Bakker, J. D., S. D. Wilson, J. M. Christian, X. Li, L. G. Ambrose, and J. Waddington. 2003. Contingency of grassland restoration on year, site and competition from introduced grasses. *Ecological Applications* 13:137–153.
- Bell, R. M., and J. Kolb. 2013. Various alteration stages in the Nalunaq gold deposit, south Greenland. *Mineral Deposit Research for a High-Tech World* 1–4:1093–1096.
- Berglund, B., L. Hallgren, and Á. L. Aradóttir. 2013. Cultivating communication: participatory approaches in land restoration in Iceland. *Ecology and Society* 18(2):35. http://dx.doi.org/10.5751/ES-05516-180235.
- Dominy, S. C., E. J. Sides, O. Dahl, and I. M. Platten. 2006. Estimation and exploitation in an underground narrow vein gold operation: Nalunaq Mine, Greenland. *Australasian Institute of Mining and Metallurgy Publication Series* 2006:29–44.
- Elmarsdottir, A., A. L. Aradottir, and M. J. Trlica. 2003. Microsite availability and establishment of native species on degraded and reclaimed sites. *Journal of Applied Ecology* 40:815–823.

- Feld, C. K., S. Birk, D. C. Bradley, D. Hering, J. Kail, A. Marzin, A. Melcher, D. Nemitz, M. L. Pedersen, F. Pletterbauer, D. Pont, P. F. M. Verdonschot, and N. Friberg. 2011. From natural to degraded rivers and back again: a test of restoration ecology theory and practice. Advances in Ecological Research 44:119-209.
- Forsvarsbygg. 2015. www.forsvarsbygg.no/Prosjekter/Hjerkinn-PRO/. Accessed 29 June 2015.
- Gardeström, J., D. Holmqvist, L. E. Polvi, and C. Nilsson. 2013. Demonstration restoration measures in tributaries of the Vindel river catchment. *Ecology and Society* 18(3):8. http://dx.doi.org/10.5751/ES-05609-180308.
- Hagen, D., and M. Evju. 2013. Using short-term monitoring data to achieve goals in a large-scale restoration. *Ecology and Society* 18(3):29. http://dx.doi.org/10.5751/ES-05769-180329.
- Hasselquist, E.M., C. Nilsson, J. Hjältén, D. Jørgensen, L. Lind & L. E. Polvi. 2015. Time for recovery of riparian plants in restored northern Swedish streams: a chronosequence study. *Ecological Applications* 25:1373-1389.
- Heidinga, L., and S. D. Wilson. 2002. The impact of an invading alien grass (*Agropyron cristatum*) on species turnover in native prairie. *Diversity and Distributions* 8:249–258.
- Hekkala, A.-M., M.-L. Päätalo, O. Tarvainen, and A. Tolvanen. 2014a. Restoration of young forests in eastern Finland: benefits for saproxylic beetles (Coleoptera). *Restoration Ecology* 22:151–159.
- Hekkala, A.-M., O. Tarvainen, and A. Tolvanen. 2014b. Dynamics of understory vegetation after restoration of natural characteristics in the boreal forests in Finland. *Forest Ecology and Management* 330:55–66.
- Hekluskógar. 2015. www.hekluskogar.is. Accessed 29 June 2015.
- Helfield, J. M., S. J. Capon, C. Nilsson, R. Jansson, and D. Palm. 2007. Restoration of rivers used for timber floating: effects on riparian plant diversity. *Ecological Applications* 17:840–851.
- Hewison, R. L., E. C. Brown, R. V. Birnie, and J. Alexander. 2016. *Continued long-term monitoring of calcareous grasslands and erosion within the Trotternish Ridge SAC*. Scottish Natural Heritage Commissioned Report. Inverness, Scotland, UK, in press.
- Hunziker, M., B. D. Sigurdsson, G. Halldorsson, W. Schwanghart, and N. Kuhn. 2014. Biomass allometries and coarse root biomass distribution of mountain birch in southern Iceland. *Icelandic Agricultural Sciences* 27:111-125.
- Laine, A. M., M. Leppälä, O. Tarvainen, M.-L. Päätalo, R. Seppänen, and A. Tolvanen. 2011. Restoration of managed pine fens: effect on hydrology and vegetation. *Applied Vegetation Science* 14:340–349.
- Life Peatlands Project. 2015. www.lifepeatlandsproject.com/htm/summary/progress.php. Accessed 29 June 2015.
- Lunt, P., T. Allot, P. Anderson, M. Buckler, A. Coupar, P. Jones, J. Labadz, and P. Worrall. 2010. Peatland restoration. Scientific Review commissioned by IUCN UK Peatland Programme Commission of Inquiry into Peatland Restoration, Edinburgh, UK. [online] URL: http://www.iucn-uk
 - peatlandprogramme.org/sites/www.iucn-uk-peatlandprogramme.org/files/Review%20Peatland%20Restoration,%20June%202011%20Final.pdf
- MacDougall, A. S., S. D. Wilson, and J. D. Bakker. 2008. Climatic variability alters the outcome of long-term community assembly. *Journal of Ecology* 96:346-354.
- Martinsen, O.-E., and D. Hagen. 2010. Tilbakeføring av Hjerkinn skytefelt til sivile formål (Hjerkinn PRO) [*Restoration of Hjerkinn firing range into nature conservation areas (Hjerkinn PRO)*]. Pages 35–37 *in* D. Hagen and A. B. Skrindo, editors. *Restaurering av natur i Norge—et innblikk i fagfeltet,*

fagmiljøet og pågående aktivitet [Restoration of nature in Norway—a glimpse into the thematic field, professional institutions and ongoing activity]. NINA Temahefte 42, Norwegian Institute for Nature Research, Trondheim, Norway.

- Nilsson, C., L. E. Polvi, J. Gardeström, E. M. Hasselquist, L. Lind, and J. M. Sarneel. 2015. Riparian and in-stream restoration of boreal streams and rivers: success or failure? *Ecohydrology* 8:753-764.
- Óskarsson, H. 2009a. Hekluskógar: endurheimt birkiskóga í nágrenni Heklu [Heklaforest: restoration of birch woodlands in the vicinity of the Hekla volcano]. Fræðaþing landbúnaðarins 6:286–290.
- Óskarsson, H. 2009b. Hekluskogar: Islands største reetablering af birkeskove. Skoven 41(1):35–39.
- Óskarsson, H. 2011. Hekluskógar [Heklaforest]. Pages 71–74 in Á. L. Aradóttir and G. Halldórsson, editors. Vistheimt á Íslandi [Ecological restoration in Iceland]. Agricultural University of Iceland and Soil Conservation Service of Iceland, Reykjavík, Iceland.
- Palm, D., E. Brännäs, F. Lepori, K. Nilsson, and S. Stridsman. 2007. The influence of spawning habitat restoration on juvenile brown trout (*Salmo trutta*) density. *Canadian Journal of Fisheries and Aquatic Sciences* 64:509–515.

Pedersen, A. B. 2010. The fight over Danish nature: explaining policy network change and policy change. *Public Administration* 88:346–363.

- Pedersen, M. L., J. M. Andersen, K. Nielsen, and M. Linnemann. 2007a. Restoration of Skjern River and its valley: project description and general ecological changes in the project area. *Ecological Engineering* 30:131–144.
- Pedersen, M. L., N. Friberg, J. Skriver, A. Baattrup-Pedersen, and S. E. Larsen. 2007b. Restoration of Skjern River and its valley: short-term effects on river habitats, macrophytes and macroinvertebrates. *Ecological Engineering* 30:145–156.
- Pedersen, M. L., K. K. Kristensen, and N. Friberg. 2014. Re-meandering of lowland streams: will disobeying the laws of geomorphology have ecological consequences? Plos One 9, e108558.
- Petursdottir, T., O. Arnalds, S. Baker, L. Montanarella, and A. L. Aradottir. 2013a. A social-ecological system approach to analyze stakeholders' interactions within a large-scale rangeland restoration program. *Ecology and Society* 18(2):29. http://dx.doi.org/10.5751/ES-05399-180229.
- Petursdottir, T., A. L. Aradottir, and K. Benediktsson. 2013b. An evaluation of the short-term progress of restoration combining ecological assessment and public perception. *Restoration Ecology* 21:75–85.
- Polvi, L. E., C. Nilsson & E. M. Hasselquist. 2014. Potential and actual geomorphic complexity of restored headwater streams in northern Sweden. *Geomorphology* 210:98–118.
- Schmidt, G. 2000. Bændur græða landið: viðhorf bænda [Farmers heal the land: farmers' perspective]. Ráðunautafundur 2000:93–98.
- Similä, M., K. Aapala, and J. Penttinen, editors. 2014. *Ecological restoration of drained peatlands: best practices from Finland*. Metsähallitus Natural Heritage Services and Finnish Environment Institute, Vantaa, Finland.
- Similä, M., and K. Junninen, editors. 2012. *Ecological restoration and management in boreal forests: best practices from Finland*. Metsähallitus Natural Heritage Services, Vantaa, Finland. URL: http://julkaisut.metsa.fi/assets/pdf/lp/Muut/ecological-restoration.pdf.
- Tarvainen, O., A. M. Laine, M. Peltonen, and A. Tolvanen. 2013. Mineralization and decomposition rates in restored pine fens. *Restoration Ecology* 21:592–599.

Vindel River Life. 2015. www.vindelriverlife.se. Accessed 29 June 2015.

- Wilson, S. D., J. D. Bakker, J. M. Christian, X. Li, L. G. Ambrose, and J. Waddington. 2004. Semiarid old-field restoration: is neighbor control needed? *Ecological Applications* 14:476–484.
- Wilson, S. D., and M. Pärtel. 2003. Extirpation or coexistence? Management of a persistent introduced grass in a prairie restoration. *Restoration Ecology* 11:410–416.

Wilson, S. D., and B. D. Pinno. 2013. Environmentally-contingent behaviour of invasive plants as drivers or passengers. *Oikos* 122:129–135.