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ABSTRACT. The dynamics and adaptive capacity of social-ecological systems are heavily contingent on system structure, which is
established through geography, institutions, interactions, and movement. Contrasting views of system structure, as hierarchies and
single-level networks respectively, have tended to emphasize the role of either top-down or lateral (peer-to-peer) connections. The
concept of a heterarchy aims to capture both top-down and lateral connections on orthogonal axes and has been proposed as a way
of unifying alternative approaches to measuring structure, but it has not been fully operationalized for quantifying and comparing
system structures. We developed a simple approach to consistently quantifying heterarchical structure across different kinds of networks.
We first calculated suitable metrics, including modularity and a hierarchy score, for a wide range of both simulated and real-world
systems including food webs, biological, infrastructure, and social networks. Metrics were corrected for differences in size and magnitude.
The results were then visualized as a heterarchy matrix. We compared the angle (degrees) and Euclidian distance of each simulated
and real-world network from the center of the matrix between network groups. All networks showed distinct placement on the heterarchy
matrix. Relative to one another, food webs were laterally polycentric, social networks were mainly pyramidal and coordinated polycentric,
and biological networks were pyramidal and laterally polycentric. Our test of concept, although relatively basic, provides strong evidence
that system structure cannot be fully understood as purely laterally connected or purely hierarchical. System resilience requires a trade-
off  between modularity, aiding redundancy and collaboration; and hierarchy, aiding efficient action. Our approach has the potential
to provide a robust, accessible methodology to quantify system structure that allows for universal contextualization, a key step within
fields such as resilience and sustainability science.
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INTRODUCTION
The complex interactions between the components of societies
and ecosystems can be described as networks in which system
elements (nodes, e.g., animals, locations, or people) are linked by
a range of different kinds of interactions (e.g., predation,
competition, information sharing, or flows of materials). From a
network perspective, the core agenda of social-ecological systems
(SES) research focuses on understanding and managing both the
nodes and the interactions that comprise the SES (Ostrom 2009),
and their emergent properties (e.g., persistence, resilience,
sustainability). For example, the harvest of wild fish stocks for
food involves, at a minimum, ecological networks (structured by
trophic interactions and habitat suitability); human social
networks (structured by dynamics of power, kinship, and
information sharing); and socioeconomic networks (structured
by spatially variable dynamics of supply and demand).
Understanding how these different networks operate and interact
is central to managing them sustainably and building desirable
resilience. For instance, if  economic or social demands place too
much pressure (and/or provide too strong incentives) on a fisher
to harvest fish, an individual may be tempted to over-harvest the
fish stock, leading to changes in the ecological network that in
turn reduce fish availability.  

Unlike many classical social and ecological models, network
analysis provides a method for describing the structure—both
graphic and relational—of interactions between individual
components of a SES. The answers to many important questions
in sustainability and resilience science depend heavily on the
details of system structure. For example, how long will a degraded

ecosystem take to be re-colonized from nearby habitat patches?
How does proximity to markets influence social-ecological
dynamics? Do particular institutional and governance structures
improve the sustainability of interactions between people and
nature? To address these questions, which are structural in nature,
we need to know not only about the processes and flows occurring
within the system, but also about how the relative arrangements
and different levels of connectivity of different nodes within the
system influence the social-ecological processes in which we are
interested.  

The basis of network structure is the number and nature of nodes
and interactions between them. Importantly, the same structural
elements, i.e., the nodes and links, can be arranged (structured)
in nearly endlessly different ways, each with potentially different
consequences for system function. Many SES studies seek to
develop general theories about how system structure interacts
with resilience. For example, different approaches to natural
resource governance may involve different kinds of social
structures and power dynamics, with some kinds of institutional
structure (e.g., polycentric governance) being proposed as more
effective than alternatives. It is generally agreed, however, that no
single structural design offers an optimal compromise between
efficiency and resilience in a variable environment (Pimm 1984,
Anderies and Norberg 2008, Bodin and Crona 2009, Bodin 2017).

Although SES research has already made substantial progress in
understanding social-ecological dynamics, several recent articles
have called for a greater emphasis on comparative research as a
way of generalizing and extending existing knowledge (Maire et
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al. 2016, Bodin et al. 2019, Darling et al. 2019). To test and further
develop theories about how SES structure influences general
system dynamics, we require measures that allow relevant
elements of the structure of qualitatively different systems (or the
same system through time) to be compared directly. This quest
thus complements other research efforts where the focus is to more
precisely study specific systems, and/or certain aspects or parts of
a SES. There are two critical structural properties that are
particularly relevant in SESs: lateral or peer-to-peer
connectedness, which occurs within a single hierarchical level; and
top-down or hierarchical connectedness, which crosses
hierarchical levels. Hierarchies tend to arise when flows are
directional in nature.  

Interactions between components of a complex system are critical
for internal processes and thus for SES function and resilience
(Cumming 2011). Many previous studies have explored elements
of network structure and their relationship to SES resilience. In
ecosystems, for example, higher biodiversity within functional
groups of ecologically similar species, increasing the degree of
lateral connectivity, results in a higher capacity to buffer stress
due to the system relying less on a few functional pathways (Hirata
and Ulanowicz 1984, Fath et al. 2019); whereas hierarchical
organization, such as predator–prey–primary producer
relationships, creates potential for a fast and efficient response to
stress (Friesen et al. 2014). However, these studies have often
struggled to measure relevant structural properties of social-
ecological systems in a way that is replicable, interpretable, and
comparable between systems of quite different kinds. The
structures of many systems do not fall cleanly into categories.
Terms such as “polycentric” or “hierarchical” are often used
loosely to lump together systems with different kinds of structure.
In practice, system structure is multi-modal and occurs along a
continuum of different dimensions; we do not fully understand
how location along a structural continuum influences the pattern–
process or structure–function relationships that drive system-level
resilience and sustainability. For example, imagine a group of
equals in which decision making for natural resource management
is entirely based on community consensus; and then imagine that
hierarchical elements and inequalities are slowly introduced, until
such time as there is a rigid hierarchy with a single leader who
makes all decisions. At what point(s) along this trajectory would
we expect to see changes in decision-making speed, efficiency,
innovation, and flexibility?  

Here, we explore the potential of the heterarchy concept in
providing a simple but operational measure that combines
different structural system properties for comparative research on
SESs. Heterarchies were originally introduced to anthropological
research by Crumley (1995) to describe social systems in which
components could be ordered in several individually consistent
ways that nonetheless appeared to contradict each other when
adopting a single perspective on power and other directional
relationships in social networks. An individual near the top of a
governance hierarchy, for example, might be socially either quite
isolated (weak or few peer-to-peer or lateral connections) or
strongly integrated (strong or many lateral connections)
independently of their hierarchical position, suggesting a need to
consider social structure on two dimensions rather than one.
However, much past research in societies, economies, and
ecosystems has focused on a single dimension (i.e., either lateral

or hierarchical structures, rather than both together). Cumming
(2016) reviewed and extended the heterarchy concept to propose
that measures of lateral and hierarchical aspects of complex
systems can be treated as orthogonal (right-angled) axes that
capture different elements of system structure; and furthermore,
that they can be used to position a given system on a structural
continuum. We extend Cumming’s (2016) conceptual approach
by developing an operational measure of the heterarchical
dimensions of a complex system from a singular structural
perspective (Fig. 1). We use this measure to explore the potential
benefits and applications of a relatively simple interpretation of
heterarchical structure as a combination measure of lateral and
hierarchical measures of system structure. Our analysis suggests
that evaluating network typology through a heterarchy lens can
facilitate the development of generalities about structure–
function relationships and support a deeper understanding of
system-level resilience.

Fig. 1. The heterarchy continuum, adapted from Cumming
(2016) for a horizontal axis that measures
compartmentalization. In this operational schematic, the
upper-right quadrant contains “coordinated polycentric”
systems that consist of different modules or sub-systems that
are linked by an overarching coordinating function that leaves
scope for localized hierarchical organization. The upper-left
quadrant, originally described as “reticulated” networks, here
resembles a polycentric system but without any overarching
coordinating structure (i.e., a lack of hierarchy). In this
quadrant, inter-center coordination would rely on lateral
connection between the different centers, implying “laterally
polycentric” organization. The lower-right quadrant captures
“pyramidal” organization in the form of highly hierarchical
systems lacking clearly distinguishable modules. Such
pyramidal systems resemble a highly bureaucratic organization
as well as a very centralized system where a few nodes have
disproportionally more links than other more peripheral nodes.
The final quadrant, the lower left, was originally described as
“individualistic” organization with few connections between
nodes. Using a compartmentalization axis, the lower-left
quadrant now describes a potentially more connected system
without hierarchies or different modules, describing “lateral/
flat” organization. This is similar to the original concept of
reticulated structure, but here the system could still be quite
dense. This kind of network might be found in networks where
most nodes are on an equal standing with no signs of strong
structuring mechanisms or divisions between clusters of nodes.
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OVERVIEW OF APPROACH AND METHODOLOGY

Approach
Our goal was to provide a test of concept rather than a highly
sophisticated solution. Desirable properties of this first test of
concept included transparency in how the measures were
calculated and compared; relative simplicity; and a focus on
metrics that capture the general characteristics of the entire
network (this differs from other approaches which have, for
example, focused on characteristics at the meso-level, see, e.g.,
Faust and Skvoretz 2002). Furthermore, we also aimed for metrics
defined at the level that a competent user of R could easily
replicate our methods using existing software; and transparent
interpretability of measures within the conceptual framework
proposed by Cumming (2016). All analyses and visualizations
were undertaken in R software (R Core Team 2013) using the
code provided online (https://github.com/amyshurety/Shurety-
et-al.-Heterarchy-Code).  

As summarized in Fig. 2, our first step was to randomly generate
a range of networks that differed in their intensity of both lateral
and hierarchical characteristics. We generated networks in igraph
(Csardi and Nepusz 2006) using the Erdős-Rényi model, which
adds links at random between a set number of nodes. One hundred
networks were generated each with ten nodes and each pair of
nodes had a fixed probability 0.33 of being connected. This was
then repeated, increasing the number of nodes in increments of
ten up until 100 nodes. In total, we generated 1,000 networks
containing 10–100 nodes. The random networks represented
different possible structures for networks of the same size (number
of nodes), and the set of random networks covers a range of
structural characteristics (cf. an inverted U-shaped distribution
around a mean value where any two networks at opposite tails of
the distribution would have quite different structural
characteristics). To objectively measure the degree to which each
generated network was respectively lateral and hierarchical, we
calculated two metrics: network modularity, and the probability
hierarchy score (PHS).  

Lateral connectedness is the degree of horizontal exchanges/
interactions within a network, which is also (indirectly) related to
network density (the number of interactions relative to the
number of possible interactions). As randomly adding more links
to a network increases its density as well as its lateral
connectedness, lateral connectedness is a characteristic that is
hard to adequately single out in modeling methodology aimed to
facilitate comparisons across networks that inherently differ in
their overall level of connectivity (density). We therefore chose to
operationalize the dimension “evenly coherent vs. modular” (Fig.
1), that captures the extent of system connectedness within
hierarchical levels (Cumming 2016), using a measure of system
compartmentalization into different subsystems (also referred to
as groups, factions, cliques, or modules). Compartmentalization
as measured by network modularity describes the degree to which
densely connected groups of nodes can be adequately separated
into individual communities, or clusters, that function as semi-
independent groups (Newman 2006). In that sense,
compartmentalization indirectly captures lateral connectedness,
while being less dependent on overall network connectedness. In
a social-ecological system, a highly compartmentalized system
might contain social cliques or specific user groups at similar

Fig. 2. A flow diagram summarising the methodological steps
undertaken in our approach to operationalise the heterarchical
dimensions of network structure. The yellow compartments are
steps that make use of the theoretical networks, the green
compartments use the real-world networks, and the blue use
both the theoretical and real-world networks.

income levels (e.g., farmers, who interact in different fora from
fishers); distinct ecological communities (e.g., grassland vs. forest
species); or clusters of interacting firms (e.g., Silicon Valley-type
technological developments). At the other end of the scale, a
network with low compartmentalization is more structurally
homogeneous, and its elements may be more interchangeable; it
might represent, for example, a human community in which each
or most members play an equivalent role in decision making or
an ecological community in which there is high substitutability
of one prey type by another, leading to relatively homogeneous
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levels of predation across species (low compartmentalization
does, however, not necessarily mean that all nodes are equally
connected—there could, for example, be a core of more densely
connected nodes to some extent signifying a hierarchical
organization, but it means that there are not clearly observable
factions of the network). Compartmentalization is also relevant
for dynamic processes; both perturbations and innovations, for
example, travel faster through less compartmentalized networks.

We estimated the compartmentalization (modularity) of all 1,000
random networks using the standard modularity function in the
igraph package. Community membership, which is needed to
calculate modularity, was calculated using the cluster_walktrap 
function. The modularity metric showed a normal distribution
with a range between negative one and one.  

We used PHS (Cheng et al. 2015) to measure the degree of
hierarchy and operationalize the dimension “flat vs. hierarchical”
(Fig. 1). We chose PHS over other alternatives because it is more
sophisticated in considering the direction of connections,
relatively insensitive to sample size, and allows networks with
differing numbers of nodes and hierarchical levels to be more
readily compared. The higher the PHS, the more hierarchical the
network is considered to be. In a real-world social-ecological
system, for example, higher values of PHS might equate to having
more layers of bureaucracy; higher social inequality and power
differentials between individuals; tighter feedbacks between
trophic levels, leading to a higher potential for trophic cascades
in an ecosystem; or more centralized administration of resources.
These concepts are expanded upon later, within the Discussion.  

Probability hierarchy score was calculated for every possible
number of hierarchical levels within each network. As the number
of levels within a given network was not known a priori, PHS was
calculated for different potential numbers of hierarchical levels
ranging from 2 to (n/2), where n is the number of nodes within
the network (real networks are unlikely to have more than n/2
levels). To objectively select a single value for the PHS metric, we
used the log likelihood for each level iteration of the PHS metric
to calculate its Akaike Information Criterion (AIC). The PHS
value for the model with the lowest AIC was used as the “correct”
value (best estimate) for that network. For the random networks,
PHS showed a normal distribution with a range from 1.99 up to
34.03.  

The metrics (modularity and PHS) were chosen for the following
desired properties: (1) a continuous scale; (2) being reliable and
quick to implement without subjective choices; (3) being normally
or lognormally distributed, for ease of further calculations; (4)
providing reasonable but not excessive sensitivity to detect
differences between different systems; (5) some degree of
independence from system size; and (6) some degree of
independence from construction method (i.e., method by which
random networks were generated).  

The next step was to correct for the relative influence of network
size (number of nodes) on each metric (Mones et al. 2012, de
Jonge and Schückel 2021). This is necessary as the number of
nodes in a system can influence the behavior of individual nodes
(e.g., Sparrowe et al. 2001). We approached this issue by fitting a
linear regression to a plot of the metric against the number of

nodes within the network and then using the residuals of the linear
regression (i.e., the variance in each metric that was independent
of sample size) in place of the original data for further analysis.
The impact of network size after the adoption of the residuals
was tested using a Pearson correlation test. The relationship to
network size (number of nodes) was weak for PHS (correlation
coefficient = -0.149; p < 0.05) and moderate for modularity
(correlation coefficient = 0.492; p < 0.05).  

To achieve true structural comparability, we also had to correct
for differences in magnitude between the two metrics (given that
the range of PHS is much greater than that of modularity). To
do so, we standardized the residuals using data from the 1,000
Erdős-Rényi (theoretical) networks. The results were re-scaled for
each metric independently, subtracting the mean and dividing by
the standard deviation, to translate metrics to deviation units with
a zero mean. We then compared these results as a two-axis
heterarchy matrix following the updated heterarchy framework
form originally proposed by Cumming (2016) (Fig. 3).

Fig. 3. The heterarchy matrix using PHS (x) and modularity (y)
of the 1,000 theoretical networks (black points). The heterarchy
matrix delineates four quadrants whereby networks that have
both a high PHS and modularity have a coordinated
polycentric structure (top right), those with a low modularity
but high PHS a pyramidal structure (bottom right), those with
both high PHS and modularity a lateral/ flat structure (bottom
left), and those with low PHS but high modularity a laterally
polycentric structure (top left).

Test of Concept Using Real Data
Our approach so far operationalized the heterarchy concept by
plotting theoretical random networks on orthogonal axes. We
next used the same approach to describe the structures of a range
of existing real-world networks, including ecological food webs,
biological networks, social networks, and infrastructure networks
(see Appendix, Table A1.1). The real-world network data were
taken from open-source data repositories such as igraphdata,
networkdata, and the Swedish National Data Service. The
modularity and PHS metrics were calculated, using the same
methodology for the theoretical networks, for each real-world
network (as described in Fig. 2). To correct for the impact of size,
the linear regression of the number of nodes and the metric values
of the theoretical networks were used to predict expected metrics
for each real-world network (based on the number of nodes). The
predicted value was then subtracted from the actual value.  
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The corrected real-world metric values were then standardized
using the mean and standard deviation previously calculated from
the random theoretical networks (i.e., adjusting each real-world
metric based on the counterfactual of a random network) to
directly compare how different real-world networks were on both
axes relative to what might be expected by chance. We chose to
use the random rather than the actual data to correct for size and
magnitude because our approach needed to be robust to
comparing networks that might have arisen through different
mechanisms; corrections using the actual data risk altering these
relative signals. The standardized metric values of the real-world
networks were plotted on the heterarchy matrix as for the
theoretical networks (Fig. 4).

Fig. 4. The heterarchy matrix, using PHS (x) and modularity (y)
including both theoretical and real-world networks. After the
theoretical networks (gray) were used to construct the matrix
(see Fig. 1) a range of real-world networks including food webs
(green), biological (blue), infrastructure (purple) and social
(yellow) networks were plotted onto the dual axes using their
relative PHS and modularity metrics, that were corrected for
the impact of network size and standardized.

We tested for fundamental differences in structure between all
network groups (theoretical, food webs, biological, social and
infrastructure), based on their placement within the heterarchy
matrix. First, we calculated the angle (degrees) of each network
point from the center of the heterarchy matrix. The angle was
calculated clockwise with the positive y-axis being 0° from center.
Second, we calculated the Euclidean distance between all real-
world network points and the center of the heterarchy matrix.
The results were visualized on boxplots, providing insight into
how the structures of the different network groupings relate to
each other. As the angles (degrees) from the center of the
heterarchy matrix were circular data (e.g., values of 350 and 10
are more similar than 250 and 300), a Hermans-Rasson test was
used to determine whether the angles from center (degrees) were
statistically different between the networks used. We used the
average absolute angular distance between all network groups to
compare how far away on average each network group was from
each other.  

We used a Kruskal-Wallis test to determine whether the Euclidean
distance from the center of the heterarchy matrix was statistically
different between different network groups. This non-parametric
test was used as the data variance was found to be unequal. A

Dunn test was then used to determine which network groups were
different from one another.

RESULTS
Analysis of theoretical, randomly generated networks provided
a first proof of concept for our proposed approach. Across a large
sample, metrics were regularly distributed and could be displayed
and potentially compared along axes of compartmentalization
and hierarchical structure. Food webs were present in all four
quadrants but had generally low PHS, with the majority being
found in quadrant four (Figs. 4 and 5). Therefore, according to
the heterarchy measure of network structure, food webs are
somewhat laterally polycentric in comparison with social and
economic networks, not highly hierarchical, and with a varying
degree of modularity. Interestingly, our results show that food
webs were the most similar to the random networks (Figs. 4 and
6). Although social networks were found within three quadrants,
they showed higher PHS values, causing a higher presence in
quadrants one (coordinated polycentric) and two (pyramidal)
(Figs. 4 and 5). Similarly, infrastructure networks were only found
in quadrants one (coordinated polycentric) and two (pyramidal)
(Figs. 4 and 5) with higher PHS values. Biological networks were
only found in quadrants two (pyramidal) and four (laterally
polycentric) (Figs. 4 and 5), suggesting an inverse relationship
between the degree of modularity and hierarchy within biological
networks.

Fig. 5. A boxplot indicating the angle from the centre (degrees)
of the heterarchy matrix of each network group. The angle was
calculated clockwise with the positive y axis being zero degrees
from centre. Zero to 90 degrees delineates the co-ordinated
polycentric (top-right) quadrant, 90 to 180 degrees delineates
the pyramidal (bottom right) quadrant, 180 to 270 degrees
delineates the lateral/ flat (bottom left) quadrant, and 270 to
360 degrees delineated the laterally polycentric (top left)
quadrant.
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Fig. 6. A boxplot indicating the Euclidean distance from the
centre of the heterarchy matrix of each network group.

The real-world networks compared with the random networks
and with each other in several interesting ways. The angle from
center (Fig. 5) was significantly different between network groups
(theoretical, food web, biological, social, and infrastructure;
(Herman-Rasson T = 444.86, p  < 0.05, n = 1,053)), suggesting
that different kinds of networks dominantly fell into particular
quadrants. Network groupings that were found to be on average
more than 90° (i.e., one quadrant) apart from one another were
biological and theoretical networks (105.68°), infrastructure and
theoretical networks (165.83°), food webs and infrastructure
networks (106.1°), and lastly, social and biological networks
(96.02°). As discussed below, these differences appear to make
sense based on what we know about differences in the
fundamental organizing principles of each kind of network,
although the details will take further research to clarify.  

The Euclidean distance (Fig. 6) from the center of the heterarchy
matrix to each network point (Fig. 4) was also significantly
different between network groups (Kruskal-Wallis χ2 = 107.05,
df = 4, p < 0.05, n = 1,053), indicating that network groups fell at
distinct distances from the center of the plot.  

The Dunn test revealed that the Euclidean distances from the
center of the theoretical networks were on average significantly
different (Dunn’s statistic = 3.067; 6.074; 3.075; 6.477, p < 0.05)
from all other network groups (food web, biological, social, and
infrastructure). Thus, real-world networks contained greater
magnitudes of structure than would be expected in randomly
generated Erdős-Rényi networks. In addition, the distance of
infrastructure networks from the center of the plot differed
significantly (Dunn’s statistic = -0.05; 0.147, p < 0.05) from those
observed in both the food webs and the social networks; and the
distance to center was significantly different between food webs
(Dunn’s statistic = 0.14, p < 0.05) and biological networks.

DISCUSSION
Empirical studies have found that real-world networks are seldom
completely random and show clear structural trends (Jeong et al.
2000, Strogatz 2001, Albert and Barabási 2002, Alm and Arkin
2003, Newman 2003, Mones et al. 2012). This generalization was
supported by our results; all real-world networks were statistically
different from random networks in their Euclidean distance from
center. Furthermore, all network groups showed distinct
placement on the heterarchy matrix. This finding is useful to
validate our test of concept as it illustrates that vastly different
networks show a continuum of both lateral and hierarchical
measures.  

For food webs, our results illustrate a relatively low degree of
hierarchical organization. This result matches contemporary
theoretical expectations because the depth of a trophic hierarchy
is limited by energy flow (Pimm 1982, Elton 2001). Losses of
energy at each hierarchical level mean that there is insufficient
energy available to support additional higher layers. Classical
energetics perspectives of pyramidal food webs gloss over the
relevance of interactions within the same level; species richness
at each level presumably reflects non-trophic influences on niche
partitioning (e.g., structural complexity in the environment) and
is only weakly correlated with energy availability (Storch et al.
2018). In addition, many predators have evolved to use multiple
prey sources from the same trophic level, meaning that the
substitutability of nodes within the same level of a food web may
be higher than expected by chance. In all systems, not just food
webs, a rigid hierarchical approach leads to less flexibility in flow
currency, be it energy, information, transport, or genetic
information, making them vulnerable to top-heavy mechanisms
of collapse (Cumming and Peterson 2017). Studies have found
that food webs show increased resilience to overfishing when they
are not strictly hierarchical as commercial fishing disproportionately
removes top predators (Bascompte et al. 2005). Food webs on
either end of the hierarchical x-axis (low PHS Florida Bay wet
season and high PHS Chrystal River Creek) were both estuarine
food webs, which could be a reflection of their highly variable
(hence, far from an energetic equilibrium) abiotic and biotic
estuarine environments (Vinagre and Costa 2014, Tecchio et al
2015).  

Modularity is also known to vary considerably between different
ecological communities, conditional on the nature of energy flows
and perturbations to which the community is subjected to
(Montoya et al. 2015, Takemoto and Kajihara, 2016, Ho et al.
2019). For example, previous work on the Chesapeake Bay food
web showed that the network was separated into distinct pelagic
and benthic communities (Girvan and Newman 2002). Keystone
species also add a degree of modularity by adding “hubs” of
resource use (Albert and Barabási 2002, Krause et al. 2003).
Studies suggest that when food webs form clusters of species, also
known as functional groups, the system as a whole is more resilient
to perturbation (Bascompte et al. 2003, Moody and White 2003,
Stouffer and Bascompte 2011, Cumming 2016). As many species
are performing the same function, if  one were to be removed, it
would enable the continuation of system function, providing
adaptive capacity (Fath et al. 2019).  

Our results for social systems similarly reflect contemporary
human social structures, which use different levels of hierarchical
control to achieve societal outcomes across a range of different
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scales; ecosystems do not have a national or provincial
government, or its equivalent. Previous studies have found that
social networks often demonstrate clear hierarchical
organization (Newman 2003, Ravasz and Barabási 2003).
However, in our study, social networks were shown to be both
pyramidal and laterally polycentric, meaning that the degree of
hierarchy and modularity varied in the examples that were tested.
The social network of Enron email was laterally polycentric,
suggesting that emails within the company were mostly sent
within company departments and not across company
management. In the opposite quadrant (pyramidal), a network
of interactions between preschool children was highly
hierarchical. This could potentially be due to age-based
groupings of the preschool children. With fewer fundamental
energetic limits to network properties, we would expect human
societies to form a more diverse range of possible structures than
ecological networks.  

Social networks can benefit from a reasonably compartmentalized
structure that supports effective in-group collaboration (Bodin
et al. 2006), as very high degrees of lateral connectivity can create
overheads (e.g., increased transaction costs or the transmission
of pathogens). Modularity in social groups creates clusters of
social entities that normally have similar functions and therefore
prompt collaboration (Guimera and Amaral 2005), for example,
in community structures such as fishermen who formed groups
according to the type of equipment used (Alexander et al. 2018).
Conversely, perturbations can be extinguished by a hierarchical
organization as a system can respond with both efficiency and
innovation (Cumming 2016). Preliminary results from our
(albeit small) social network sample suggest that their degree of
lateral collaboration ranges from weak to strong, but their
hierarchical organization is relatively strong in comparison with
biological networks. Mechanisms that are hypothesized to lead
to collapse in pyramidal and coordinated polycentric systems
are top-heavy and mismatch mechanisms (Cumming and
Peterson 2017), which appear to create key vulnerabilities in
social systems.  

The results for infrastructure networks presumably reflect the
underlying differences in the mechanisms that drive their
structures. Our findings again make intuitive sense if  the origins
and development of each kind of network are considered.
Infrastructure networks are often created to channel people or
resources to key locations (the “all roads lead to Rome”
approach), leading initially through preferential attachment to
a more radial structure, like a bicycle wheel, in which the central
node may be particularly dominant. For instance, air travel
networks and power distribution networks are often organized
hierarchically around central hubs belonging to a particular
airline company or power station (Zhang 1996, Zhang and
Zhang 2006), whereas road networks gradually achieve a more
laterally polycentric structure (Xie and Levinson 2007). By
contrast, biological networks are organized by such processes as
energy metabolism, competition, predation, niche differentiation,
and mutualism to form more compartmentalized, interactive
structures (Peterson et al. 1998). Finally, and as our results
indicate, social networks can often be organized more “freely,”
i.e., being less constrained by certain energetic or functional
limitations, although for example there might be cognitive limits
to the number of deeper social relations a person is able to
maintain (Dunbar 1992).  

Biological networks showed a trade-off  between a hierarchical
and laterally connected structure. Hierarchical structure is not
expected in biological networks due the overall aim of reliability
and stability, which results in a high number of feedbacks and
interacting processes (Mones et al. 2012). Modules acting as
functional hubs are a common feature in biological networks,
such as regulatory networks and protein–protein interaction
networks (Alm and Arkin 2003, Ravasz and Barabási 2003). We
found support for this claim in our analysis, with a network of
brain areas and interactions positioned in the laterally polycentric
quadrant.  

Overall, our results also show that the use of two or more axes
against which to quantify network structure as a continuous
variable should be encouraged. Using a single indicator to infer
a system’s structure does not adequately describe the complexity
of real-world systems. Complex real-world networks typically
show degrees of both module clustering and hierarchical
organization (Levin 1992, Ravasz and Barabási 2003, Mones et
al. 2012), as indicated by our results; no example networks were
purely laterally connected or purely hierarchical. The distinct
placement of networks on the orthogonal axes of the heterarchy
matrix highlights the need to incorporate a continuum of network
structures along both axes in future network research, which has
historically involved a strong focus on either top-down or peer-
to-peer controls without incorporating both dimensions together
(Simon 1991, Cumming 2016).  

Our analysis provides a clear demonstration of both the feasibility
and the potential value of combining relatively simple
compartmentalization and hierarchical measures to quantify
heterarchical structure in comparative analyses of complex
systems. The analysis using random networks suggests that
existing measures (modularity and the PHS metric) have suitable
properties for this purpose. Application of the approach to real-
world data permitted us to compare quite different kinds of
networks in an objective manner; identify structural differences
between groups of networks; and reflect on similarities and
differences within our sample. Thus, although this is not yet a
fully developed or widely tested approach, the methods that we
have developed here have considerable potential for use in
hypothesis testing and comparative studies as a way of bringing
together structural observations from different systems both
within and between disciplines.  

Tracking structural changes in heterarchies over time using our
approach has potential value for exploring whether and why
systems shift between different structural quadrants. It is widely
accepted that no single system structure fits all circumstances to
guarantee resilience (Levin 1992, Albert and Barabási 2000,
Cumming 2016, Cumming and Peterson 2017), but the degree to
which system collapse or reorganization are caused by
endogenous or exogenous factors remains unclear. A system is
thought to achieve resilience through a range of internal trade-
offs (Schneider and Kay 1994, Ulanowicz 2009, Cumming 2016,
Folke 2016, Fath et al. 2019). If  a social-ecological system favors
rigid organization, it risks becoming fragile; conversely, by
favoring increased adaptability and redundancy, it could lack the
required efficiency to persist. For example, the degree of lateral
connectivity in ecological networks such as food webs and
predator–prey networks is known to change as a result of climate
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change, due to increased dispersal and generalist species found in
higher temperatures (Bartley et al. 2019, Kortsch et al. 2019,
Pecuchet et al. 2020). Therefore, one would expect the placement
of impacted systems on the heterarchy matrix to change through
time, providing multi-dimensional evidence of the impact of
climate change on system structure.  

For social networks, many factors can drive structural changes
over time. For example, it has been suggested that groups of actors
that maintain collaboration over time will become more prone to
address common problems that are associated with higher risks
and costs (Berardo and Scholz 2010). However, it is also suggested
that when actors jointly address higher-risk problems, they tend
to prefer bonding over bridging structures (Lubell et al. 2014),
although recent research has elaborated that assumption by also
taking overall levels of trust into account (Bodin et al. 2020).
Bonding structures, i.e., when actors form close-knit local
structures among their immediate network peers, can increase
overall compartmentalization (e.g., Bodin and Crona 2009),
whereas bridging structures could indirectly enhance lateral
connectedness and/or the degree of hierarchical organization
(Carlsson and Sandström 2008). Thus, by tracking the evolution
of social networks over time, one could infer different exogenous
and endogenous factors re-shaping the ways in which actors
interact, and how these changes in aggregation could affect key
systemic characteristics of social-ecological systems.  

Tracking heterarchical changes over time may therefore provide
a fruitful avenue for understanding cycles of change and periodic
collapse that have been attributed to growing system rigidity and
a loss of adaptive capacity (Holling 2001). These ideas have often
remained largely conceptual, however, and non-operational for
the purposes of social-ecological research. Analyses of Holling’s
adaptive cycle (Holling 2001) in particular have been largely
qualitative. Our analysis suggests that with sufficient time-series
data across a range of comparable networks, we could more easily
measure structural change within complex systems and relate
observed changes more directly to Holling’s (2001) hypotheses
about the causes of system cycles.  

Reflecting on our approach and test of concept, one suggestion
for future research is to enquire further into alternative null
models that test a fuller range of potential theoretical networks.
In this study, Erdős-Rényi random networks were used as the null
model. The underlying assumptions of the Erdős-Rényi model
add network links incrementally and treat all network links as
being equally likely. Alternative null models could include those
that explicitly account for other mechanisms, such as preferential
attachment (Jeong et al. 2000) that skews the degree distribution,
and/or when investigating social networks: micro-level social
mechanisms like homophily (McPherson et al. 2001),
geographical proximity (Belaire et al. 2011, Alexander et al. 2018,
Jasny et al. 2019), resource access (Jenssen and Koenig 2002,
Calanni et al. 2015), or policy preferences (Matti and Sandström
2011, Ingold and Fischer 2014). For future applications, we would
encourage the adoption of the null model that best describes the
general properties of the systems under consideration. Such
extensions to the framework we provide here would allow the
investigator to more clearly tease out particularities of any study
systems that deviate from what could be expected of a simplified
and “generic” representation of any such system (and also to help

in more precisely identifying and separating generic from specific
characteristics of different types of systems). Benchmarking a
range of real-world networks through time will further help in
clarify any “fuzzy boundaries” by providing reference and
threshold values over a range of contexts, an important step in
bridging the gap between empirical and theoretical research.  

Although we considered the influence of varying network sizes,
we kept the network density constant when generating the random
networks. To maintain a certain density when the network size is
doubled, each node however needs to maintain four times as many
links as they previously had. As there might be inherent
limitations among the systems components to uphold many links
(e.g., the number of prey species a predator is able to effectively
target might differ significantly from the number of social media
contacts a person can maintain), we encourage future applications
also investigating any such scaling effects. Furthermore, some
metrics do not scale well if  the density increases or decreases
substantially, such as degree centralization (Butts 2006).

CONCLUSION
The heterarchy concept acknowledges the complex role of system
structure in social-ecological dynamics and the need to
operationalize approaches to exploring different forms of
regulation and control. The approach that we have outlined here,
while still at a relatively early and potentially over-simplistic stage,
offers the basis for an operational approach to measure changes
in complex system structure and comparing structure between
complex systems. We believe that further developing and
grounding of this kind of approach, such as experimentation with
different metrics, the density of networks and types of networks,
is an essential step toward developing a universal but comparable
and inclusive measure of system structure, with many potentially
exciting and relevant applications in the study of SES stability
and persistence.

Responses to this article can be read online at: 
https://www.ecologyandsociety.org/issues/responses.
php/13551

Data Availability:

The code that supports the findings of this study is openly available
in GitHub repository at https://github.com/amyshurety/Shurety-et-
al.-Heterarchy-Code.
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Appendix 1 

 

Table A1.1: Descriptive information of the real-world networks used. 

 

Open-source 

Repository 

Network Group Network Details  

igraphdata Food Web Bay dry Food web of Florida Bay (dry season) 

igraphdata Food Web Bay wet Food web of Florida Bay (wet season) 

igraphdata Food Web Chesap Food web of Chesapeake  

igraphdata Food Web ChesUp Food web of Chesapeake Upper 

igraphdata Food Web ChesLow Food web of Chesapeake Lower 

igraphdata Food Web ChesMid Food web of Chesapeake Middle 

igraphdata Food Web Chrys C Food web of Chrystal River Creek 

igraphdata Food Web Chrys D Food web of Chrystal River Creek 

igraphdata Food Web Cyp dry Food web of Cypress (dry season) 

igraphdata Food Web Cyp wet Food web of Cypress (wet season) 

igraphdata Food Web Maspal Food web of Charca de Maspalomas 

igraphdata Food Web Mich Food web of Lake Michigan 

igraphdata Food Web Mond Food web of Modego Estuary 

igraphdata Food Web Narra Food web of Narragansett Bay 

igraphdata Food Web Rhode Food web of Rhode River Watershed 

igraphdata Food Web St Marks Food web of St Marks River 

igraphdata Food Web Gram dry Food web of Everglades Graminoids 

(dry season) 

igraphdata Food Web Gram wet Food web of Everglades Graminoids 

(wet season) 

igraphdata Food Web Mang dry Food web of Mangrove Estuary (dry 

season) 

igraphdata Food Web Mang wet Food web of Mangrove Estuary (wet 

season) 

igraphdata Biological Immuno Immunoglobin interaction network 

igraphdata Biological Yeast Yeast protein interaction network 

igraphdata Biological Brain Visuotactile brain areas and 

connections 

networkdata Biological Ants_1 Ant colony 

networkdata Biological Ants_2 Ant colony  

networkdata Biological Protein Protein interactions 

networkdata Biological Meta_Areans Metabolic network of the roundworm 

Caenorhabditis elegans 

networkdata Infrastructure Euro Europe road network  

networkdata Infrastructure USFlights US Flights networks (2010) 

networkdata Infrastructure Chicago Chicago road transportation network 

igraphdata Infrastructure  USAirports US Airport network (2010) 

networkdata Infrastructure  bktecc Interactions in a technical research 

group at a West Virgina University  

networkdata Infrastructure  Covert_16 Network of hyperlinks between 

domestic terrorist group websites 



networkdata Infrastructure  powergrid Network of the USA western states 

power grid 

networkdata Infrastructure  Usa_borders Network of USA bordering 

states 

igraphdata Social Hosp Records of contacts among patients 

and various types of health care 

workers 

networkdata Social Czech Czech corruption  

igraphdata Social EnEmail Enron email network 

igraphdata Social UKFaculty Friendship network of UK university 

faculty 

Swedish 

National Data 

Service 

Social MPNetKVA Kristianstad vattenrik “ Biosphere 

programme 

Swedish 

National Data 

Service 

Social MPNetFABN  “Frontenac Arch” Biosphere 

programme 

Swedish 

National Data 

Service 

Social MPNetGBBR “Georgian Bay” Biosphere 

programme 

Swedish 

National Data 

Service 

Social MPNetOV “Östra Vätternbranterna” Biosphere 

programme 

Swedish 

National Data 

Service 

Social MPNetAHVVF Hjalmaren water council actors 

Swedish 

National Data 

Service 

Social MPNetAMVVF Malaren water council actors 

networkdata Social FT Fishermen Ties 

networkdata Social WR1 Wildfire responders 

networkdata Social Bott Interactions of preschool children  

networkdata Social Arenas_email Email communication network at the 

University Rovira I Virgili 

networkdata Social Highschool_boys Friendships among high School boys 

networkdata Social Dnc_corecipients A network of people who received the 

same email leak.  

networkdata Social ffe_friends Friendships between the French 

financial elite 

networkdata Social Law-cowork Network of corporate law 

partnerships 

networkdata Social sufersb California windsurfer interactions 
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