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Adapting the social-ecological system framework for urban stormwater
management: the case of green infrastructure adoption
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ABSTRACT. Stormwater management has long been a critical societal and environmental challenge for communities. An increasing
number of municipalities are turning to novel approaches such as green infrastructure to develop more sustainable stormwater
management systems. However, there is a need to better understand the technological decision-making processes that lead to specific
outcomes within urban stormwater governance systems. We used the social-ecological system (SES) framework to build a classification
system for identifying significant variables that influence urban stormwater governance decisions related to green infrastructure
adoption. To adapt the framework, we relied on findings from observations at national stormwater meetings in combination with a
systematic literature review on influential factors related to green infrastructure adoption. We discuss our revisions to the framework
that helped us understand the decision by municipal governments to adopt green infrastructure. Remaining research needs and challenges
are discussed regarding the development of an urban stormwater SES framework as a classification tool for knowledge accumulation
and synthesis.
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INTRODUCTION
The lack of well-integrated urban stormwater management
strategies throughout the past century has left a heritage of
environmental and social problems that policy-makers continue
to deal with today. Municipal stormwater management plans in
many developed countries have favored the use of gray
infrastructure (e.g., sewer separation projects, deep storage
tunnels, and regional treatment facilities). These engineering
solutions can be costly, tend to promote centralized subsurface
conveyance systems with end-of-pipe treatment, and often take
years to complete. Despite major investments in stormwater
infrastructure, urban areas continue to experience critical
problems in managing water flows, including flooding, surface
water impairment, and combined sewer overflows (USEPA 2004,
National Research Council 2009, Coles et al. 2012).  

Recent advances in stormwater management methods seek to
enhance the sustainability of urban water systems. For instance,
stormwater systems that include green infrastructure (GI), also
known as low impact development, are recognized as a more
sustainable approach. GI technologies are designed to protect or
restore the natural hydrology of a site, capturing stormwater
volume through the use of engineered systems that mimic natural
hydrologic systems. Comprehensive GI programs can be
implemented for a variety of outcomes, including flood control,
surface water quality improvement, and water harvesting, in
conjunction with a broad range of additional outcomes such as
ecosystem restoration, air quality improvement, and urban heat
reduction (Hatt et al. 2004, Villarreal et al. 2004, Walsh et al. 2005,
Tzoulas et al. 2007). However, there are potential practical
limitations for GI to achieve sustainable outcomes for
municipalities, such as a limited capacity for storing and
infiltrating stormwater.  

The decision to adopt a comprehensive GI program is influenced
by a complex array of social and biophysical factors. To explore
such complexities, an urban water system can be understood as
a social-ecological system (SES), or a collection of dynamic

systems that coevolve through interactions among actors,
institutions, and water systems, such as source water, groundwater,
wastewater, and stormwater (Berkes et al. 1998, Holling and
Gunderson 2002). The stormwater flows and storage volumes
within an urban water SES represent common-pool resources, in
that water quality and available storage volumes are diminished
as runoff flows through urban environments. These issues prompt
the need for public authorities to establish various standards
related to the management of stormwater.  

A fundamental component of urban stormwater SESs is the role
of technology as a critical interface between the social and
ecological structures, which allows actors to shape different
processes to achieve outcomes in system functioning (Ferguson
et al. 2013). Technologies also act as a feedback mechanism
between the social and biophysical systems of an SES. Walker et
al. (2004) describe the potential of an SES intervention to create
a new system when the conditions of an existing system are
weakened. Stormwater management systems that are exclusively
composed of gray infrastructure may result in urban water system
weakening because these technology systems are considered
neither sustainable nor sufficiently resilient to accommodate
climatic changes, and may result in unforeseen outcomes such as
high economic costs and environmental justice issues (Pahl-Wostl
2007, Novotny et al. 2010, Dominguez et al. 2011, Pyke et al. 2011,
Wendel et al. 2011, De Sousa et al. 2012). Alternatively, extensive
use of GI in stormwater management represents an opportunity
for transformational shifts in urban water SESs away from point
source solutions to decentralized, systematic techniques that may
also bring multiple benefits to communities (Shuster and
Garmestani 2015).  

There is a need to more easily relate attributes and configurations
of urban stormwater SESs to particular outcomes, such as the
development of comprehensive GI programs. Several frameworks
exist which conceptualize and operationalize SES dynamics, each
of which may provide different types of diagnostic insights. Thus,
an analyst must be clear about the aim and purpose of any
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diagnostic procedure, and hence, which analytic framework will
support the specific procedure being undertaken (Ferguson et al.
2013). Binder et al. (2013) provide an overview of the prevailing
frameworks for analyzing SESs, and provide guidance on the
selection of an appropriate framework. Scholars studying water
systems have developed frameworks that identify key processes
and structures affecting their governance (Pahl-Wostl et al. 2010,
Wiek and Larson 2012). Because GI represents a suite of
innovative technologies for many urban water SESs, it is necessary
to first identify and define attributes that may prove to be
significant in social-ecological interactions before establishing
causal mechanisms linking conditions and governance outcomes.
Providing a framework to organize and document SES attributes
can serve this function.  

Our primary goal is to identify the influential SES attributes
related to the development of municipal urban stormwater
programs that feature GI. We chose the SES framework because
it provides a systematic and comprehensive method for defining
system attributes and identifying those that are associated with
outcomes of interest (Ostrom 2007, 2009). Numerous
environmental case studies have applied the SES framework while
adding or redefining attributes to best characterize the SES of
interest (Fleischman et al. 2010, Gutiérrez et al. 2011, Cinner et
al. 2012, Basurto et al. 2013, Nagendra and Ostrom 2014,
Marshall 2015, Partelow and Boda 2015). No such effort has been
previously undertaken to assess the suitability of the SES
framework to characterize urban stormwater management
systems. We use qualitative methods to identify and define the
attributes most commonly associated with the inclusion of GI in
municipal urban stormwater programs.

METHODS
The identification of attributes associated with GI adoption in
municipal urban stormwater programs included several phases of
data collection and analysis (Fig. 1). Exploratory work began with
observations at GI summits in 2013 and 2014, in which delegates
from U.S. municipalities were invited to discuss their respective
community’s GI programs. Extensive field notes from both
meetings were coded line-by-line to identify factors that affected
decisions to adopt municipal GI programs. The resulting codes
were grouped into general categories of attributes that emerged
during the analysis process. These categories were then
incorporated into the SES framework, using first- and second-
tier modifications, as suggested by McGinnis and Ostrom (2014),
Epstein et al. (2013), and Vogt et al. (2015), as the initial
framework.  

Another stage of data collection included a literature review of
original research efforts related to the adoption and
implementation of GI in urban stormwater systems. Green
infrastructure, green stormwater infrastructure (GSI), low impact
design (LID), and best management practices (BMPs) are among
the terms used for various suites of urban stormwater
management technologies. We refer to GI, GSI, and LID
technologies are “GI” because these terms are often used
synonymously (Fletcher et al. 2014). Searches were carried out
using Scopus, Web of Knowledge, and Google Scholar. Key words
included in the literature review were “green infrastructure,” “low
impact development,” “stormwater,” and “municipal.” Searches
were conducted for studies published between 2000 and 2015. In
total, 135 articles, theses, and reports were reviewed for their

relevance to factors affecting the adoption and implementation of
GI technologies for municipal programs. Reasons for exclusion
included a study focus on adoption of water systems other than
stormwater (e.g., drinking water, wastewater), or an exclusive focus
on GI technology design attributes outside the context of municipal
stormwater management program implementation (e.g., experimental
findings). Studies were not excluded on the basis of study design,
the scale or primary design goal of stormwater technologies
discussed, nor the geographical location of the study; however, most
studies reviewed were based in the United States or Australia. This
process resulted in 83 studies that met the criteria, and thus formed
the basis of the review.

Fig. 1. Sequence of data collection and analysis. (SESF: social-
ecological system framework)

Qualitative document analysis techniques were used to identify
factors that influence municipal GI programs in each of the
collected studies. These methods often involve the development of
a “protocol,” which is tested on each unit of analysis and revised
based on the quality and likely efficiency of the results (Altheide
et al. 2008). The SES framework adapted in the initial research
phase served as a beginning protocol that consisted of identified
attributes related to GI adoption. After analyzing each study of
the literature review, new findings were organized within the
protocol. After all studies were analyzed, each study was reviewed
a second time to test the protocol. This process resulted in the
addition or redefining of second-tier SES framework attributes and
the development of new third-, fourth-, and fifth-tier attributes
presented in Table 1. Working definitions were developed for each
attribute and are included in Appendix 1, along with at least three
citations of illustrative studies collected in the literature review for
the highest tier of each nested attribute added to the SES
framework. Listed citations for each attribute are not presented as
definitive authoritative sources nor as a comprehensive listing of
all studies in which the attribute was identified. Rather, they
represent examples of how scholars have applied the concept in
other studies.

RESULTS
The SES framework organizes system attributes into nested tiers.
The first-tier attributes of the SES framework, as defined for an
urban stormwater management system, are summarized in Fig. 2.
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Table 1. Modified second- through fifth-tier attributes of the urban stormwater social-ecological system (SES) framework. Factors
modified from McGinnis and Ostrom (2014), Epstein et al. (2013), and Vogt et al. (2015) that are specific for green infrastructure
adoption in urban stormwater social-ecological systems are noted with italic font.
 

Social, economic, and
political settings (S)

Ecological
rules (ER)

Governance systems
(GS)

Actors (A) Resource systems (RS) Resource units (RU) Related ecosystems
(ECO)

Interactions (I) Outcome criteria (O)

S1 -
Economic development

S2 -
Demographic trends

S3 -
Political stability

S4 -
Government policies

S5 -
Market incentives

S6 -
Media organization

S7 -
Technology

ER1 -
Physical rules

ER2 -
Chemical

rules
ER3 -

Biological
rules

GS1 -
Policy area

GS2 -
Geographical scale

GS3 -
Population

GS4 -
Regime type

GS5 -
Rule-making
organizations

GS5.1 -
Number of

organizations
GS5.2 -

Institutional diversity
GS5.3 -

Economic resources
GS5.4 -

Human resources
GS6 -

Rules-in-use
GS6.1 -

Operational -choice
rules

GS6.1.1 -
Stormwater ordinances

GS6.1.1.1 -
Technical basis

GS6.1.1.2 -
Administrative

apparatus
GS6.1.1.3 -

Enforcement provisions
GS6.1.2 -

Stormwater utility
funding scheme

GS6.1.2.1 -
Price instrument

GS6.1.2.2 -
Credits or fee reduction

GS6.1.3 -
Stormwater

management plans
GS6.1.3.1 -

Operations and
maintenance

GS6.1.4 -
Related regulations

GS6.2 -
Collective-choice rules

GS6.3 -
Constitutional-choice

rules
GS7 -

Property-rights
systems
GS7.1 -

Watercourse law
GS7.1.1 -

Prior appropriation
doctrine
GS8 -

Repertoire of norms
and strategies

GS8.1 -
Diversity
GS8.2 -

Risk tolerance
GS9 -

Network structure
GS9.1 -

Horizontal
GS9.2 -
Vertical
GS10 -

Historical continuity

A1 -
Number of actors

A2 -
Socioeconomic attributes

A3 -
History or past experiences

A3.1 -
Experimentation

A3.2 -
Environmental injustices

A4 -
Location

A5 -
Leadership/

entrepreneurship
A5.1 -

Policy entrepreneur
A5.2 -

Policy community
A6 -

Norms (trust-reciprocity)/
social capital

A6.1 -
Trust
A6.2 -

Reciprocity
A6.3 -

Social capital
A7 -

Knowledge of SES/mental
models
A7.1 -

Types of knowledge
A7.1.1 -

Traditional ecological
knowledge
A7.1.2 -

Local ecological knowledge
A7.1.3 -

Technical expertise
A7.2 -

Mechanisms to share
knowledge

A7.3 -
Scale of mental models

A8 -
Importance of resource

(dependence)
A9 -

Technology available
A9.1 -

Ownership
A9.2 -

Research support
A9.2.1 -

Environmental performance
A9.2.1.1 -

Stormwater management
A9.2.1.2 -

Environmental "cobenefits"
A9.2.2 -

Social benefits
A9.2.3 -

Design and complexity
A9.2.4 -

Maintenance procedures
A9.2.5 -

Reliability
A9.3 -

Associated costs
A9.3.1 -
Capital
A9.3.2 -

Operation and maintenance
A9.4 -

Perceptions/attitudes

RS1 -
Sector
RS2 -

Clarity of system
boundaries

RS3 -
Size of resource

system
RS4 -

Human-constructed
facilities
RS4.1 -

Locations
RS4.1.1 -

Availability for
potential facilities

RS4.2 -
Functionality

RS5 -
Productivity of system

RS6 -
Equilibrium properties

RS6.1 -
Frequency/timing of

disturbances
RS7 -

Predictability of
system dynamics

RS8 -
Storage characteristics

RS8.1 -
Soil characteristics

RS8.2 -
Imperviousness

RS9 -
Location
RS10 -

Ecological history
RS10.1 -

Human use and
disturbance

RU1 -
Resource unit

mobility
RU2 -

Growth or
replacement rate

RU3 -
Interaction among

resource units
RU4 -

Economic value
RU5 -

Number of units
RU6 -

Distinctive
characteristics

RU7 -
Spatial and temporal

distribution

ECO1 -
Climate patterns

ECO2 -
Pollution patterns

ECO3 -
Flows into and out

of focal SES

I1 -
Harvesting

I2 -
Information

sharing
I3 -

Deliberation
processes

I4 -
Conflicts

I5 -
Investment
activities

I6 -
Lobbying
activities

I7 -
Self-organizing

activities
I8 -

Networking
activities

I9 -
Monitoring

activities
I10 -

Evaluative
activities

O1 -
Social performance

measures
O2 -

Ecological
performance

measures
O3 -

Externalities to other
SESs

The resource system (RS) is defined as an urban stormwater
system; i.e., the system of water flows that results from wet
weather. Multiple sets of resource units (RU) can be defined
within an urban stormwater system, such as units of stormwater
or the storage volumes available for stormwater throughout the

system. The governance system (GS) includes the sets of rules
agreed upon by national, state, and local organizations for
managing urban stormwater. The actors (A) category includes
individuals and groups that interact with the urban stormwater
system. Multiple categories of actors can be defined, including
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individuals and groups that are involved in rule-making processes,
and property owners that are affected by stormwater management
decisions. Attributes from each of these categories provide inputs
to action situations, where interactions (I) among actors
transform these inputs into various outcomes, which can be
measured by outcome criteria (O). Additional influences flow
between the focal SES attributes and related ecosystems (ECO);
ecological rules (ER); and social, economic, and political settings
(S).

Fig. 2. First tiers of social-ecological system framework for an
urban stormwater social-ecological system (adapted from
Ostrom [2007] and Epstein et al. [2013]).

Table 1 summarizes the changes made to the SES framework. A
detailed summary of the modifications, along with working
definitions and illustrative references, are provided in Appendix
1. Because the study focus is only on changes related to resource
management programs, the findings led to detailed expansions of
multiple governance system and actor attributes. Attributes for
RU, ECO, ER, and S were not modified beyond second-tier
changes suggested by McGinnis and Ostrom et al. (2014) and
Vogt et al. (2015), though many of these attributes have direct and
important effects on the design of municipal stormwater
management programs. Additional studies on implementing
various technological designs may result in a more detailed
account for influential attributes in these categories.  

Multiple third-, fourth-, and fifth-tier variables were added to
describe various attributes of stormwater management
technologies that are available to actors within the SES (A9), such
as research support (A9.2), associated costs (A9.3), and
perceptions of particular technologies (A9.4). The addition of
third-, fourth-, and fifth-tier variables related to human-
constructed facilities (RS4) designates both the types and
functionalities of existing and potential stormwater infrastructure.
A notable factor related to the construction of GI technologies
is the availability of suitable locations for potential facilities
(RS4.1.1), which is often associated with other factors such as
local soil characteristics (RS8.1) (Shuster et al. 2014). Additional
tiers allow for a detailed account of the assortment of resources
and rules used by organizations to manage GI technologies.
Stormwater ordinances (GS6.1.1) often acted as a barrier to GI
implementation (Nowacek et al. 2003, Lassiter 2007, Stockwell
2009, Dochow 2013). Another common barrier was lack of
sufficient program funding (Clean Water America Alliance 2011,
Siglin 2012, Winz et al. 2014), which is associated with limited

economic resources available to rule-making organizations
(GS5.3), type of stormwater utility funding schemes (GS6.1.2),
and socioeconomic attributes of actors (A2). Multiple attributes
of actors that interact with and manage stormwater resources
were found to influence GI program adoption, such as the
leadership efforts of policy entrepreneurs (A5) and policy
communities (A5.2), multiple actor knowledge types (A7.1),
experimentation (i.e., technology pilot projects) (A3.1), and
environmental injustices (A3.2).

DISCUSSION
In the broadest sense, integration of GI into an urban stormwater
management system can be understood as the development of
human-constructed facilities (RS4) across diffuse locations
(RS4.1) using available technologies (A9) to alter the storage
characteristics of an urban stormwater system (RS8). In
developing this SES framework, additional third-, fourth-, and
fifth-tier variables were needed to account for complex
arrangements of social and biophysical factors that affect GI
implementation. Operational-choice rules (GS6.1), such as
ordinances, funding schemes, and comprehensive management
plans, were found to be among the most complex factors. These
rules are often further complicated by related SES regulations
(GS6.1.4), such as zoning, building codes, and demolition
practices (Lassiter 2007, Carter and Fowler 2008, Shuster et al.
2014). These related regulations are often managed by separate
organizations, which may create barriers to GI implementation if
the regulations are prohibitive. Property-rights systems that
include prior-appropriation doctrines (GS7.1.1) can limit the
choices of GI technologies (e.g., rainwater collection systems for
some communities in the western United States) (Jensen 2008,
Salkin 2009).  

Funding was found to be among the most frequently cited barriers
to GI (Godwin et al. 2008, Roy et al. 2008, Brown et al. 2009,
Earles et al. 2009, Ruppert and Clark 2009, Stockwell 2009, Clean
Water America Alliance 2011), most often in reference to the
limited economic resources of enforcement organizations
(GS5.1.1.2) and a lack of information on the cost-effectiveness
of GI (A9.3). In the studies reviewed, stormwater management
programs were enforced primarily by public organizations that
selected stormwater management technologies to meet outcome
criteria in a cost-effective manner. Environmental services
associated with GI (A9.2.1.2), such as reducing urban heat island
effects or promoting recreational opportunities, were cited as
drivers for adoption when these benefits were quantifiable
(Nowacek et al. 2003, Madden 2010). This suggests that it is
difficult to maintain clear institutional boundaries when assessing
the market and nonmarket value of GI because there may be
additional benefits that GI can bring to a community beyond
stormwater management.  

The financial concerns of enforcement organizations are
complicated by the design of effective stormwater utility funding
schemes (GS6.1.2). Many funding schemes are predicated on the
extent of total impervious area of urban land parcels because this
metric has frequently been used to predict levels of surface water
impairments due to stormwater runoff (Booth and Jackson 1997,
Parikh et al. 2005). However, studies suggest that the subset of
impervious surfaces that route runoff directly to surface waters
via sewer pipes, known as directly connected impervious area or
effective impervious area, may be responsible for most surface
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water impairments due to urbanization (Brabec et al. 2002, Walsh
2004, Walsh et al. 2005, Roy and Shuster 2009). Thus, stormwater
utility funding schemes based on total impervious area rather
than effective impervious area may not lead to desired SES
outcomes. Additional limitations of utility funding schemes may
develop if  financial credits for GI are calculated as a one-time
credit based on the initial installation without including ongoing
performance and maintenance criteria, or if  residential property
owners are not included in financial incentive programs (Parikh
et al. 2005).  

Technological attributes are described in both the social and
ecological domains of the SES framework. While it has been
argued that there is no need to create a separate technological
domain (McGinnis and Ostrom 2014), we demonstrate a need to
more fully develop robust descriptions of technological attributes
within urban stormwater SESs because these attributes act as key
feedback mechanisms between the social and ecological domains.
Historically, technological innovations in urban water SESs have
been shown to bring about desired social and ecological regime
shifts, such as a reduction in water-borne illness and a decrease
in the frequency of algal blooms due to eutrophic states of
receiving waters (Melosi 1999, Smith et al. 1999). Urban water
infrastructure choices may also lead to unforeseen consequences
over long periods. For example, combined sewer systems were
once deemed to be the most appropriate choice for urban settings
due to factors such as cost-effectiveness and availability of water
courses for overflow disposal (Tarr 1979). These decisions have
left a legacy of water pollution problems for many communities,
as combined sewer overflows continue to impair surface waters
and create human health hazards (USEPA 2004, Donovan et al.
2008, Gooré Bi et al. 2015). By developing a comprehensive
categorization of technological attributes within an SES
framework, policy-makers will be better equipped to make well-
informed decisions concerning technology selection for desired
urban water SES outcomes.  

Though additional characterizations were not added within
several second-tier categories, such as resource units (RU) and
outcome criteria (O), attributes in these categories have important
implications for stormwater management technology decisions.
For instance, stormwater management plans are traditionally
designed according to the spatial and temporal distribution of
stormwater flows in an urban area (RU7), which will be affected
by changes in local precipitation patterns (RU2). The spatial and
temporal distribution of stormwater volumes within an urban
setting places clear boundaries on which technologies should be
considered and where they should be situated in an urban setting
(Askarizadeh et al. 2015). Additionally, the criteria used to select
stormwater management technologies, such as relative cost-
effectiveness or ecological performance measures, will often
strongly influence enforcement officials’ decision-making
processes (Flynn et al. 2014). Expansion of these attribute
categories may be necessary when considering research questions
related to the design of specific stormwater technologies or the
influence of particular outcome criteria.  

Some limitations of the modified framework attributes should be
noted. Because several programs reviewed in the literature are in
early phases of development, some SES framework attributes are
likely relevant to only nascent GI implementation. However, an
analysis of GI technologies in urban stormwater SESs over longer

timescales may result in other variables having a greater effect
(Brown et al. 2013). Much of the research we reviewed relies on
case study methods such as the solicitation of particular actors’
perceptions. Thus, some factors listed may pertain to specific
actors or institutions, such as engineering firms, municipal
officials, developers, or community residents. Additional studies
can provide further insights into the possibility of shared,
complementary interactions among actors within specific
situations that result in the development of successful GI
programs. It is also important to note that while the literature
review was not restricted to studies from particular geographic
locations, most studies were based in the United States or
Australia, which prescribe similar stormwater governance
structures. Researchers who use the revised SES framework in
studies of community-based stormwater governance regimes may
need to add more detailed characterizations of particular
attributes (such as property-rights systems or collective-choice
rules), or may need to omit others (such as particular operational
rules).

CONCLUSION
We developed a modified SES framework to recognize the
combinations of influential variables related to the development
of municipal urban stormwater management programs that
feature extensive use of GI technologies. The modifications made
to the SES framework revealed the need for additional attribute
tiers related to variables such as available technologies, actor
characterizations, and operational-choice rules. Our findings
demonstrate that affecting change in the built structure of urban
stormwater systems involves multiple interacting attributes of the
actors and governance systems within an SES.  

The framework we developed should be interpreted as a flexible,
proposed framework rather than a definitive set of variables that
will be relevant in all urban stormwater SES cases. Other studies
highlight qualities of particular attributes within adapted SES
frameworks to explore dynamic interactions and outcomes of
interest (Fleischman et al. 2010, Basurto et al. 2013, Nagendra
and Ostrom 2014, Leslie et. al 2015, Partelow and Boda 2015).
The revised framework we presented highlights key factors of GI
adoption that can be further explored using various theories and
models to assess outcomes of interest related to urban stormwater
SESs seeking to adopt GI technologies (Flynn et al. 2014). Tiers
may be added or omitted to accommodate particular theories and
research questions.  

There is a need to explore the specific, contextual factors affecting
the decision to adopt particular management approaches in urban
stormwater SESs. The growing popularity of GI systems across
municipalities carries a risk that these technologies will be
perceived as a panacea for stormwater management (Ostrom
2007). However, there continues to be a need for a more
sophisticated quantitative understanding of how GI technologies
bring out particular SES outcomes. Neither a fully green nor
entirely gray infrastructure approach to stormwater management
will likely be optimal at any location. Instead, long-term solutions
must be built around improved knowledge of factors influencing
water quantity and quality in urban areas, and leveraging the
services and capacities of both gray and green infrastructure. Such
understanding should include the consideration of the unique
characteristics of a particular urban water SES.

http://www.ecologyandsociety.org/vol21/iss4/art19/


Ecology and Society 21(4): 19
http://www.ecologyandsociety.org/vol21/iss4/art19/

Responses to this article can be read online at: 
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Acknowledgments:

This work was supported in part by NSF grant #1444755, Urban
Resilience to Extremes Sustainability Research Network. We also
thank the SURDNA Foundation for providing funding for part of
this work. We are grateful for the helpful feedback from Dr. Burnell
Fischer, Dr. Jessica Vogt, and colleagues at The Vincent and Elinor
Ostrom Workshop in Political Theory and Policy Analysis at
Indiana University, Bloomington, Indiana. We are also indebted to
the work of Elinor Ostrom.

LITERATURE CITED
Altheide, D., M. Coyle, K. DeVriese, and C. Schneide. 2008.
Emergent qualitative document analysis. Pages 127–151 in S. N.
Hesse-Biber, and P. Leavy, editors. Handbook of emergent
methods. Guilford Press, New York, USA.  

Askarizadeh, A., M. A. Rippy, T. D. Fletcher, D. L. Feldman, J.
Peng, P. Bowler, A. S. Mehring, B. K. Winfrey, J. A. Vrugt, A.
AghaKouchak, S. C. Jiang, B. F. Sanders, L. A. Levin, S. Taylor,
and S. B. Grant. 2015. From rain tanks to catchments: use of low-
impact development to address hydrologic symptoms of the
urban stream syndrome. Environmental Science & Technology 49
(19):11264–11280. http://pubs.acs.org/doi/abs/10.1021/acs.
est.5b01635 http://dx.doi.org/10.1021/acs.est.5b01635  

Basurto, X., S. Gelcich, and E. Ostrom. 2013. The social-
ecological system framework as a knowledge classificatory system
for benthic small-scale fisheries. Global Environmental Change 23
(6):1366–1380. http://dx.doi.org/10.1016/j.gloenvcha.2013.08.001  

Berkes, F., C. Folke, and J. Colding. 1998. Linking social and
ecological systems: management practices and social mechanisms
for building resilience. Cambridge University Press, Cambridge,
UK.  

Binder, C. R., J. Hinkel, P. W. G. Bots, and C. Pahl-Wostl. 2013.
Comparison of frameworks for analyzing social-ecological
systems. Ecology and Society 18(4):26. http://dx.doi.org/10.5751/
ES-05551-180426  

Booth, D. B., and C. R. Jackson. 1997. Urbanization of aquatic
systems: degradation thresholds, stormwater detection, and the
limits of mitigation. Journal of the American Water Resources
Association 33(5):1077–1090. http://dx.doi.org/10.1111/j.1752-1688.1997.
tb04126.x  

Brabec, E., S. Schulte, and P. L. Richards. 2002. Impervious
surfaces and water quality: a review of current literature and its
implications for watershed planning. Journal of Planning
Literature 16(4):499–514. http://dx.doi.org/10.1177/088541202400903563  

Brown, R., M. Farrelly, and N. Keath. 2009. Practitioner
perceptions of social and institutional barriers to advancing a
diverse water source approach in Australia. Water Resources
Development 25(1):15–28. http://dx.doi.org/10.1080/07900620802586090  

Brown, R. R., M. A. Farrelly, and D. A. Loorbach. 2013. Actors
working the institutions in sustainability transitions: the case of
Melbourne's stormwater management. Global Environmental
Change 23(4):701–718. http://dx.doi.org/10.1016/j.gloenvcha.2013.02.013  

Carter, T., and L. Fowler. 2008. Establishing green roof
infrastructure through environmental policy instruments.
Environmental Management 42:151–164. http://dx.doi.org/10.1007/
s00267-008-9095-5  

Cinner, J. E., T. R. McClanahan, M. A. MacNeil, N. A. J. Graham,
T. M. Daw, A. Mukminin, D. A. Feary, A. L. Rabearisoa, A.
Wamukota, N. Jiddawi, S. J. Campbell, A. H. Baird, F. A.
Januchowski-Hartley, S. Hamed, R. Lahari, T. Morove, and J.
Kuange. 2012. Comanagement of coral reef social-ecological
systems. Proceedings of the National Academy of Sciences of the
United States of America 109(14):5219–5222. http://dx.doi.
org/10.1073/pnas.1121215109  

Clean Water America Alliance. 2011. Barriers and gateways to
green infrastructure. Washington, D.C., USA. [online] URL:
http://uswateralliance.org/sites/uswateralliance.org/files/publications/
Barriers-and-Gateways-to-Green-Infrastructure.pdf  

Coles, J. F., G. McMahon, A. H. Bell, L. R. Brown, F. A.
Fitzpatrick, B. S. Eikenberry, M. D. Woodside, T. F. Cuffney, W.
L. Bryant, K. Cappiella, L. Fraley-McNeal, and W. P. Stack. 2012.
Effects of urban development on stream ecosystems in nine
metropolitan study areas across the United States. U.S. Geological
Survey Circular 1373. [online] URL: http://pubs.usgs.gov/
circ/1373/pdf/Circular1373.pdf  

De Sousa, M. R. C., F. A. Montalto, and S. Spatari. 2012. Using
life cycle assessment to evaluate green and grey combined sewer
overflow control strategies. Journal of Industrial Ecology 16
(6):901–913. http://dx.doi.org/10.1111/j.1530-9290.2012.00534.
x  

Dochow, D. 2013. Transforming tradition: a case study of
stormwater management in Clark County, Washington to assess
barriers to low impact development strategies. Thesis. Evergreen
State College, Olympia, Washington, U.S.A. [online] URL: http://
archives.evergreen.edu/masterstheses/Accession86-10MES/
Dochow_D2013.pdf  

Dominguez, D., B. Truffer, and W. Gujer. 2011. Tackling
uncertainties in infrastructure sectors through strategic planning:
the contribution of discursive approaches in the urban water
sector. Water Policy 13(3):299–316. http://dx.doi.org/10.2166/
wp.2010.109  

Donovan, E., K. Unice, J. D. Roberts, M. Harris, and B. Finley.
2008. Risk of gastrointestinal disease associated with exposure
to pathogens in the water of the Lower Passaic River. Applied and
Environmental Microbiology 74:994–1003. http://dx.doi.org/10.1128/
AEM.00601-07  

Earles, A., D. Rapp, J. Clary, and J. Lopitz. 2009. Breaking down
the barriers to low impact development in Colorado. Pages 1–10
in S. Starrett, editor. World Environmental and Water Resources
Congress 2009: Great Rivers, May 2009. http://dx.doi.
org/10.1061/41036(342)91  

Epstein, G., J. M. Vogt, S. K. Mincey, M. Cox, and B. Fischer.
2013. Missing ecology: integrating ecological perspectives with

http://www.ecologyandsociety.org/vol21/iss4/art19/
http://www.ecologyandsociety.org/issues/responses.php/8756
http://www.ecologyandsociety.org/issues/responses.php/8756
http://pubs.acs.org/doi/abs/10.1021/acs.est.5b01635
http://pubs.acs.org/doi/abs/10.1021/acs.est.5b01635
http://dx.doi.org/10.1021%2Facs.est.5b01635
http://dx.doi.org/10.1016%2Fj.gloenvcha.2013.08.001
http://dx.doi.org/10.5751%2FES-05551-180426
http://dx.doi.org/10.5751%2FES-05551-180426
http://dx.doi.org/10.1111%2Fj.1752-1688.1997.tb04126.x
http://dx.doi.org/10.1111%2Fj.1752-1688.1997.tb04126.x
http://dx.doi.org/10.1177%2F088541202400903563
http://dx.doi.org/10.1080%2F07900620802586090
http://dx.doi.org/10.1016%2Fj.gloenvcha.2013.02.013
http://dx.doi.org/10.1007%2Fs00267-008-9095-5
http://dx.doi.org/10.1007%2Fs00267-008-9095-5
http://dx.doi.org/10.1073%2Fpnas.1121215109
http://dx.doi.org/10.1073%2Fpnas.1121215109
http://uswateralliance.org/sites/uswateralliance.org/files/publications/Barriers-and-Gateways-to-Green-Infrastructure.pdf
http://uswateralliance.org/sites/uswateralliance.org/files/publications/Barriers-and-Gateways-to-Green-Infrastructure.pdf
http://pubs.usgs.gov/circ/1373/pdf/Circular1373.pdf
http://pubs.usgs.gov/circ/1373/pdf/Circular1373.pdf
http://dx.doi.org/10.1111%2Fj.1530-9290.2012.00534.x
http://dx.doi.org/10.1111%2Fj.1530-9290.2012.00534.x
http://archives.evergreen.edu/masterstheses/Accession86-10MES/Dochow_D2013.pdf
http://archives.evergreen.edu/masterstheses/Accession86-10MES/Dochow_D2013.pdf
http://archives.evergreen.edu/masterstheses/Accession86-10MES/Dochow_D2013.pdf
http://dx.doi.org/10.2166%2Fwp.2010.109
http://dx.doi.org/10.2166%2Fwp.2010.109
http://dx.doi.org/10.1128%2FAEM.00601-07
http://dx.doi.org/10.1128%2FAEM.00601-07
http://dx.doi.org/10.1061%2F41036%28342%2991
http://dx.doi.org/10.1061%2F41036%28342%2991


Ecology and Society 21(4): 19
http://www.ecologyandsociety.org/vol21/iss4/art19/

the social-ecological system framework. International Journal of
the Commons 7(2):432–453. http://dx.doi.org/10.18352/ijc.371  

Ferguson, B. C., R. R. Brown, and A. Deletic. 2013. Diagnosing
transformative change in urban water systems: theories and
frameworks. Global Environmental Change 23(1):264–280. http://
dx.doi.org/10.1016/j.gloenvcha.2012.07.008  

Fleischman, F., K. Boenning, G. A. Garcia-Lopez, S. Mincey, M.
Schmitt-Harsh, K. Daedlow, M. C. Lopez, X. Basurto, B. Fischer,
and E. Ostrom. 2010. Disturbance, response, and persistence in
self-organized forested communities: analysis of robustness and
resilience in five communities in southern Indiana. Ecology and
Society 15(4):9. [online] URL: http://www.ecologyandsociety.
org/vol15/iss4/art9/  

Fletcher, T. D., W. Shuster, W. F. Hunt, R. Ashley, D. Butler, S.
Arthur, S. Trowsdale, S. Barraud, A. Semadeni-Davies, J.-L.
Bertrand-Krajewski, P. S. Mikkelsen, G. Rivard, M. Uhl, D.
Dagenais, and M. Viklander. 2014. SUDS, LID, BMPs, WSUD
and more – the evolution and application of terminology
surrounding urban drainage. Urban Water Journal 12:1–18.  

Flynn, C. D., C. I. Davidson, and J. Mahoney. 2014.
Transformational changes associated with sustainable stormwater
management practices in Onondaga County, New York. Pages
89–100 in J. Crittenden, C. Hendrickson, and B. Wallace, editors.
ICSI 2014: creating infrastructure for a sustainable world. http://
ascelibrary.org/doi/abs/10.1061/9780784478745.009  

Godwin, D., B. L. Parry, F. A. Burris, S. S. Chan, and A. Punton.
2008. Barriers and opportunities for low impact development: case
studies from three Oregon communities. Oregon State University,
Corvallis, Oregon, USA. [online] URL: http://seagrant.
oregonstate.edu/sites/default/files/sgpubs/onlinepubs/w06002.pdf  

Gooré Bi, E., F. Monette, and J. Gasperi. 2015. Analysis of the
influence of rainfall variables on urban effluents concentrations
and fluxes in wet weather. Journal of Hydrology 523:320–332.
http://dx.doi.org/10.1016/j.jhydrol.2015.01.017  

Gutiérrez, N. L., R. Hilborn, and O. Defeo. 2011. Leadership,
social capital and incentives promote successful fisheries. Nature 
470(7334):386–389. http://dx.doi.org/10.1038/nature09689  

Hatt, B. E., T. D. Fletcher, C. J. Walsh, and S. L. Taylor. 2004.
The influence of urban density and drainage infrastructure on
the concentrations and loads of pollutants in small streams.
Environmental Management 34:112–124. http://dx.doi.org/10.1007/
s00267-004-0221-8  

Holling, C. S., and L. H. Gunderson. 2002. Panarchy:
understanding transformations in human and natural systems.
Island Press, Washington D.C., USA.  

Jensen, M. A. 2008. Feasibility of rainwater harvesting for urban
water management in Salt Lake City. Thesis. University of Utah,
Salt Lake City, Utah, USA. [online] URL: http://content.lib.utah.
edu/utils/getfile/collection/etd2/id/1406/filename/image  

Lassiter, R. 2007. An assessment of impediments to low-impact
development in the Virginia portion of the Chesapeake Bay
watershed. Thesis. Virginia Commonwealth University,
Richmond, Virginia, USA. [online] URL: http://scholarscompass.
vcu.edu/cgi/viewcontent.cgi?article=1891&context=etd  

Leslie, H. M., X. Basurto, M. Nenadovic, L. Sievanen, K. C.
Cavanaugh, J. J. Cota-Nieto, B. E. Erisman, E. Finkbeiner, G.
Hinojosa-Arango, M. Moreno-Báez, and S. Nagavarapu, S. M.
W. Reddy, A. RodrÃguezf, K. Siegel, J. J. Ulibarria-Valenzuela,
A. Hudson Weaver, and O. Aburto-Oropeza. 2015.
Operationalizing the social-ecological systems framework to
assess sustainability. Proceedings of the National Academy of
Sciences of the United States of America 112(19):5979–5984.
http://dx.doi.org/10.1073/pnas.1414640112  

Madden, S. A. 2010. Choosing green over gray: Philadelphia's
innovative stormwater infrastructure plan. Thesis. Massachusetts
Institute of Technology, Cambridge, Massachusetts, USA.
[online] URL: http://www.mit.edu/afs.new/athena/dept/cron/
project/urban-sustainability/Stormwater_Sarah%20Madden/
sarahmadden_thesis_MIT.pdf  

Marshall, G. 2015. A social-ecological systems framework for
food systems research: accommodating transformation systems
and their products. International Journal of the Commons 9:881–
908. http://dx.doi.org/10.18352/ijc.587  

McGinnis, M. D., and E. Ostrom. 2014. Social-ecological
framework: initial changes and continuing challenges. Ecology
and Society 19(2):30. [online] URL: http://dx.doi.org/10.5751/
ES-06387-190230  

Melosi, M. V. 1999. The sanitary city: urban infrastructure in
American from colonial times to the present. Johns Hopkins
University Press, Baltimore, Maryland, USA.  

Nagendra, H., and E. Ostrom. 2014. Applying the social-
ecological system framework to the diagnosis of urban lake
commons in Bangalore, India. Ecology and Society 19(2):67.
http://dx.doi.org/10.5751/ES-06582-190267  

National Research Council. 2009. Urban stormwater management
in the United States. National Academies Press, Washington, D.
C., USA [online] URL: http://www.nap.edu/catalog/12465/
urban-stormwater-management-in-the-united-states  

Novotny, V., J. Ahern, and P. Brown. 2010. Water centric
sustainable communities: planning, retrofitting and building the
next urban environment. John Wiley & Sons, Hoboken, New
Jersey, USA. http://dx.doi.org/10.1002/9780470949962  

Nowacek, D., E. Nelson, and J. Petchenik. 2003. Social and
institutional barriers to stormwater infiltration. Wisconsin
Department of Natural Resources-Bureau of Integrated Science
Services. [online] URL: http://www.kitsaplid.org/resources/
Barriers_to_SW_Infiltration.pdf  

Ostrom, E. 2007. A diagnostic approach for going beyond
panaceas. Proceedings of the National Academy of Sciences of the
United States of America 104(39):15181–15187. http://dx.doi.
org/10.1073/pnas.0702288104  

Ostrom, E. 2009. A general framework for analyzing
sustainability of social-ecological systems. Science 325
(5939):419–422. http://dx.doi.org/10.1126/science.1172133  

Ostrom, E., M. Cox, and E. Schlager. 2014. An assessment of the
institutional analysis and development framework. Pages 267–
306 in P. A. Sabatier, and C. Weible, editors. Theories of the Policy
Process. Third edition. Westview Press, Colorado, USA.  

http://dx.doi.org/10.18352%2Fijc.371
http://dx.doi.org/10.1016%2Fj.gloenvcha.2012.07.008
http://dx.doi.org/10.1016%2Fj.gloenvcha.2012.07.008
http://www.ecologyandsociety.org/vol15/iss4/art9/
http://www.ecologyandsociety.org/vol15/iss4/art9/
http://ascelibrary.org/doi/abs/10.1061/9780784478745.009
http://ascelibrary.org/doi/abs/10.1061/9780784478745.009
http://seagrant.oregonstate.edu/sites/default/files/sgpubs/onlinepubs/w06002.pdf
http://seagrant.oregonstate.edu/sites/default/files/sgpubs/onlinepubs/w06002.pdf
http://dx.doi.org/10.1016%2Fj.jhydrol.2015.01.017
http://dx.doi.org/10.1038%2Fnature09689
http://dx.doi.org/10.1007%2Fs00267-004-0221-8
http://dx.doi.org/10.1007%2Fs00267-004-0221-8
http://content.lib.utah.edu/utils/getfile/collection/etd2/id/1406/filename/image
http://content.lib.utah.edu/utils/getfile/collection/etd2/id/1406/filename/image
http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1891&context=etd
http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1891&context=etd
http://dx.doi.org/10.1073%2Fpnas.1414640112
http://www.mit.edu/afs.new/athena/dept/cron/project/urban-sustainability/Stormwater_Sarah%20Madden/sarahmadden_thesis_MIT.pdf
http://www.mit.edu/afs.new/athena/dept/cron/project/urban-sustainability/Stormwater_Sarah%20Madden/sarahmadden_thesis_MIT.pdf
http://www.mit.edu/afs.new/athena/dept/cron/project/urban-sustainability/Stormwater_Sarah%20Madden/sarahmadden_thesis_MIT.pdf
http://dx.doi.org/10.18352%2Fijc.587
http://dx.doi.org/10.5751%2FES-06387-190230
http://dx.doi.org/10.5751%2FES-06387-190230
http://dx.doi.org/10.5751%2FES-06582-190267
http://www.nap.edu/catalog/12465/urban-stormwater-management-in-the-united-states
http://www.nap.edu/catalog/12465/urban-stormwater-management-in-the-united-states
http://dx.doi.org/10.1002%2F9780470949962
http://www.kitsaplid.org/resources/Barriers_to_SW_Infiltration.pdf
http://www.kitsaplid.org/resources/Barriers_to_SW_Infiltration.pdf
http://dx.doi.org/10.1073%2Fpnas.0702288104
http://dx.doi.org/10.1073%2Fpnas.0702288104
http://dx.doi.org/10.1126%2Fscience.1172133
http://www.ecologyandsociety.org/vol21/iss4/art19/


Ecology and Society 21(4): 19
http://www.ecologyandsociety.org/vol21/iss4/art19/

Pahl-Wostl, C. 2007. Transitions towards adaptive management
of water facing climate and global change. Water Resources
Management 21(1):49–62. http://dx.doi.org/10.1007/s11269-006-9040-4  

Pahl-Wostl, C., G. Holtz, B. Kastens, and C. Knieper. 2010.
Analyzing complex water governance regimes: the management
and transition framework. Environmental Science & Policy 13
(7):571–581. http://dx.doi.org/10.1016/j.envsci.2010.08.006  

Parikh, P., M. A. Taylor, T. Hoagland, H. Thurston, and W.
Shuster. 2005. Application of market mechanisms and incentives
to reduce stormwater runoff: an integrated hydrologic, economic
and legal approach. Environmental Science & Policy 8(2):133–144.
http://dx.doi.org/10.1016/j.envsci.2005.01.002  

Partelow, S., and C. Boda. 2015. A modified diagnostic social-
ecological system framework for lobster fisheries: case
implementation and sustainability assessment in Southern
California. Ocean & Coastal Management 114:204–217. http://dx.
doi.org/10.1016/j.ocecoaman.2015.06.022  

Pyke, C., M. P. Warren, T. Johnson, J. LaGro Jr., J. Scharfenberg,
P. Groth, R. Freed, W. Schroeer, and E. Main. 2011. Assessment
of low impact development for managing stormwater with
changing precipitation due to climate change. Landscape and
Urban Planning 103(2):166–173. http://dx.doi.org/10.1016/j.
landurbplan.2011.07.006  

Roy, A. H., and W. D. Shuster. 2009. Assessing impervious surface
connectivity and applications for watershed management. Journal
of the American Water Resources Association 45(1):198–209.
http://dx.doi.org/10.1111/j.1752-1688.2008.00271.x  

Roy, A. H., S. J. Wenger, T. D. Fletcher, C. J. Walsh, A. R. Ladson,
W. D. Shuster, H. W. Thurston, and R. R. Brown. 2008.
Impediments and solutions to sustainable, watershed-scale urban
stormwater management: lessons from Australia and the United
States. Environmental Management 42(2):344–359. http://dx.doi.
org/10.1007/s00267-008-9119-1  

Ruppert, T., and M. Clark. 2009. Understanding and overcoming
legal and administrative barriers to LID: a Florida case study.
Pages 1–10 in N. She and M. Char, editors. Low impact
development for urban ecosystem and habitat protection.
International Low Impact Development Conference 2008,
Seattle, Washington, USA, November 16–19, 2008. http://dx.doi.
org/10.1061/41009(333)50  

Salkin, P. E. 2009. Sustainability and land use planning: greening
state and local land use plans and regulations to address climate
change challenges and preserve resources for future generations.
William and Mary Environmental Law and Policy Review 34:121.  

Shuster, W. D., S. Dadio, P. Drohan, R. Losco, and J. Shaffer.
2014. Residential demolition and its impact on vacant lot
hydrology: implications for the management of stormwater and
sewer system overflows. Landscape and Urban Planning 125:48–
56. http://dx.doi.org/10.1016/j.landurbplan.2014.02.003  

Shuster, W. D., and A. S. Garmestani. 2015. Adaptive exchange
of capitals in urban water resources management: an approach
to sustainability? Clean Technologies and Environmental Policy 17
(6):1393–1400. http://dx.doi.org/10.1007/s10098-014-0886-5  

Siglin, D. D. 2012. Municipal use of green stormwater
infrastructure in the Delaware River Basin: barriers, drivers, and
opportunities for implementation. Thesis. Pennsylvania State

University, Pennsylvania, USA. [online] URL: https://etda.
libraries.psu.edu/paper/15290/12231  

Smith, V. H., G. D. Tilman, and J. C. Nekola. 1999.
Eutrophication: impacts of excess nutrient inputs on freshwater,
marine, and terrestrial ecosystems. Environmental Pollution 
100:179–196. http://dx.doi.org/10.1016/S0269-7491(99)00091-3  

Stockwell, A. 2009. Analysis of barriers to low impact development
in the North Coast Redwood Region, California. Thesis. Humboldt
State University, Arcata, California, USA. [online] URL: http://
humboldt-dspace.calstate.edu/bitstream/handle/2148/595/
stockwell_thesis_2.12.10_FINAL2.pdf?sequence=1  

Tarr, J. A. 1979. The separate vs. combined sewer problem: a case
study in urban technology design choice. Journal of Urban History 
5(3):308–339.  

Tzoulas, K., K. Korpela, S. Venn, V. Yli-Pelkonen, A.
Kaźmierczak, J. Niemela, and P. James. 2007. Promoting
ecosystem and human health in urban areas using green
infrastructure: a literature review. Landscape and Urban Planning 
81(3):167–178. http://dx.doi.org/10.1016/j.landurbplan.2007.02.001  

United States Environmental Protection Agency (USEPA). 2004.
Report to Congress: impacts and control of CSOs and SSOs. No.
EPA 833-R-04-001.  

Villarreal, E. L., A. Semadeni-Davies, and L. Bengtsson. 2004.
Inner city stormwater control using a combination of best
management practices. Ecological Engineering 22:279–298. http://
dx.doi.org/10.1016/j.ecoleng.2004.06.007  

Vogt, J. M., G. B. Epstein, S. K. Mincey, B. C. Fischer, and P.
McCord. 2015. Putting the “E” in SES: unpacking the ecology in
the Ostrom social-ecological system framework. Ecology and
Society 20(1):55. http://dx.doi.org/10.5751/ES-07239-200155  

Walker, B., C. S. Holling, S. R. Carpenter, and A. Kinzig. 2004.
Resilience, adaptability and transformability in social-ecological
systems. Ecology and Society 9(2):5. [online] URL: http://www.
ecologyandsociety.org/vol9/iss2/art5/  

Walsh, C. J. 2004. Protection of in-stream biota from urban
impacts: minimise catchment imperviousness or improve
drainage design? Marine & Freshwater Research 55(3):317–326.
http://dx.doi.org/10.1071/mf03206  

Walsh, C. J., T. D. Fletcher, and A. R. Ladson. 2005. Stream
restoration in urban catchments through redesigning stormwater
systems: looking to the catchment to save the stream. Journal of
the North American Benthological Society 24(3):690–705. http://
dx.doi.org/10.1899/04-020.1  

Wendel, H. E. W., J. A. Downs, and J. R. Mihelcic. 2011. Assessing
equitable access to urban green space: the role of engineered water
infrastructure. Environmental Science & Technology 45:6728–
6734. http://dx.doi.org/10.1021/es103949f  

Wiek, A., and K. L. Larson. 2012. Water, people, and
sustainability—a systems framework for analyzing and assessing
water governance regimes. Water Resource Management 26
(11):3153–3171. http://dx.doi.org/10.1007/s11269-012-0065-6  

Winz, I., S. Trowsdale, and G. Brierley. 2014. Understanding
barrier interactions to support the implementation of sustainable
urban water management. Urban Water Journal 11(6):497–505.
http://dx.doi.org/10.1080/1573062x.2013.832777

http://dx.doi.org/10.1007%2Fs11269-006-9040-4
http://dx.doi.org/10.1016%2Fj.envsci.2010.08.006
http://dx.doi.org/10.1016%2Fj.envsci.2005.01.002
http://dx.doi.org/10.1016%2Fj.ocecoaman.2015.06.022
http://dx.doi.org/10.1016%2Fj.ocecoaman.2015.06.022
http://dx.doi.org/10.1016%2Fj.landurbplan.2011.07.006
http://dx.doi.org/10.1016%2Fj.landurbplan.2011.07.006
http://dx.doi.org/10.1111%2Fj.1752-1688.2008.00271.x
http://dx.doi.org/10.1007%2Fs00267-008-9119-1
http://dx.doi.org/10.1007%2Fs00267-008-9119-1
http://dx.doi.org/10.1061%2F41009%28333%2950
http://dx.doi.org/10.1061%2F41009%28333%2950
http://dx.doi.org/10.1016%2Fj.landurbplan.2014.02.003
http://dx.doi.org/10.1007%2Fs10098-014-0886-5
https://etda.libraries.psu.edu/paper/15290/12231
https://etda.libraries.psu.edu/paper/15290/12231
http://dx.doi.org/10.1016%2FS0269-7491%2899%2900091-3
http://humboldt-dspace.calstate.edu/bitstream/handle/2148/595/stockwell_thesis_2.12.10_FINAL2.pdf?sequence=1
http://humboldt-dspace.calstate.edu/bitstream/handle/2148/595/stockwell_thesis_2.12.10_FINAL2.pdf?sequence=1
http://humboldt-dspace.calstate.edu/bitstream/handle/2148/595/stockwell_thesis_2.12.10_FINAL2.pdf?sequence=1
http://dx.doi.org/10.1016%2Fj.landurbplan.2007.02.001
http://dx.doi.org/10.1016%2Fj.ecoleng.2004.06.007
http://dx.doi.org/10.1016%2Fj.ecoleng.2004.06.007
http://dx.doi.org/10.5751%2FES-07239-200155
http://www.ecologyandsociety.org/vol9/iss2/art5/
http://www.ecologyandsociety.org/vol9/iss2/art5/
http://dx.doi.org/10.1071%2Fmf03206
http://dx.doi.org/10.1899%2F04-020.1
http://dx.doi.org/10.1899%2F04-020.1
http://dx.doi.org/10.1021%2Fes103949f
http://dx.doi.org/10.1007%2Fs11269-012-0065-6
http://dx.doi.org/10.1080%2F1573062x.2013.832777
http://www.ecologyandsociety.org/vol21/iss4/art19/


APPENDIX 1. Modified social-ecological system framework for urban stormwater systems with working definitions and references.
Supplemental Information 

Table 1: Modified framework for green infrastructure adoption in urban stormwater social-ecological systems. References provided as
working definitions and illustrative examples from the literature.
Tier Level

Attribute Working Definition Definition
References†, and
Select Illustrative
Examples‡

Se
cond

Th
ird

Fo
ur
th

Fifth

Ecological Rules (ER) The broader context of laws, theories, and
principles developed in the natural
sciences

Epstein et al.
(2013)†

ER1 Physical rules Laws, theories, and principles of or
relating to nature and properties of
matter and energy

ER2 Chemical rules Laws, theories, and principles of or
relating to composition, structure,
properties, and change of matter

ER3 Biological rules Laws, theories, and principles of or
relating to living organisms

Social, economic, and political settings
(S)

The broader context within which the
governance system per se is located,
including the effects of market dynamics
and cultural change

McGinnis (2011)†

S1 Economic
development

Efforts that seek to improve the economic
well-being and quality of life for a
community

Madden (2010)‡,
Winz et al.
(2014)‡

S2 Demographic
trends

Developments and changes in human
populations

Travaline et al.
(2015)‡

S3 Political stability Degree of durability and integrity of a
current government regime

S4 Government
policies

Sets forth policies that address public
issues related to, or otherwise effect,
stormwater flows

Roy et al. (2008)‡,
Dunn (2010)‡,
Dochow (2013)‡,
Holloway et al.
(2014)‡

S5 Market incentives Policies that incentivize certain
stormwater management approaches

Carter and
Fowler (2008)‡,
Dunn (2010)‡,
Clean Water
America Alliance
(2011)‡, Dochow
(2013)‡

S6 Media
organization

Characteristics of entities engaged in
disseminating information to the general
public through mass communication
channels

Madden (2010)‡,
Cettner et al.
(2014) b

S7 Technology Broader cultural settings and
development context that affect the
technologies regularly used by actors in
their interactions with the resource units

Clean Water
America Alliance
(2011)‡, Siglin
(2012)‡, Cettner et
al. (2014b)‡

(con'd)



Resource Units (RU) Characteristics of the units extracted
from a resource system, which can then be
consumed or used as an input in
production or exchanged for other goods
or services.

McGinnis (2011)†

R
U1

Resource unit
mobility

Ability for resource units to move
throughout the resource system

R
U2

Growth or
replacement rate

Absolute or relative descriptions of
changes in quantities (x) of resource units
over time (t)

Basurto et al.
(2013)†, Clean
Water America
Alliance (2011)‡

R
U3

Interaction among
resource units

Interactions among resource units during
different time periods affecting the
future structure of the population

Basurto et al.
(2013)†

R
U4

Economic value Value of resource units in relation to the
portfolio of resources available to
actors

Basurto et al.
(2013)†, Clean
Water America
Alliance (2011)‡

R
U5

Number of units Amount of individual resource units in
resource system

R
U6

Distinctive
markings

Characteristics that can be identified in
resource units and affect actors' behavior
toward them

Basurto et al.
(2013)†

R
U7

Spatial and
temporal
distribution

Allocation patterns of resource units
across a geographic area in a particular
time period

Basurto et al.
(2013)†

Resource systems (RS) The biophysical system from which
resource units are extracted and through
which the levels of the focal resource are
regenerated by natural dynamic processes

McGinnis (2011)†

RS1 Sector Characteristic(s) of a resource system that
distinguishes it from other resource
systems

Ostrom (2007)†

RS2 Clarity of system
boundaries

Biophysical characteristics that make
feasible for actors to determine where the
resource system starts or ends

Basurto et al.
(2013)†

RS3 Size of resource
system

Absolute or relative descriptions of the
spatial extent of a resource system

Basurto et al.
(2013)†

RS4 Human-
constructed
facilities

Facilities produced by actors that affect
the resource system

RS
4.1

Locations Spatial extent where facilities are
constructed by actors

Perez-Pedini et al.
(2005)‡, Montalto
et al. (2013)‡,
Askarizadeh et al.
(2015)‡

R
S4
.1.1

Potential facilities Availability of suitable locations for
potential facilities

Clean Water
America Alliance
(2011)‡, Hammitt
(2010)‡, Shuster et
al. (2014)‡

RS
4.2

Functionality Degree to which stormwater management
facilities achieve desired outcomes

Nowacek et al.
(2003)‡, Siglin
(2012)‡, Keeley et
al. (2013)‡, Flynn
et al. (2014)‡

(con'd)



RS5 Productivity of
system

Rate of generation of resource units Clean Water
America Alliance
(2011)‡ ,
Askarizadeh et al.
(2015)‡

RS6 Equilibrium
properties

Characterization of the type of attractor
of a resource system along a range from
one to multiple (chaotic) attractors

RS
6.3

Frequency/timing
of disturbances

Characterization of extreme events (e.g.,
intense wet weather events)

Madden (2010)‡,
Clean Water
America Alliance
(2011)‡, Keeley et
al. (2013)‡,
Cettner et al.
(2014a)‡

RS7 Predictability of
system dynamics

Degree to which actors are able to
forecast or identify patterns in
environmentally driven variability on
recruitment

Basurto et al.
(2013)†,
Askarizadeh et al.
(2015)‡

RS8 Storage
characteristics

Degree to which the resource units can be
retained or detained

RS
8.1

Soil
characteristics

Hydrologic characteristics of soils Nowacek et al.
(2003)‡, Clean
Water America
Alliance (2011)‡,
Shuster et al.
(2014)‡, Rhea et
al. (2014)‡

RS
8.2

Impervious
surface area

Amount of system coverage by materials
that inhibit water infiltration

Dietz and
Clausen (2008)‡,
Roy and Shuster
(2009)‡, Kertesz et
al. (2014)‡

RS9 Location Spatial and temporal extent where
resource units are found by actors

Hammitt (2010)‡,
Madden (2010)‡,
Askarizadeh et al.
(2015)‡

RS
10

Ecosystem history Past interactions that affect current
actors' behaviors and stormwater
management plans

RS
10.3

Human use and
disturbance

Past interactions in which actors have
greatly degraded resource system quality

Shandas and
Messer, (2008)‡,
Hammitt (2010)‡,
Madden (2010)‡,
Flynn et al.
(2014)‡

Governance systems (GS) The prevailing set of processes or
institutions through which the rules
shaping the behavior of the actors are set
and revised

McGinnis (2011)†

GS1 Policy area Rule systems tailored for a particular area
of knowledge, geography, or time

Basurto et al.
(2013)†, Holloway
et al. (2014)‡

GS2 Geographical
scale of
governance system

Defined area that participates in, or is
subject to, the system of governance

McGinnis and
Ostrom (2014)†,
Nowacek et al.
(2003)‡, Siglin
(2012)‡, Stockwell
(2009)‡

(con'd)



GS3 Population Defined group of people that participates
in, or is subject to, the system of
governance

McGinnis and
Ostrom (2014)†

GS4 Regime type Specifies the logic upon which the
overarching governance system is
organized

McGinnis and
Ostrom (2014)†

GS5 Rule-making
organizations

Institutions recognized by external actors
and/or authorities that facilitate formal
structured interactions among actors
affected by these institutions

McGinnis and
Ostrom (2014)†

G
S5.1

Number of
organizations

Number of organizations affecting
decision-making processes related to
stormwater management in the watershed

Madden (2010)‡,,
(Shuster et al.,
2008)‡

, Hammitt
(2010)‡, Keeley et
al. (2013)‡

G
S5.2

Institutional
diversity

Degree of variation represented among
rule-making organizations (including
public sector, private sector,
nongovernmental, community-based, or
hybrid organizations)

Stockwell (2009)‡,
Hammitt (2010)‡,
Keeley et al.
(2013)‡

G
S5.3

Economic
resources

Funds available to an organization that
are used for the creation, operation and
maintenance of the stormwater
management program. Funds may be
generated through a variety of means
such as a variety of taxes, service charges,
exactions, assessments, grants, loans, and
bonds.

Debo and Reese
(2003)†, (Clean
Water America
Alliance (2011)‡,
Keeley et al.
(2013)‡

G
S5.4

Human resources Human capital available to an
organization for the creation, operation
and maintenance of the stormwater
management program.

Roy et al. (2008)‡,
Stockwell (2009)‡,
Winz et al.
(2014)‡

GS6 Rules-in-use Regulations or principles that specify the
values of the working components of an
action situation, each of which has
emerged as the outcome of interactions in
an adjacent action situation at a different
level of analysis or arena of choice.

Ostrom et al.
(1994)†, Clean
Water America
Alliance (2011)‡,
Winz et al.
(2014)‡

G
S6.1

Operational-
choice rules

Set of regulations or principles governing
the implementation of practical decisions
by individuals authorized or allowed to
take these actions, often as a result of
collective choice processes

McGinnis
(2011)†, Hammitt
(2010)‡

G
S6
.1.1

Stormwater
ordinances and
regulations

Sets forth public policies directly related
to drainage, flood control, and water
quality aspects of stormwater, as well as
the legal framework for permitting
implementation of the controls.

Debo and Reese
(2003)†, Hammitt
(2010)‡, Madden
(2010)‡, Siglin
(2012)‡

GS6.
1.1.1

Technical basis Performance standards, design criteria
and information provided by rule-making
organizations to assist designers in
complying with ordinances and
regulations.

Debo and Reese
(2003)†, Roy et al.
(2008)‡, Hammitt
(2010)‡, Dochow
(2013)‡

GS6.
1.1.2

Administrative
apparatus

Required procedures, such as approvals,
permits, and inspections, to ensure that
measures meet technical and legal
requirements

Debo and Reese
(2003)†, Jaffe et
al. (2010)‡,
Kulkarni, (2012)‡,
Dochow (2013)‡

(con'd)



GS6.
1.1.3

Enforcement
provisions

Procedures for penalties (such as
sanctions) applied to rule violators

Dunn (2010)‡,
Hammitt (2010)‡, 
Jaffe et al. (2010)‡

G
S6
.1.2

Stormwater utility
funding scheme

Premise that urban drainage systems are
public systems

Debo and Reese
(2003)†, (Fletcher
et al., 2011)‡,
Keeley et al.
(2013)‡

GS6.
1.2.1

Price instrument Fee or tax collected from ratepayers (e.g.,
property owners) in exchange for demand
placed on stormwater system. May exist
as a stormwater user fee or runoff charge.

Debo and Reese
(2003)†,
(Thurston et al.,
2003)‡, Parikh et
al. (2005)†,
Hammitt (2010)‡

GS6.
1.2.2

Credits or fee
reductions

Mechanism to reduce utility fees. Can be
derived though several bases, including
the class of property, location within
watershed, or activities on the property
that reduce stormwater impacts.

Debo and Reese
(2003)†, Carter
and Fowler
(2008)‡,
(Thurston et al.,
2010)‡, Kertesz et
al. (2014)‡

G
S6
.1.3

Stormwater
management plans

Comprehensive management plan
outlining regulations, outcome criteria,
technical approaches, financing strategies,
and engineering design manuals

Madden (2010)‡,
Kulkarni, (2012)‡ 
Keeley et al.
(2013)‡

GS6.
1.3.1

Operation and
maintenance
procedures

Specifies responsibilities, objectives,
standards, approaches, and protocols
related to the operation and maintenance
of stormwater management infrastructure

Nowacek et al.
(2003)‡, Clean
Water America
Alliance (2011)‡,
Montalto et al.
(2013)‡

G
S6
.1.4

Related
regulations

Sets forth public policies that affect the
implementation of decisions related to
stormwater management (e.g., zoning
codes, building codes).

Lassiter (2007)‡,
Carter and
Fowler (2008)‡,
Hammitt (2010)‡

G
S6.2

Collective-choice
rules

Set of regulations or principles governing
institution creation and policy decision-
making by actors who are authorized (or
allowed) to do so, often as a result of
constitutional-choice processes

McGinnis (2011)†

G
S6.3

Constitutional-
choice rules

Set of regulations or principles governing
the processes though which collective-
choice stormwater management
procedures are defined and legitimized,
often resulting in a state or federal
guideline or law

McGinnis
(2011)†, Dunn
(2010)‡, Winz et
al. (2014)‡

GS7 Property-rights
systems

Systems of interrelated rights that
determine which actors have been
authorized to carry out which actions
with respect to a specified good or service

McGinnis (2011)†

G
S7.1

Watercourse law Water laws pertaining to water within a
defined watercourse

Debo and Reese
(2003)†, Holloway
et al. (2014)‡

G
S7
.1.1

Prior
appropriation
doctrine

Private water laws that are established by
the date when beneficial uses were first
initiated and tied to place and type of use,
not location.

Debo and Reese
(2003)†, Jensen
(2008)‡, LaBadie
(2010)‡, Salkin
(2009)‡

(con'd)



GS8 Repertoire of
norms and
strategies

Collection of actions and behaviors that
actors regularly use, as shaped by the
broader social and cultural setting

McGinnis and
Ostrom (2014)†,
Cettner et al.
(2014a)‡, Cote
and Wolfe (2014)‡

G
S8.1

Diversity Degree of diversity in norms and
strategies related to stormwater
management decisions

Nowacek et al.
(2003)‡, Hammitt
(2010)‡, Madden
(2010)‡, Winz et
al. (2014)‡

G
S8.2

Risk tolerance Degree to which actors are willing to take
action in spite of uncertainties

(Singh, 2006)‡,
Olorunkiya et al.
(2012)‡, Cettner et
al. (2014a)‡

GS9 Network structure The connections among the rule-making
organizations and the population subject
to these rules

McGinnis and
Ostrom (2014) a,
Madden (2010)‡,
Cettner et al.
(2014)‡, Winz et
al. (2014a)‡

G
S9.1

Horizontal Connections that link actors with each
other to act collectively for a common
purpose

Shandas and
Messer, (2008)‡,
Madden (2010)‡,
Keeley et al.
(2013)‡

G
S9.2

Vertical Connections that link actors with other
organizations across levels

Hammitt (2010)‡,
Dochow (2013)‡,
Keeley et al.
(2013)‡, Shuster et
al. (2008)‡

G
S10

Historical
continuity

The length of time for which a particular
form of governance has been in place

McGinnis and
Ostrom (2014)†

Actors (A) Attributes of the individuals or groups
that interact with resource units

McGinnis and
Ostrom (2014)†

A1 Number of
relevant actors

Number of actors affecting decision-
making processes related to stormwater
management in the watershed

Madden (2010)‡,
Keeley et al.
(2013)‡, Holloway
et al. (2014)‡

A2 Socioeconomic
attributes

Characteristics of actors related to social
and economic dimensions affecting
stormwater management plans

Hammitt (2010)‡,
Montalto et al.
(2013)‡, Keeley et
al. (2013)‡,
Travaline et al.
(2015)‡

A3 History or past
experiences

Past interactions that affect current
actors' behaviors and stormwater
management plans

Montalto et al.
(2013)‡, Baptiste
(2014)‡, Baptiste
et al. (2015)‡,
Travaline et al.
(2015)‡

A3
.1

Experimentation Variations in use patterns to increase
knowledge of stormwater system
dynamics (e.g., demonstration projects)

Madden (2010)‡,
Shuster et al.,
(2013)‡, Marks
(2014)‡

A3
.2

Environmental
justice

Degree to which the development,
implementation, and enforcement of
stormwater management plans reflect a
fair treatment and meaningful
involvement of all people regardless of
race, color, national origin, or income

Perreault et al.
(2012)‡, Flynn et
al. (2014)‡, Wolch
et al. (2014)‡

(con'd)



A4 Location Physical place where actors are in relation
to components of the resource system

Thurston et al.
(2010)‡

A5 Leadership/
entrepreneurship

Actors who have skills useful to organize
collective action and are followed by their
peers/ Non-exertion of power particularly
of the public/

Hammitt (2010)‡,
Winz et al.
(2014)‡

A5
.1

Policy
entrepreneur

Individuals who introduce and advocate
for policy alternatives in many different
settings, and invest time and energy to
increase the chances for an idea to be
placed on the decision agenda

Kingdon (1995)†,
Godwin et al.,
(2008)‡, Madden
(2010)‡, Flynn et
al. (2014)‡

A5
.2

Policy community Group composed of specialists in a given
policy area developing policy alternatives

Kingdon (1995)†,
Shandas and
Messer, (2008)‡,
Madden (2010)‡ 
Flynn et al.
(2014)‡

A6 Norms (trust-
reciprocity) and
social capital

Degree by which one or several
individuals can draw upon or rely on
others for support or assistance in times
of need

Hammitt (2010)‡,
Cettner et al.,
(2014b)‡, Winz et
al. (2014)‡

A6
.1

Trust Measure of the extent to which members
of a community feel confident that other
members will not take maximum
advantage of their vulnerabilities and/or
live up to their agreements even if  doing
so may not be in their immediate interest.

McGinnis
(2011)†, Nowacek
et al. (2003)‡,
Shandas and
Messer, (2008)‡,
Flynn et al.
(2014)‡, Travaline
et al. (2015)‡

A6
.2

Reciprocity Norm of behavior that encourages
members of a group to cooperate with
others who have cooperated with them in
previous encounters.

McGinnis
(2011)†, Shandas
and Messer,
(2008)‡, Clean
Water America
Alliance (2011)‡

A6
.3

Social capital Resources that an individual can draw
upon in terms of relying on others to
provide support or assistance in times of
need, or a group's aggregate supply of
such potential assistance, as generated by
stable networks of important interactions
among members of that community.

McGinnis
(2011)†, Roy et al.
(2008)‡, Dochow
(2013)‡, Green et
al. (2012)‡

A7 Knowledge of
SES/mental
models

Degree to which actors understand and
make sense of the characteristics and/or
dynamics of the SES

Basurto et al.
(2013)†, Clean
Water America
Alliance (2011)‡,

A7
.1

Types of
knowledge

Types of knowledge actors use to
understand SES

A
7.
1.1

Traditional
ecological
knowledge

Degree to which actors make use of the
cumulative body of knowledge, practices
and beliefs evolving by adaptive processes
and handed down through generations by
cultural transmissions about the
relationship of living beings (including
humans) with one another and with their
environment

Berkes (2012)†,
Mbilinyi et al.,
(2005)‡, Flynn et
al. (2014)‡, Winz
et al. (2014)‡

(con'd)



A
7.
1.2

Local ecological
knowledge

Degree to which actors make use of
knowledge and beliefs held by a specific
group of people related to their
environment acquired over the lifetime of
individual generations

Olsson and Folke
(2001)† McGarry
(2007)‡, Winz et
al. (2014)‡,
Baptiste et al.
(2015)‡

A
7.
1.3

Technical
expertise

Skills held by an actor related to specific
technologies

Hammitt (2010)‡,
Keeley et al.
(2013)‡, Winz et
al. (2014)‡

A7
.2

Mechanisms to
share knowledge

Practices allow actors to learn
characteristics of the resource at
sufficiently rapid rates leading to
behaviors affecting the state of the
resource

Thurston et al.
(2010)‡, Dolowitz
et al. (2012)‡,
Green et al.
(2012)‡

A7
.3

Scale of mental
models

Representation of the physical extent of
actors' understanding regarding SES
characteristics and dynamics

Madden (2010)‡ ,
Hellier (2012)‡,
(Cettner, 2012)‡

A8 Importance of
resource
(dependence)

Siglin (2012)‡

A9 Technology
available

Attributes of the stormwater technologies
available to actors

Clean Water
America Alliance
(2011)‡

A9
.1

Ownership Degree to which stormwater management
technologies are owned by various actors

Thurston et al.
(2010)‡, Montalto
et al. (2013)‡,
Flynn et al.
(2014)‡

A9
.2

Research support Cumulative body of knowledge related to
a specific technology

Roy et al. (2008)‡,
Hammitt (2010)‡,
Clean Water
America Alliance
(2011)‡, Dochow
(2013)‡

A
9.
2.1

Environmental
performance and
benefits

Extent of environmental outcomes
associated with a technology

Stockwell (2009)‡

A9.2.
1.1

Stormwater
management

Direct stormwater management control
associated with a technology

Carter and
Fowler (2008)‡ 
Clark and Pitt
(2012)‡, Mayer et
al. (2012)‡,
Shuster and Rhea
(2013)‡

A9.2.
1.2

Environmental
outcomes

External environmental outcomes
associated with a technology

Carter and
Fowler (2008)‡,
Madden (2010)‡,
Wise et al.
(2010)‡,
Askarizadeh et al.
(2015)‡

A
9.
2.2

Social outcomes Extent of social outcomes associated with
a technology

Clean Water
America Alliance
(2011)‡, Kondo et
al. (2015)‡

(con'd)



A
9.
2.3

Complexity of
design

Degree to which technology designs are
easily replicable

Nowacek et al.
(2003)‡, Roy et al.
(2008)‡, Hammitt
(2010)‡, Dochow
(2013)‡

A
9.
3.4

Maintenance
procedures

Known practices that maximize the
continued functionality of a technology

Lord and Hunt
(2008)‡, Clean
Water America
Alliance (2011)‡,
Keeley et al.
(2013)‡

A
9.
2.5

Reliability Extent to which a technology produces
the same outcomes on repeated trials

Nowacek et al.
(2003)‡,
Olorunkiya et al.
(2012)‡

A9
.3

Associated costs Expenses related to a technology Perez-Pedini et al.
(2005)‡, Roy et al.
(2008)‡, Jaffe
(2011)‡, Dochow
(2013)‡

A
9.
3.1

Capital Fixed, one-time expenses related to the
implementation of a technology

Winz et al.
(2014)‡, Thurston
et al. (2010)‡,
Cote and Wolfe
(2014)‡

A
9.
3.2

Operation and
maintenance

Ongoing expenses related to the operation
and maintenance of a technology

Clean Water
America Alliance
(2011)‡, Keeley et
al. (2013)‡, Winz
et al. (2014)‡

A9
.4

Perceptions/
attitudes

Subjective assessments on various
technology attributes

Siglin (2012)‡,
Keeley et al.
(2013)‡ , Marks
(2014)‡, Carlet
(2015)‡

Activities and Processes (I)
I1 Harvesting Gathering of resource units
I2 Information

sharing
Exchanges of knowledge between actors
and/or groups

Roy et al. (2008)‡ 
Madden (2010)‡,
Dolowitz et al.
(2012)‡

I3 Deliberation
processes

Activities related to the of weighing
options

Madden (2010)‡

I4 Conflicts Form of disagreement or discord that
arise when the beliefs or actions of one or
more members of a group are either
resisted by or unacceptable to one or
more members of another group

Flynn et al.
(2014)‡

I5 Investment
activities

Contributions of financial and other
resources by the managers or producers of
a public good/service

McGinnis
(2011)†, Hammitt
(2010)‡, Madden
(2010)‡

I6 Lobbying
activities

Actions that attempt to influence
decisions made by rule-making
individuals and/or organizations

Madden (2010)‡

I7 Self-organizing
activities

Interactions among actors that increase
some form of overall order or
coordination

Roy et al. (2008)‡ 
Winz et al.
(2014)‡

(con'd)



I8 Networking
activities

Meetings which build social structure
between actors, connecting them through
various social familiarities

Roy et al. (2008)‡ 
Hammitt (2010)‡,
Madden (2010)‡

I9 Monitoring
activities

Accumulation of new knowledge related
to system attributes

Stockwell (2009)‡ 
Flynn et al.
(2014)‡,
Askarizadeh et al.
(2015)‡

I10 Evaluative
activities

Determination of which aspects of the
observed outcomes are deemed
satisfactory and which aspects are in need
of improvement

McGinnis (2011)† 
, Madden (2010)‡,
Winz et al.
(2014)‡

Outcome Criteria (O) Evaluative criteria used to determine
which aspects of observed outcomes are
deemed satisfactory and which aspects are
in need of improvement.

McGinnis
(2011)†,
(Holloway et al.
(2014)‡

O1 Social
performance
measures

Indicators that describe various social
conditions

Brown and
Farrelly (2008)‡,
Madden (2010)‡,
Winz et al.
(2014)‡

O2 Ecological
performance
measures

Indicators that describe various ecological
conditions

Burns et al.
(2012)‡, Mayer et
al. (2012)‡ (Roy et
al., 2014)‡

O3 Externalities to
other SESs

Indicators that describe impacts on other
SESs

Tzoulas et al.
(2007)‡, Foster et
al. (2011)‡, Mayer
et al. (2012)‡

Related ecosystems (ECO) The broader ecological context within
which the focal resource system is located,
including the determinants of many
potential exogenous influences

McGinnis and
Ostrom (2014)†

E
C
O1

Climate patterns Recurring characteristics of the statistical
distribution of weather over an extended
period of time

Clean Water
America Alliance
(2011)‡

E
C
O2

Pollution patterns Recurring characteristics of contaminants
that cause adverse effects

Lassiter (2007)‡,
Hammitt (2010)‡

E
C
O3

Flows into and
out of focal SES

Movement patterns of various SES
attributes

Nowacek et al.
(2003)‡ , Madden
(2010)‡, Winz et
al. (2014)‡

†Reference for attribute definition

‡ Reference that provides illustration of example of attribute's relationship to green infrastructure adoption in urban stormwater
SESs
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