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ABSTRACT. The acceleration of changes in global water resource systems is exacerbating the ability of governance institutions to
adapt, particularly in developing world regions. We highlight one of the key challenges to resilience in environmental governance—
coordinating governance processes within and across multiple interacting geographic levels—and investigate structures of local,
regional, and multilevel water governance networks using empirical data from Central America. We examined hypotheses of multilevel
governance network structure and function using descriptive statistics and exponential random graph models, and found that closed
and open network structures are more prevalent at the local and regional levels, respectively, and that cross-level ties impart small-
world structures upon the multilevel network. Small-world networks are theorized to provide joint benefits on cooperation, policy

learning, and resource distribution, all of which are necessary for effective water resources governance.
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INTRODUCTION

We bring a canonical model from the network science literature
to bear on questions of environmental governance processes in
an empirical context. Using data from Central America, we
analyze whether regional water policy actors restructure
multilevel governance networks in ways that support cooperation,
social learning, and resource distribution (Cash et al. 2006, Gupta
and Pahl-Wostl 2013, Lubell 2013), and explore the hypothesis
that regional actors facilitate the evolution of “small-world”
networks (Watts and Strogatz 1998, Watts 1999). Small-world
networks combine locally clustered structures that support
cooperation with open structures that facilitate knowledge and
resource sharing (Berardo and Scholz 2010, Lubell 2013). We use
descriptive statistics and exponential random graph models
(ERGMs) to examine differences in network structures at the local
and regional levels, as well as for the combined multilevel
governance network. We hypothesize that closed structures will
be more prevalent at the local level, where cooperation facilitates
the implementation of water management and development
activities, while open structures will be more prevalent at the
regional level, where knowledge sharing and resource distribution
aid in the planning of development programs (Young 2006,
Berardo and Scholz 2010). Cross-level ties between local and
regional actors may preserve this balance of open and closed
structures, and result in a network that displays small-world
properties.

Our analysis contributes to the literatures on environmental
governance networks (Carlsson and Sandstrém 2007, Bodin and
Crona 2009), policy process theories that focus on polycentric
governance in social-ecological systems (Ostrom 1990, Anderies
et al. 2004, Olsson et al. 2006, Lubell 2013), and regional water
resources development and management (Lebel et al. 2006, Pahl-
Wostl et al. 2007, Pietri et al. 2015). Research on governance
networks is increasingly recognizing the importance of multilevel
perspectives, especially as it relates to institutional fit in complex
social-ecological systems (Robinson and Berkes 2011, Bodin et
al. 2014, McAllister et al. 2015, Guerrero et al. 20155, Bodin et

al. 2016, Bodin 2017). While a few studies have explored the idea
of small-world networks in an empirical context (Uzzi and Spiro
2005, Uzzi et al. 2007, Mani and Moody 2014), the idea has not
been extensively applied in the broad empirical research on
environmental governance networks (Sandstrém and Carlsson
2008, Lubell et al. 2012, Bodin et al. 2016). However, small-world
networks provide a conceptual framework for understanding
cross-level ties between regional and local actors as a “rewiring”
of the network to span boundaries among locally clustered
subgroups (Watts and Strogatz 1998).

Theories of the policy process that address polycentric
governance identify social learning, cooperation, and resource
distribution as key processes that contribute to resilience in social-
ecological systems (Folke et al. 2002, Olsson et al. 2004, Adger et
al. 20055, Berkes and Turner 2006, Lebel et al. 2006, Henry and
Vollan 2014). Hence, instead of focusing on a single social process,
we highlight how effective governance networks must
simultaneously enable multiple social processes. Social learning
describes the process of information sharing and processing
among multiple actors (Pahl-Wostl et al. 2007, Henry 2017), and
is necessary for adapting to the complexity inherent in water
governance, where diverse policy actors interact in an uncertain
and dynamic environment (Pahl-Wostl et al. 2007, Ostrom 2009).
Cooperation is required when water problems create
interdependence among resource users and other stakeholders,
for example, in the case of common-pool resources like
groundwater, or with public goods like water supply infrastructure
(Ostrom 1990, Pretty and Ward 2001). These issues involve
collective-action problems where resource users have an incentive
to free-ride on the efforts of others. In this regard, small-world
networks provide a combination of boundary spanning for social
learning and closure for cooperation (Berardo and Scholz 2010).

Lastly, we address how regional policy actors might contribute to
the resilience of water governance in Central America and other
developing regions. Historically, water development programs
have favored interventions at the local level, and have
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underemphasized the role of regional actors (Mohan and Stokke
2000, Barrett et al. 2001, Robinson and Berkes 2011, Dodman
and Mitlin 2013). However, the increasing scale of global
environmental issues has highlighted the interdependence among
actorsat theregionallevel, and stimulated the growth of multilevel
and polycentric governance arrangements (Wyborn and Bixler
2013, McAllister et al. 2015, Berardo and Lubell 2016, Hamilton
and Lubell 2017). In Central America and developing regions
generally, regional water policy actors represent diverse groups,
such as intergovernmental associations, transnational advocacy
coalitions, and international nongovernmental organizations
(Hileman et al. 2018). Regional governance networks have been
demonstrated to help develop trust and shared norms (Wyborn
and Bixler 2013), promote knowledge sharing (Pietri et al. 2015),
facilitate access to financial and material resources (Lemos and
Agrawal 2006, Garcia-Lopez 2013), and improve coordination
across geographic and administrative boundaries (Berkes 2004,
Nelson 2009, Ika and Donnelly 2017) among a wide array of local
and regional actors.

Background: regional water governance in Central America
Lemos and Agrawal (2006:298) define environmental governance
as “the set of regulatory processes, mechanisms and organizations
through which political actors influence environmental actions
and outcomes.” Water governance encompasses the universe of
organizations and institutions involved in water resources
development and management activities, including project
planning and implementation, policy formulation, allocation of
water rights, monitoring and evaluation, and enforcement of laws
and norms of water use (Folke et al. 2005, Lemos and Agrawal
2006). Following the definitions of Gibson et al. (2000) and Cash
et al. (2006), a water governance network is considered multilevel
when it operates across different levels of a hierarchical dimension
or scale, such as local and regional geographic territories. This
concept of a multilevel network should not be confused with the
narrow technical definition provided by Lomi et al. (2016) and
Wang et al. (2013), which considers each level to be a unique class
of nodes (e.g., scientists and research institutes) and focuses
primarily on methods of network analysis.

Regional governance is emerging around the world as global
phenomena like climate change, declining water quality and
availability, and international trade increase the geographic scope
of environmental problems (Vorosmarty et al. 2000, Taylor et al.
2013, Gleick and Ajami 2014) and highlight the transboundary
interdependence among actors and ecosystems (Janssen et al.
2006, McAllister et al. 2015, Bodin et al. 2016). The impacts of
these phenomena vary substantially across localities within a
defined region, and regional governance institutions are more
resilient when they promote cross-level learning, cooperation, and
resource sharing (Folke et al. 2002, Adger et al. 20054, 20055,
Cash et al. 2006, Berkes 2007, Pahl-Wostl et al. 2008, Pahl-Wostl
2015). The need for institutional capacity building and multilevel
governance is especially acute in developing world regions, which
are more vulnerable to pollution, climate change, weak
enforcement, and other water resource challenges (Engle and
Lemos 2010, Robinson and Berkes 2011, Ika and Donnelly 2017).

Central America is a particularly engaging empirical setting for
studying multilevel governance, asinternational aid organizations
there are increasingly recognizing regional governance as a
complement to traditionally local-focused development
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programs (Davis et al. 2014). Like many developing regions,
Central America features countries with a diverse set of social-
ecological contexts, limited administrative capacity, and a history
of political conflict. Within this environment, regional water
policy actors—groups like the Central American Regional
Association for Water and the Environment, Regional Water and
Sanitation Network, and Freshwater Action Network Central
America—work to mobilize resources, facilitate knowledge
sharing, and coordinate development strategies across diverse and
physically distant local actors. As witnessed by one of the author’s
own participatory research in Central America, many donor-
funded development programs are also restructuring their aims
and functions around regional integration, including linking
water management to broader goals of economic development
and socio-political conflict management (Engle and Lemos 2010,
Kuzdas and Wiek 2014, Hileman et al. 2016). The common thread
among these groups is their focus on bridging between local actors
across the region. However, in spite of this effort to strengthen
regional governance, few empirical studies have examined the
impacts this is having for an entire regional policy system.

The success of regional water governance institutions will
ultimately be measured by their ability to improve biophysical and
socio-political outcomes across localities throughout their
defined regions. This is especially relevant in Central America,
where the legacy of conflict, political instability, and poverty have
generally hampered collaboration across countries and resulted
in an emphasis on development at the subnational level (Kuzdas
and Wiek 2014). While the water resource challenges facing
communities in Belize, Costa Rica, El Salvador, Guatemala,
Honduras, Nicaragua, and Panama vary substantially, without a
regional focus the outcomes from individual development
programs may fail to accumulate, which is a commonly observed
problem in polycentric governance systems (Lubell 2013). This
implies a need to balance between local and regional governance
approaches through multilevel governance networks in order to
provide the structures necessary for supporting local cooperation
and regional knowledge and resource sharing (Guerrero et al.
2015a). These challenges are not unique to Central America, and
the analysis presented here is potentially applicable to other
developing regions. While the challenge of regional governance
is also present in more developed countries, the presence of
stronger political institutions and higher administrative capacity
may provide advantages in establishing and sustaining new
institutions and policy networks (Berardo and Lubell 2016).

Theory: the small-world structure of multilevel governance
networks

Our theoretical argument focuses on how multilevel water
governance networks may facilitate cooperation, social learning,
and resource distribution. We define a water governance network
as the set of relationships among the diverse public and private
actors working to carry out water development and management
activities in a defined geographic region (Lubell 2013). Research
on governance and policy networks focuses on how structural
properties of networks reflect underlying social processes
(Carlsson and Sandstrom 2007, Bodin and Crona 2009, Henry
and Vollan 2014). Empirical studies of polycentric governance
systems, and in particular studies that draw on the Ecology of
Games framework (Lubell 2013), illustrate how closed network
structures (e.g., density, clustering) help facilitate cooperation,
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while open structures (e.g., centralization, short paths) may help
facilitate knowledge sharing and resource distribution (Berardo
and Scholz 2010, Lubell et al. 2014, McAllister et al. 2015, 2017).
These theoretical ideas are based on the assumption that
structural properties of networks provide the capacity for
facilitating this suite of beneficial social processes. It is possible
that less beneficial social processes could produce similar
structural patterns (e.g., a set of core network actors maintaining
a policy monopoly), but the structural analysis alone cannot
distinguish these possibilities.

We argue that governance networks that possess small-world
properties may provide joint benefits for cooperation and social
learning. Small-world networks are one of the canonical models
in the broad field of network science, which also includes Erdos-
Rényi random graphs, preferential attachment, and others
(Wasserman and Faust 1994, Barabasi and Albert 1999, Newman
et al. 2006, Jackson 2008). Mathematical models of small-world
networks start with a highly clustered set of locally connected
nodes, and then randomly “rewire” the connections among those
nodes to span subgroups (Watts and Strogatz 1998, Newman and
Watts 1999). The resulting structure is characterized by relatively
high local clustering and short average path length (Milgram
1967, Watts 1999). Thus, small-world networks combine closed
structures that support local cooperation with open structures
that can more efficiently transmit information and resources
across the entire network (Bodin et al. 2006, Bodin and Crona
2009, Berardo and Scholz 2010).

We argue that this small-world structure is found in multilevel
governance networks, not governance at a single level alone. In
the empirical setting here, closed structures at the local level may
be indicative of local actors forming relationships to advocate for
policies or foster collective action around project implementation
in local communities—the “heavy lifting” of water development
programs. At the regional level, more boundary-spanning and
open structures may be indicative of regional actors building
relationships to facilitate distribution of material resources and
knowledge of best practices. Cross-level ties are formed when local
actors collaborate with regional actors. These ties may be
initiated, for example, by local actors seeking recognition from
influential or resource-rich regional actors, or by regional actors
acting to coordinate project implementation among local partners
(Adgeretal. 2005a, Garcia-Lopez 2013, Wyborn and Bixler 2013,
Henry and Vollan 2014, Guerrero et al. 20155b). These cross-level
ties are similar to the rewiring process in small-world network
models, in that they reduce the overall average path length of the
network while maintaining general patterns of local clustering.

In addition to cooperation and social learning, the presence of
open and closed network structures may also influence who has
the political power to control the distribution of resources and
shape policy preferences and agendas (Bodin 2017, Morrison et
al. 2017). Open structures can emerge due to the formation of
centralized core actors, who possess a disproportionately high
number of ties to other actorsin the network (Barabasi and Albert
1999). These actors may be well positioned to pursue their
preferred policies (Bodin and Crona 2009), and in the case of
regional policy actors, these objectives may or may not be
consistent with locally defined management goals. On the other
hand, closed structures, while important for cooperation within
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groups, may also reinforce an “us-and-them” mentality associated
with competing advocacy coalitions in a policy system (Sabatier
1988, Bodin and Crona 2009). Resilient governance networks
require constraining any negative effects of political power on the
potential for cooperation and social learning (Lebel et al. 2006).

Hypotheses of multilevel governance

Using empirical data from Central America, we test hypotheses
using a unique approach that compares networks constructed at
the local and regional levels, and then combined into a multilevel
governance network with the addition of cross-level ties. H1: The
closed structure hypothesis holds that governance processes at the
local level are driven by cooperation, and thus, the local network
will possess more closed structures, as evidenced by higher levels
of clustering. H2: The open structure hypothesis holds that
governance processes at the regional level are driven by knowledge
and resource sharing, and the regional network will possess more
open structures, as evidenced by a higher degree centralization
and shorter average path length. H3: The small-world structure
hypothesis holds that the addition of cross-level ties effectively
balances the closed and open structures found at the local and
regional levels, and results in a network that displays small-world
properties.

RESEARCH DESIGN AND METHODS

Gathering multilevel governance network data

We gathered the data for this study through an online search
protocol and snowball sampling. We started by conducting a key
word search, in English and Spanish, of contextual (e.g., water
development, Integrated Water Resources Management) and
geographical terms (e.g., Central America, Mesoamerica) to
identify water governance actors that are active, though not
necessarily with a physical presence, in Central America. For each
set of search terms, we reviewed the first 50 results and recorded
all unique actors. We then considered each actor’s scope of work
with regard to the boundaries of the network; actors were
included only if they were actively working to support water
development and management activities in Central America
during at least part of the five years from 2010 through 2014.

Next, we examined the actors’ websites for information about
their activities and partners. Ties in the network represent
collaboration between actors, and were established by recording
the self-reported partners—not just hyperlinks—provided on
each actor’s organizational website. All ties are assumed to have
the same weight, as it was not possible to determine strength of
relationship from the website information. It was also not possible
to determine the nature of collaboration, power, and influence,
or other characteristics of the ties. We next expanded the
population through multiple rounds of snowball sampling, which
consisted of reviewing the websites of all the unique partners from
each actor’s ego-network. No new and relevant actors were
discovered after four rounds of snowball sampling, and in all, we
identified more than 2000 unique actors.

Lastly, we removed all actors that possessed only a single tie, often
referred to as pendants, prior to analysis in order to focus on the
core structures of the network (Hanneman and Riddle 2005),
which also tend not to vary significantly across data collection
methods (Yi and Scholz 2016). For actors without a website, or
that did not report ties on their websites, this decision means that
actors that did not contribute ties to the network are included
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only if they were named as partners by at least two other actors.
After removing pendants, the multilevel water governance
network for Central America comprises 624 unique actors. We
provide analysis of the full network of 2000+ actors as
supplementary material (Appendix 1) in order to illustrate how
removing pendants does not alter the interpretation of the
descriptive statistics and ERGM results.

In addition to network ties, we also used the website information
to classify each actor’s geographic scope of work aslocal (working
within a single country) or regional (operating across multiple
countries in Central America), and to determine the country
where each actor’s office is physically located. An actor’s scope of
work is not necessarily the same as physical location—it is possible
for actors to be engaged in water governance activities (e.g.,
program funding, knowledge sharing) outside the countries where
their offices are physically situated. We further recorded a dummy
variable that indicated whether or not an actor reported partners
on its website, where actors coded as zero did not self-report any
partners. This dummy variable allowed us to control for actors
that provided ties in the network when we estimated the ERGMs,
which is important because organizations that report ties will
necessarily have a higher average degree.

Constructing local, regional, and multilevel governance networks
The multilevel water governance network for Central America
consists of within-level and cross-level ties among local and
regional actors (Fig. 1). The local level comprises actors whose
scope of work is confined to the national or subnational level in
Central America (e.g., Catholic Relief Services, El Salvador),
while the regional level consists of actors who operate across
multiple countries in Central America (e.g., Freshwater Action
Network, Central America). This regional designation also
includes global actors whose work encompasses, but extends
beyond, Central America (e.g., Latin American Network of Water
Centers, Global Water Initiative).

Fig. 1. Conceptual diagram of a multilevel governance network,
including contextual examples of local (blue) and regional (red)
water governance actors from Central America.

Regional actors

(e.qg., Global Water Initiative, Blue Planet Networl,
Water and Sanitation Forum for Central America)

R

Cross-level
ties

Local actors

(e.g., Association of Water Committees of Honduras, National University of
Costa Rica, Ministry of Environment and MNatural Resources of Nicaragua)
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In order to analyze the local and regional water governance
networks independently, we first constructed the multilevel
network (i.e., the network of ties among all 624 actors). We
interpreted the data as an undirected one-mode network—we
assume a tie between two actors represents a collaborative,
reciprocal relationship—and we used the “scope of work”
attribute to distinguish between local and regional actors (Fig.
2a). After building the multilevel network, we constructed
undirected one-mode networks for both the local and regional
levels (Fig. 2b and 2c, respectively) by isolating the local and
regional actors, and their within-level ties. These last two networks
explicitly ignore cross-level ties, and provide the basis for
comparison necessary to measure the effects of regional policy
actors on the structure of the full multilevel network.

Analytical methods: descriptive network statistics and
exponential random graph models

To address our hypotheses, we used the “igraph” and “sna
packages (Csardi and Nepusz 2006, Butts 2008) in the R
Environment for Statistical Computing (R Development Core
Team 2016) to calculate the following descriptive statistics for
each of the three networks: density, average degree, degree
centralization, average local clustering coefficient, average path
length, and small-world quotient. Density is a general measure
of connectivity, and represents the fraction of ties observed in a
network with respect to the maximum number of possible ties.
Average degree is also a measure of network connectivity, but
unlike density, it is independent of the number of nodes in a
network, and can be compared across networks of different sizes.
The local clustering coefficient is a node-level measure that
captures the fraction of a node’s neighbors which are tied to one
another, and the average value across all nodes provides a
network-level measure of closure related to subgroup formation.
Degree centralization is a measure of the extent to which a
network is dominated by one or more high-degree nodes. Average
path length is a measure of the mean number of links on the
shortest path between any two nodes in a network.

£

The small-world quotient is a baseline comparison of observed
network structure against the structure of a generalized random
network with the same number of nodes and density, and provides
ameasure of the degree to which a network possesses small-world
properties. The quotient represents a ratio of ratios—specifically,
the ratio of observed and expected average local clustering
coefficient divided by the ratio of observed and expected average
pathlength-—and the higher the value isabove 1.0, the more small-
world the network. For a full explanation of the theoretical and
mathematical formulation, see Watts (1999) and Davis et al.
(2003).

Exponential random graph models allow us to explore the
formation of network structures based on a set of hypothesized
microlevel processes. The coefficients generated in an ERGM
represent the change in the log-odds of tie formation, and indicate
the directionality and magnitude of each process in the model.
We used the “statnet” package (Handcock et al. 2008) in R to
estimate ERGM s for each of the local, regional, and multilevel
networks, and included terms in the models that capture the effects
of social processes related to governance.

We used geometrically weighted edgewise shared partners (gwesp)
to capture the general tendency for closure. We include
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Fig. 2. Networks analyzed in the study: (a) multilevel network of ties among local (blue) and regional (red) water governance actors
in Central America, (b) network of within-level ties among local actors, and (c) network of within-level ties among regional actors.
Nodes are sized by degree centrality, and isolates are removed from the local and regional network diagrams for improved

visualization.

geometrically weighted degree distribution (gwdegree) to capture
the propensity for more open, centralized network structures. The
gwdegree term models the degree distribution in a network and
may be thought of as a measure of antipreferential attachment;
a positive coefficient indicates a relatively homogeneous degree
distribution, while a negative coefficient indicates a more skewed
or “fat-tailed” distribution where a few actors have a
disproportionately high number of ties (Hunter 2007, Levy and
Lubell 2017). From a purely structural perspective, a highly
skewed degree distribution would be observed as a core-periphery
structure if analyzed, for example, using the core-periphery
formulation in UCINET (Borgatti and Everett 2000). Many
network science papers are concerned with how such a skewed
degree distribution could emerge, and one leading candidate is a
process of “preferential attachment,” whereby new ties in a
network are more likely to attach to nodes with more existing ties
(Barabasi and Albert 1999). In a real social or political setting, it
is also possible that a powerful core set of actors could control
entry and selectively support the formation of particular network
ties. However, the gwdegree term itself does not adjudicate
between different types of network formation processes that could
lead to a skewed degree distribution, and we note that teasing out
specification in ERGM terms for open structures is an important
goal for future research.

We include a dichotomous indicator variable using nodefactor to
capture organizations that list partners on their websites, which
is substantively important because they are more likely to be high-

degree nodes that serve as hubs in centralized networks. As
discussed earlier, many regional policy actors in Central America
are explicitly seeking to build regional networks, and publicly
listing partners on their websites is part of that strategy. We used
nodematch to capture the effects of geographic level, including
within-country homophily (i.e., ties among actors whose offices
are in the same country) and within-level homophily (i.e., ties
among actors operating at the same level in the multilevel
network). We used nodefactor to capture the activity, or baseline
rate of tie formation, for each country and geographic level. We
also include edges to control for density, and a parameter for
predicting isolates in the local and regional networks (the removal
of pendant nodes precluded isolates in the multilevel network).

RESULTS

Descriptive statistics of multilevel governance network structures

The descriptive statistics (Table 1) support our first two
hypotheses of closed versus open structures, respectively, in local
and regional governance networks. The local network exhibits a
larger average local clustering coefficient, indicating relatively
more closed structures, while the higher centralization and lower
average path length in the regional network indicate a relatively
higher proportion of open structures. Consistent with our third
hypothesis, the multilevel network possesses a larger small-world
quotient than either the local or regional governance networks.
The balance between open and closed structures in the multilevel
network is demonstrated by an average path length that is close
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Table 1. Descriptive network statistics for the local, regional, and multilevel governance networks.

Network Nodes Density Average Degree Average local ~ Average  Small-world
degree centralization clustering  path length  quotient
coefficient
Local 320 0.010 3.2 0.096 0.227 8.09 13.70
Regional 304 0.016 4.8 0.215 0.173 3.51 11.33
Multilevel 624 0.009 5.6 0.142 0.188 3.58 21.97

to the value in the regional network, while the clustering
coefficient remains higher relative to what would be expected from
a random graph (a detailed breakdown of the small-world ratio
calculation is provided in Appendix 2). Degree centralization is
also higher than in the local network, further indicating more
open structures in the multilevel network. Collectively, these
findings suggest that the multilevel network balances structures
that facilitate local cooperation with regional knowledge and
resource sharing, and are consistent with the idea that cross-level
ties in multilevel governance networks are akin to the rewiring
process in small-world network models.

Exponential random graph models of multilevel governance
network structures

The results for the ERGMs (Table 2) provide more depth to the
descriptive statistics, and generally support our hypotheses of
open and closed structures in multilevel governance networks.
Each of the ERGMs converged and none were degenerate, and
the goodness-of-fit indicates the models adequately capture the
structures of the observed networks (Appendix 3).

The coefficient for shared partners is positive and significant in
all three models, indicating a general force for closure at all levels
of geographic scale. In addition, there is a substantial amount of
within-country homophily in all three models, with the strongest
effect at the local level. This indicates that closure occurs strongly
among actors whose offices are located in the same country. The
homophily effect is driven mainly by actors based in Central
America; 81% of allhomophilous ties occur between actors whose
offices are found within the same country in Central America.
Country-level homophily also contributes to the local network’s
large clustering coefficient, along with the country-level
subgroups that are clearly visible in the network diagram (Fig.
2b).

The coefficients for antipreferential attachment are more difficult
to interpret, in large part because they are highly dependent on
the coefficient for the “reported ties* variable, which indicates
organizations that report partners on their websites. The average
degree of regional actors that reported ties is 16.2 versus 3.5 for
those actors that did not report ties, while for local actors, the
average degree is 8.7 versus 2.8. As a result, regional actors that
report partners on their websites are disproportionately likely to
become central hubs in the regional and multilevel networks.

From a modeling standpoint, the inclusion of the reported ties
variable appears to cause the antipreferential attachment
coefficient to become strongly positive in the regional and
multilevel networks. This contradicts our hypotheses about the
relative abundance of open structures in the regional and
multilevel networks, and is inconsistent with the descriptive

statistics. It is important to reiterate that antipreferential
attachment captures the endogenous variance in the degree
distribution of the network, and taken on its own, will be negative
for high-variance distributions (i.e., networks centralized around
high-degree nodes), and positive for low-variance distributions.
As we show in Appendix 1, the antipreferential attachment
variable is highly negative in models without the reported ties
variable. However, any exogenous statistic that represents high-
degree nodes, such as the reported ties variable, will reduce the
variance in the endogenous degree distribution captured by
antipreferential attachment and increase the coefficient. We
further note the standard errors for antipreferential attachment
are higher in the full models in Table 2, which must also be
considered when interpreting the coefficients.

Given the interaction between the antipreferential attachment
and reported ties variables, and the increase in the standard errors,
we tested for multicollinearity in the ERGMs using the
methodology developed by Duxbury (2018) for calculating the
variance inflation factor (VIF) of the model terms in an ERGM.
While the results of the VIF assessment do not indicate extreme
levels of collinearity in the models (see Appendix 4), the analysis
suggests that the VIF is approaching a problematic level for the
antipreferential attachment term in the local network ERGM
(and is most problematic for the within-country homophily term).
Even a small degree of collinearity may increase the standard
errors of the coefficients with higher VIF, and possibly affect
estimates for other variables in the model. Hence, the coefficient
estimates for antipreferential attachment should be interpreted
with caution, and the overall support for our hypotheses must be
considered in light of both the descriptive statistics and ERGM
results. This methodological complication is symptomatic of
ERGMs that include many statistics derived from the same
observed set of relational data, which are hypothesized to provide
indirect evidence of underlying microlevel social processes.

The ERGM results have a theoretical and substantive
interpretation relative to our hypotheses, as well as
methodological implications. From the standpoint of theory and
substance, the regional and local organizations that report ties
are actively seeking to build boundary-spanning networks. For
example, the website of the Blue Harvest program states,
“Activities are designed to generate impacts beyond specific
locations/projects in order to influence policies, governance, and
practices at national, regional, and international levels.” The data
reflect the boundary-spanning activities of regional actors—out
of the 1999 ties observed in the network, only 493 are cross-level
ties—but regional actors contribute nearly two-thirds (63%) of
these cross-level ties. Hence, regional actors who report ties on
their websites are contributing more cross-level ties, while also
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Table 2. Exponential random graph models (ERGMs) for the local, regional, and multilevel governance networks.

Local network

Regional network Multilevel network

Network processes:

shared partners’ 0.368%**
(0.075)
antipreferential attachment’ -2.217*
(0.874)
Geographic scale:
within-level homophily
within-country homophily 5.812%%*
(0.386)
Baseline rates:
level activity: local
Country activity:
Costa Rica -0.544%**
(0.163)
El Salvador -0.674%**
(0.161)
Guatemala -0.537**
(0.164)
Honduras -0.673%**
(0.162)
Nicaragua -0.641%**
(0.166)
Panama -0.328
(0.168)
Control parameters:
reported ties on website? 1.257%**
(0.115)
density -8.856%**
(0.547)
isolates -4.199%**
(0.862)

0.51 1%+ 0.722%+
(0.059) (0.039)
1.663* 7.535%%x
0.772) (0.769)
0.487%%+
(0.053)

1.166%** (0.091) 2.027%%* (0.052)

-0.528%%%*

(0.048)
-0.295%* -0.027
(0.093) (0.054)
-0.544%%% -0.010
(0.154) (0.056)
2341 %% -0.020
(0.672) (0.069)
-0.794% -0.041
(0.336) (0.064)
-1.056%#* -0.147
(0.307) 0.074)
-0.723%* -0.015
(0.226) (0.071)
1.431%%* 1.439%%
(0.082) (0.054)
-5.750%%* S7.017%%%
(0.134) (0.102)
-0.155
(0.919)

*p < 0.1, *%p < 0.05, ***p < 0.01

"We fixed the decay parameter at 0.3 for shared partners and antipreferential attachment across all three models.

building ties to other regional actors. This is analogous to the type
of “rewiring” process seen in small-world networks, which
preserves local clustering while reducing average path length.

From a methodological standpoint, organizations that do no
report partners may have unobserved ties. If the nonreporting
organizations have a large number of unobserved ties, the
networks here would become denser and decentralized with less
variance in the degree distributions. However, to the extent the
reporting of ties is positively correlated with the fully observed
degree distribution, then the networks are likely to have a
qualitatively similar variance in degree distribution to our
partially observed data. We think it is likely that organizations
with more partners are more likely to report ties, as doing so is
consistent with their collaborative strategies, but validating this
assumption requires a more completely observed network.

DISCUSSION

The descriptive statistics and ERGMs largely support our
hypothesis that multilevel water governance networks possess
structural properties that resemble small-world networks. The
local network is characterized by closed structures occurring
within country-level subgroups and coordinated by central in-
country actors, which provides a basis for cooperation and on-

the-ground project implementation. The regional network is
characterized by relatively more open structures, and provides
more horizontal boundary-spanning ties between Central
American countries, which help facilitate social learning and
resource distribution across the region. When all ties are taken
into account in the multilevel network, regional organizations
provide the largest number of cross-level, vertical relationships to
local actors. These cross-level ties shorten the average path length
among the entire set of local and regional actors without
degrading general patterns of localized clustering, and result in
the small-world structure of the multilevel network.

The policy implications of small-world structures suggest both
opportunities and constraints in the regional water governance
network in Central America. On the one hand, we find evidence
that regional actors can help bridge between distant local-level
actors, thereby helping foster cooperation and knowledge and
resource sharing across local political boundaries throughout the
region. However, the overarching importance of regional actors
also potentially makes the network vulnerable to the “exit
problem” when funding and project cycles come to a close and
regional actors and their resources disappear from the network.
In this regard, the sustainability of relations over time is key, and
regional policy actors that are not permanent fixtures on the
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institutional landscape should make relationship building a core
aim of their exit strategies (Hileman et al. 2018). Furthermore,
there is also a risk that regional actors in the core of the network
may pursue policy goals that are contrary to collective regional
benefits, due to lack of capacity or substitution of international
preferences. This highlights the need for additional theory and
empirical analysis to explore the relationship between political
power, cooperation, and learning (Morrison et al. 2017).

We also find evidence for homophily at the local and regional
levels, which is associated with closed structures that may facilitate
cooperation. However, the continued presence of homophily can
also serve as a barrier to learning across boundaries, or facilitate
intergroup conflict as seen in the broad literature on international
environmental agreements (Young 1999, Keohane 2002) and
advocacy coalitions in policy systems (Sabatier 1988, Sabatier and
Jenkins-Smith 1993). These findings suggest that both local and
regional actors are constrained by context, in spite of regional
actors frequently having increased access to knowledge and
material resources. Regional actors that seek to maintain a
politically neutral profile while also creating cross-level ties may
be particularly hesitant to address these core social and political
issues.

Furthermore, while the multilevel water governance network for
Central America possesses small-world structures that can
simultaneously facilitate cooperation, social learning, and
resource distribution, the fact remains that serious challenges to
water resource development and management persist in the
region. Network structures ultimately represent the potential for
facilitating different governance processes, and underlying social
and political issues such as power asymmetries and low levels of
social capital may hinder the benefits these structures can provide
(Henry and Vollan 2014, Morrison et al. 2017). In practice,
development programs may prioritize building social capital and
trust among local actors, and facilitating interactions and
exchanges among diverse regional actors in order to access the
benefits of these network structures. As interest in regional
governance continues to grow, it remains critically important to
tailor strategies to the unique needs and circumstances facing
localities throughout the seven countries in Central America.
That regional governance is not a panacea is not surprising, and
is further reinforced in the ERGM results which demonstrate that
beyond the strong homophily effect, there is variation in the
baseline activity of actors within each of the countries.

A high-level goal of this paper was to bring a formal network
model, small-world networks, to an empirical context and assess
the utility of the approach. While the analysis sheds light on a
number of interesting findings presented here, future studies
should expand on this research agenda by examining different
forms of collaboration, and additional social and ecological
variables. There remains a pressing need for empirical studies that
link network structures to biophysical and socio-political
outcomes, and our hypothesis regarding the benefits of small-
world networks cannot be fully tested without data on outcomes
that quantify the performance of small-world networks in
comparison to other network typologies. To assess the prevalence
of small-world networks in different settings, it is also critical to
compare network topologies across a range of social-ecological
contexts. Lastly, governance networks are constantly evolving,
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and we recognize the network examined here is a cross-section.
Combining panel series network and outcomes data from many
different social-ecological systems should be a core goal of future
research on multilevel governance. Our ability to connect the
evolution of networks and their associated social processes to
outcomes also depends on research designs that can more fully
observe and measure networks, along with continued
advancement of statistical methods that are capable of making
inferences about network structures and processes in the presence
of unobserved links.

CONCLUSIONS

Our analysis highlights the utility of applying the idea of small-
world networks to analyze the structure of a multilevel water
governance network in Central America. Small-world networks
are consistent with the requirement of polycentric governance
systems to facilitate cooperation, social learning, and resource
distribution. This suggests that the evolution of regional water
governance in Central America may be a positive response to
emerging interdependencies from global processes. However, our
analysis is limited in time and space; more comparative work is
needed to understand how networks evolve over time in different
social-ecological contexts, including the role of macrolevel
domestic and international political institutions. Such analyses
must ultimately connect the structure of governance networks
and polycentric institutions to environmental outcomes and
institutional resilience in the face of change. Furthermore, we are
not prepared to claim that small-world networks are a panacea
for analyzing governance networks. Rather, they provide a
parsimonious and simple theoretical framework that connects to
complicated ideas around cooperation, learning, and other social
processes in governance. Other simple theoretical models may
also be useful, or it may be that polycentric systems are too
complex to be amenable to any of the existing approaches in
network science.

Responses to this article can be read online at:
http://www.ecologyandsociety.org/issues/responses.
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Appendix 1
Supplemental Descriptive Statistics and ERGM Results

Table Al.1: Descriptive statistics illustrating the effects of removing pendants on the structure
of the local, regional, and multi-level networks

Descrintive Local Local Regional  Regional Multi-level ~ Multi-level

statistif:) network network (no  network network (no  network network (no
(pendants) pendants) (pendants) pendants) (pendants)  pendants)

Nodes 741 320 1286 304 2027 624

Density 0.003 0.010 0.002 0.016 0.003 0.009

Average 25 3.2 27 48 3.1 5.6

degree

Degree 0.091 0.097 0.136 0.217 0.187 0.142

centralization

Average local

clustering 0.090 0.227 0.039 0.173 0.054 0.188

coefficient

Average path ¢ 1 8.09 4.38 3.51 4.33 3.58

length

Small-world 5, g¢ 13.70 31.52 11.33 55.32 21.97

quotient

The decision to remove pendant nodes prior to analysis has an effect on both the descriptive
statistics and ERGMs, and to assess the impacts we examined results for the local, regional,
and multi-level networks with and without pendants®. Removing pendants from the local,
regional, and multi-level networks leads to a uniform increase in density, average degree, and
average local clustering coefficient, and a decrease in average path length and the small-world
quotient (Table Al.1). In the case of the local and regional networks, removing pendants
increases the overall degree centralization, indicating the pendants are more evenly distributed
through these networks, as opposed to concentrating on one or more high-degree nodes.
However, the removal of pendants in the multi-level network leads to a decrease in degree
centralization, which indicates a disproportionate number of pendants providing cross-level
ties are connected to a relatively small number of the same high-degree actors in the multi-
level network.

Importantly, removing pendants does not fundamentally alter the interpretation of the empirical
results. Closed structures are more prevalent in the local network, both with and without
pendants, as evidenced by the higher average local clustering coefficient when compared with
the regional network. Open structures are more prevalent at the regional level, both with and
without pendants, as evidenced by the higher degree centralization when compared with the
local network. The multi-level network effectively balances the closed and open structures
found at the local and regional levels, respectively, as evidenced by the small-world quotient

! Given the large number of pendants (~1,400) in the network dataset, we did not code pendants as local or regional
actors. Instead, we focus more generally on the structures that arise when pendants are included in both the local
and regional networks, effectively treating pendants as a neutral category with respect to the level variable.



being greater, both with and without pendants, when compared to the local and regional
networks.

Table Al1.2: ERGM results illustrating the effects of removing pendants on the coefficient for
anti-preferential attachment, in the absence of any other endogenous or exogenous model terms

ERGM Local Local Regional  Regional Multi-level ~ Multi-level
coefficient network network (no  network network (no  network network (no
(pendants) pendants) (pendants) pendants) (pendants)  pendants)
Edges -5.410%**  -4.362***  -5812*** -3.950***  -6.106*** = -4.647***
(0.048) (0.058) (0.033) (0.040) (0.022) (0.026)
s\rg‘le-ren tial -0.798***  -1.028***  -1.157*** -1.902***  -1501*** = -1.317***
attachment (0.117) (0.191) (0.084) (0.210) (0.067) (0.240)

*p<0.1, **p<0.05, ***p<0.01
"Decay parameter fixed at 0.3

Table Al.2 illustrates how the anti-preferential attachment (geometrically-weighted degree)
coefficient in the ERGMs, in the absence of any other endogenous or exogenous model terms,
changes when pendants are removed from the local, regional, and multi-level networks. These
results further illustrate how geometrically-weighted degree tracks network centralization
when it is the sole term included in the ERGMs. In all the networks, both with and without
pendants, the anti-preferential attachment coefficient is negative, indicating a propensity for
actors to form ties with relatively high-degree actors. In the case of the local and regional
networks, degree centralization increases when pendants are removed from the networks
(Table Al1.1), and this is reflected in the anti-preferential attachment coefficient becoming more
negative in the ERGMs for these networks when pendants are removed. The multi-level
network becomes less centralized when pendants are removed (Table Al.1), and this change is
also mirrored in the anti-preferential attachment coefficient becoming less negative in the
ERGM for this network when pendants are removed. Consistent with our hypotheses, the
regional and multi-level networks have larger negative coefficients than the local network on
the anti-preferential attachment statistics.

Table A1.3: ERGM results illustrating the effects of removing pendants on the coefficient for
shared partners, in the absence of any other endogenous or exogenous model terms

ERGM Local Local Regional Regional Multi-level — Multi-level
coefficient network network (no  network network (no  network network (no
(pendants) pendants) (pendants) pendants) (pendants)  pendants)
Edges -6.045***  5364***  -6.425*** -4765***  -6.838*** = -5415%**
(0.039) (0.068) (0.027) (0.055) (0.021) (0.036)
Shared 1.458*** 1. 471*** 1.413***  1.024*** 1.648*** 1.242%**
partners’ (0.047) (0.063) (0.037) (0.050) (0.026) (0.034)

*p<0.1, **p<0.05, ***p<0.01
"Decay parameter fixed at 0.3



Table A1.3 illustrates how the shared partners (geometrically-weighted edgewise shared
partners) coefficient does not change substantially when pendants are removed from the local,
regional, and multi-level networks. The positive coefficients indicate there is a propensity for
triadic closure in all the networks, regardless of whether pendants are included or removed.

Table Al.4: Model results illustrating the interplay between within-country homophily and
anti-preferential attachment for the local, regional, and multi-level networks. Pendant nodes
were not included in any of the networks.

ERGM Local Local Regional Regional Multi-level ~ Multi-level
coefficient network network (no network network (no  network network (no
(homophily) homophily) (homophily) homophily) (homophily) homophily)
Arr;:c;r ential -2.217* 2.348*** 1.663* 1.617*** 7.535*** 6.584***
gttachm entt (0.874) (0.310) (0.772) (0.379) (0.769) (0.749)

*p<0.1, **p<0.05, ***p<0.01
"Decay parameter fixed at 0.3

Table Al.4 illustrates how the positive homophily effect in the ERGMs affects the coefficient
for anti-preferential attachment, which has important implications as it relates to network
centralization. While only the coefficient for anti-preferential attachment is displayed in the
table, the ERGMs include the same suite of endogenous and exogenous variables as the
ERGMs presented in the paper, and all other terms were excluded from the table here for ease
of interpretation. (Note: the coefficients for anti-preferential attachment in the local, regional,
and multi-level networks with homophily are identical to those in Table 2 in the text, as the
models are identical.)

In the regional and multi-level ERGMs, the anti-preferential attachment coefficients remain
large and positive both with and without homophily. In the local network, the anti-preferential
attachment coefficient switches from negative to positive when homophily is not included in
the ERGM, which indicates the propensity for actors to form ties with relatively high-degree
actors in the local network is occurring among actors working within the same country. It is
important to recognize degree centralization is a network-level measure, so while the local
network is less centralized overall than the regional or multi-level networks, the force for
centralization captured by the negative anti-preferential attachment coefficient is taking place
at the sub-network level, and as a direct result of the strong homophily force between local
actors from the same country in Central America. In other words, the negative coefficient on
gwdegree when homophily is included in the model indicates relatively greater variance in the
degree distribution within each country than at the network level, where the exogenous effect
of homophily is not considered.



Table A1.5: Model results illustrating the interdependence between the anti-preferential
attachment and “reported partners” variable, in the absence of any other model terms. Pendant
nodes were not included in any of the networks.

ERGM Local Local Regional Regional Multi-level ~ Multi-level
coefficient  network network network network network network
Edaes -4.362*** -6.604***  -3.950***  -5399***  -4.647***  -6.345***
g (0.058) (0.190) (0.040) (0.104) (0.026) (0.090)
Reported 1.685*** 1.554*** 1.573***
partners (0.104) (0.067) (0.052)
Arrg‘le-ren tial -1.028*** 1.390*** -1.902***  0.622 S1.317x**x 4247
zttachmen it (0.191) (0.293) (0.210) (0.320) (0.240) (0.697)

*p<0.1, **p<0.05, ***p<0.01
"Decay parameter fixed at 0.3

Table AL1.5 illustrates the interdependence between the anti-preferential attachment and
“reported partners” terms in the ERGMs. Technically, this represents multi-collinearity
between the anti-preferential attachment and “reported partners” variables, and understanding
the relationship between these two variables is key to interpreting the anti-preferential
attachment coefficient in the full ERGMs presented in the paper. When the variable capturing
the effect of whether or not actors reported ties on their websites is not included alongside anti-
preferential attachment, the anti-preferential attachment coefficient decreases, and becomes
negative, in each of the local, regional, and multi-level networks. This indicates more network
centralization and organization around high-degree nodes, and brings the anti-preferential
coefficients in line with the descriptive statistics; the regional network is the most centralized
and possesses the most negative anti-preferential attachment coefficient, while the local
network is the least centralized and possesses the least negative anti-preferential attachment
coefficient.

When the “reported partners” variable is included in the ERGMs alongside anti-preferential
attachment, the coefficient on anti-preferential attachment becomes positive in each of the
local, regional, and multi-level networks. Interpreted in isolation, a positive anti-preferential
attachment coefficient (gwdegree) represents more decentralized networks. However,
remembering that gwdegree captures the endogenous variance in the degree distribution, what
the anti-preferential attachment coefficient is actually capturing is the low variance part of the
degree distribution that is not represented by organizations reporting ties. That is, actors that
report ties on their websites have higher average degrees (16.2 and 8.7 when regional and local
actors, respectively, report ties, versus 3.5 and 2.8 when they do not), and therefore the
inclusion of this exogenous variable in the models captures most of the high-degree nodes in
the distribution, and reduces the variance in the degree distribution that is captured by
gwdegree. For this reason, in Table Al.4 we see positive anti-preferential attachment
coefficients in the regional and multi-level networks, both with and without homophily.



Appendix 2
Small-world Quotient Calculation

Table A2.1: Calculating the small-world quotient for local, regional, and multi-level networks

Observed Expected
Observed Expected

average local average local Small-world
Network . . average path  average path —

clustering clustering lenath lenath quotient

coefficient coefficient g g
Local 0.227 0.010 8.09 4.93 13.70
Regional 0.173 0.016 3.51 3.64 11.33
Multi-level 0.188 0.009 3.58 3.74 21.97

"Due to rounding of the variables in the table (for display purposes), performing the calculation
using the variables above will result in slight variations from the displayed small-world
quotients

Table A2.1 illustrates how the small-world quotient is calculated®, and clarifies why the small-
world quotient is largest for the multi-level network. The small-world quotient is obtained by
dividing the ratio of observed and expected average local clustering coefficient of a network
by the ratio of its observed and expected average path length. The observed values, as the name
implies, are the descriptive network statistics obtained from analysis of the empirical network.
The expected average local clustering coefficient is calculated by dividing the average degree
of a network by the number of nodes in the network, while the expected average path length is
calculated by dividing the natural log of the number of nodes by the natural log of the average
degree.

Of primary interest here is why the multi-level network possesses the largest small-world
quotient, which we hypothesized based on the primary functions of governance, and resulting
network structures, we expected would characterize each of the local and regional levels. The
relatively large small-world quotient for the multi-level network is partly attributed to the fact
the expected clustering is quite low, while the observed clustering remains high; in this
scenario, the numerator in the small-world quotient becomes large. At the same time, the
expected average path length is low, but not as low as the observed path length; in this scenario,
the denominator in the small-world quotient becomes small. The relatively large numerator and
small denominator leads to the large small-world quotient in the multi-level network. Stated
another way, emphasizing the concepts and not the equation, when cross-level ties are added
to the regional and local networks the resulting multi-level network maintains the low average
path length observed in the regional network, while the average local clustering coefficient
moves toward the high clustering found in the local network. That is, the small-world structure
of the multi-level network provides the benefits of both local clustering and regional efficiency.

! For a full theoretical and methodological explanation, see: Watts, D. J. 1999. Networks, Dynamics, and the
Small-World Phenomenon. American Journal of Sociology 105(2):493-527. Another excellent source is Davis,
G. F., M. Yoo, and W. E. Baker. 2003. The Small World of the American Corporate Elite, 1982-2001. Strategic
Organization 1(3):301-326.



Appendix 3
ERGM Goodness-of-Fit (GOF) Plots

The following three figures display the results of the goodness-of-fit tests for each of the local,
regional, and multi-level network ERGMs. The plots are provided to show the ERGMSs converged
and were not degenerate, as evidenced by the ability of the models to adequately capture the
observed structures in the empirical networks.

Figure A3.1: GOF plots for the local-level ERGM
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Figure A3.2: GOF plots for the regional-level ERGM
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Appendix IV
Testing for Multicollinearity in ERGMs

Table A4.1: Results from calculating the variance inflation factor (VIF) for the model terms in
the local, regional, and multi-level ERGMs

Model variable VIF: Local VIF: Regional VIF: Multi-
(ERGM term) ERGM ERGM level ERGM

Shared partners 6.43 510 5.26

(gwesp)
Anti-preferential

attachment 12.89 3.39 1.28
(gwdegree)

Within-level

homophily -- -- 3.11
(nodematch)

Within-country

homophily 45.59 1.26 2.47
(nodematch)

Level activity: local
(nodefactor)
Country activity:
Costa Rica 5.77 1.25 2.41
(nodefactor)

Country activity:

El Salvador 8.12 1.13 2.83
(nodefactor)

Country activity:

Guatemala 5.85 1.07 2.16
(nodefactor)

Country activity:

Honduras 8.08 1.03 3.12
(nodefactor)

Country activity:

Nicaragua 4.04 1.05 1.70
(nodefactor)

Country activity:

Panama 3.97 1.06 1.67
(nodefactor)

Reported ties on

website? 13.03 5.70 7.69
(nodefactor)

Isolates 6.66 3.18 --

-- -- 6.75

We calculated the VIF for each ERGM following the methodology developed by Scott
Duxbury, a Ph.D. student at the Ohio State University. The formulation of the “vif-ergm”
calculation is publically available on Github,* and is implemented as a function in the R
Environment for Statistical Computing. In a paper posted to the Open Science Framework,?



Mr. Duxbury elaborates on the development of the VIF calculation for ERGMs, and discusses
how to interpret the results. He determined any value above 20 is considered to be evidence of
potentially problematic collinearity, and any value above 100 is representative of extreme
collinearity. In the event of extreme collinearity in an ERGM, even the parameter estimates of
terms that do not exhibit a large degree of correlation may be essentially random. We performed
the calculation of the VIF for ERGMs exactly as described by Mr. Duxbury, with the only
exception being we ran 10,000 simulations instead of using the function’s default value of
1,000 simulations.

There is no evidence of extreme collinearity in the three models presented in this paper. Only
in one model, specifically the local network ERGM, does a term possess a VIF greater than 20.
The VIF score for within-country homophily is 45.6 for the local ERGM, and the presence of
two other terms with relatively elevated VIF scores — anti-preferential attachment (12.9) and
the “reported ties” variable (13.0) — are correlated with within-country homophily. It is
encouraging that further testing, including re-estimating the model, indicated the parameter
estimates and standard errors for these three terms were stable and, therefore, multicollinearity
in the model may not be highly problematic. However, the presence of even potentially
problematic levels of multicollinearity here means the model coefficients must be interpreted
with caution, and in this situation it is especially important not to overlook the descriptive
statistics assessing open and closed structures.

In the ERGMs for the regional and multi-level networks, all of the VIF scores for the model
terms were below 20, indicating low levels of collinearity. In both models the “reported ties”
variable displayed the highest VIF score, indicating this variable tends to be the most highly
correlated, relatively speaking, with other variables in the model. In the regional model the
“reported ties” variable (5.7) is most highly correlated with the shared partners variable (5.1),
followed by the anti-preferential attachment variable (3.4). Again, this is due to the fact that
actors contributing ties to the network are also more likely to be partners, and to have more
partners. In the multi-level model the “reported ties” variable (7.7) is most highly correlated
with the “level activity” of local actors (6.8), followed by the shared partners variable (5.3).
Similar to the regional model, this is due to the fact that actors contributing ties to the network
are more likely to be partners, and less likely to be local actors (who were less likely to have
organizational websites and/or report collaborative ties with other actors). However, in the
multi-level model there is little to no correlation between anti-preferential attachment and the
“reported ties” variable.

While these overall results suggest multicollinearity is not a huge problem given the rule of
thumb proposed by Mr. Duxbury, there are coefficients that rank higher than others in terms of
VIF. Given this does potentially pose a problem, caution is warranted when interpreting the
ERGM coefficients, especially for the suspect variables.

! Duxbury, S. 2018. R Function to Detect Multicollinearity in ERGM. https://github.com/sduxbury/vif-ergm
2 Duxbury, S. 2018. Diagnosing Multicollinearity in Exponential Random Graph Models. Forthcoming in
Sociological Methods and Research. https://osf.io/ygdxh/
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