Appendix 2. Model Input Data

2.1 Simulated river network

A simulated topological network representing the river network was derived from a HydroSheds digital elevation model (Lehner et al. 2008) at a 45-arc second resolution following Fekete et al. (2001).

2.2 Contemporary climate data

Historical climate from NASA Modern Era-Retrospective Analysis for Research and Applications (MERRA) was used to drive the coupled model (PnET-FrAMES) for the period of 1980-2014. Key drivers in the coupled model include average, minimum, and maximum daily air temperature, total daily precipitation, average daily cloud cover and average daily wind speed. MERRA data are at a spatial resolution of 1/2 degree latitude by 2/3 degree longitude.

We adjusted MERRA air temperature to account for elevation effects, which varies from 49 m to 1416 m in the upper Merrimack R. watershed (UMRW). We assumed a lapse rate of 6.4 °C per km of altitude above ground level (NOAA et al. 1976). The elevation difference between the MERRA course scale datasets (1/2 by 2/3 degrees) and the 45-arc second river network grid was used to adjust MERRA air temperature data for altitude. To develop a map of high-resolution daily precipitation for the region we adjusted the gridded MERRA precipitation using data from between 52 and 132 stations (depending on year) in New England from the Global Historical Climatology Network (GHCN), assuming a 50% interpolation weighing factor.

2.3 Contemporary land cover data

Land cover for the contemporary period (1980-2019) is based on data described in Thorn et al. (this issue) at 30 meter spatial resolution for the period 1996-2010. We resampled land cover to develop percent cover in each 45 arc-second grid cell. PnET-CN distinguishes forest processes in deciduous, coniferous, and mixed categories, which were also acquired from Thorn et al. (this issue) which was estimated directly from the National Oceanic and Atmospheric Administration's Coastal Change Analysis Program data. A separate impervious cover data layer was derived from the National Land Cover Dataset (Xian et al. 2011). We disaggregated developed land cover to impervious and lawn covers by assigning all non-impervious developed land to a lawn land cover type. Finally, we used the spatially distributed population estimate of Thorn et al. (this issue), which is needed as both a model driver (e.g., waste water and domestic chloride inputs) and to develop indicators (see below).

2.4 Future climate scenarios

Future climate projections used statistically downscaled climate data derived from the Geophysical Fluid Dynamics Laboratory CM2.1 model. Statistical downscaling from a native 2°×2.5° resolution to 7.5′×7.5′ was performed as described in Hayhoe et al. (2007). We used two scenarios bounding a range of potential future temperature and regional climate: lower CO₂ emission (B1, 550 ppm CO₂ by 2100) and higher CO₂ emission (A1FI, 970 ppm CO₂ by 2100). Air temperature were adjusted for elevation as described above, and precipitation was bilinearly interpolated. The downscaled global climate model simulations used for environmental indicators of climate used a different

statistical downscaling technique (Stoner et al. 2013, Wake et al. 2014) these data were unavailable as gridded data for our model domain. However, a check of projections at the specific location indicate they are consistent.

2.5 Future land cover scenarios

To demonstrate the coupled model, and to develop indicators required for the ecosystem services valuation (Mavrommati et al. 2017), we focus on two land cover scenarios expected to show the largest range in changing ES, the "Backyard Amenities" (Backyard) and the "Small Community with Promotion of Local Food" (Small Community Food) (Thorn et al. this issue). Table 1 presents key differences between these land cover scenarios. The Backyard land cover scenario, which prioritizes large building lots and incurs increased transportation related energy consumption, was paired with higher greenhouse gas emission (A1Fi) scenario. Conversely, the Small Community Food scenario reduces transportation-related energy consumption and is more consistent with the lower greenhouse gas emission (B1) scenario. For subsequent analyses into the specific roles of climate and land cover change, we consider the responses of the suite of land cover (Thorn et al. this issue) and emission scenarios.

We simulate future drivers of terrestrial and aquatic ecosystems using projected impervious cover, population density, and land cover from Thorn et al. (this issue) for each future decade from 2020 to 2100. Land cover and population data was aggregated using the same methodology as for contemporary land cover. We assumed the proportion of each forest type remains constant in the future.

Table A2.1. Considered Indicators

Considered Indicators	Demain	
Considered Indicators	Domain	
Climata Damilation	Land	
Climate Regulation Biofuels		
Bioproducts		
Farmland		
Forest Biodiversity		
Forest Type		
Carbon Sequestration		
Timber Stock		
Forest Cover	COM.	
	Climate	
Agricultural-Livestock		
Agricultural-Maple Syrup		
Heating + Cooling Degree Days		
Hot Days		
Snow Days		
Snowmaking Days		
Snow-clearing Impact		
Winter Road Closure Days		
Significant Precipitation Days		
Hemlock Wooly Adelgid Index		
Fall Foliage Days		
Summer Days		
Lyme Disease Risk Index		
Air Quality Impaired Days		
	Water	
Water Provision		
Shallow Ground Water Supply		
Total Water Supply		
Surface Drinking Water (DW)		
Impairment		
Shallow Ground DW Impairment		
Total DWQ Impaired		
Flood Attenuation (100-Yr)		
Flood Attenuation (50-Yr)		
Power Plant Operation Threshold		
Fish Habitat Thermal Impairment		
Riverine Environmental Flow		
Impairment		
Fish Habitat Chloride Impairment		

Drinking Water Low Sodium
Impairment
Drinking Water Trace Metals
Impairment
Fish Habitat Nitrate Impairment

River Habitat

Fecal Coliform Impairment

Dissolved Oxygen Impairment

Coastal Health

Considered indicators are sized by the round when an indicator was eliminated from consideration (first, second, third, **final**).