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Research, part of a Special Feature on Exploring Feedbacks in Coupled Human and Natural Systems (CHANS) 

The effect of reciprocal connections between demographic decision making
and land use on decadal dynamics of population and land-use change
Alexander Zvoleff 1 and Li An 1

ABSTRACT. Although much focus has been given to the study of land use and land cover (LULC) and population change, studies
have tended to focus on relationships in a single direction, for instance, the consequences of changing LULC for population processes,
or the consequences of changing population dynamics for LULC. Given the highly coupled nature of human-environment systems,
we cannot fully understand these systems without considering reciprocal causality, or “feedbacks.” This analysis focuses on the Chitwan
District of south-central Nepal, a high priority conservation area, and seeks to address the question of how feedbacks between land
use and microlevel human decision making impact the decadal time scale dynamics of population and land-use change. It investigates
two feedback loops connecting land use and demographic decision making: agricultural land use – marriage timing; and agricultural
land use – fertility. Marriage is closely tied to land use in Chitwan because new households in Chitwan are established primarily after
marriage. Fertility is connected to land use because of its linkage with population size and future new household formation. However,
prior research in Chitwan has shown that residents of agricultural neighborhoods tend to marry earlier, and to have children sooner
after marriage. Using an agent-based model, we compare model outcomes from scenarios with and without these feedback loops. Our
results indicate that these feedbacks lead to statistically significant differences in population and in land-use outcomes. However, the
sizes of these differences are relatively small in magnitude (less than 8% for the scenarios considered here), even over a 50-year time
scale. These findings are a reminder that CHANS researchers must be careful to consider both effect size and significance when
considering the policy implications of model outcomes.
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INTRODUCTION
Although much focus has been given to the study of land use and
land cover (LULC) and population change, the regression
approaches that are generally used in LULC and population
research are limited by their inability to consider reciprocal
causality, or “feedbacks” (Zvoleff  and An 2014). We define a
feedback here as “when a stimulus is fed back to its origin through
one or a series of interactions.” As anthropogenic influences on
most “natural” ecosystems are likely to increase, understanding
feedbacks between population and environment is critical to
enabling successful management strategies, such as adaptive
management (Liu and Taylor 2002, Folke 2006). In other words,
not only must we consider how changing LULC affects
population, but also how changing population affects LULC. 

The emerging coupled human and natural systems (CHANS)
framework is one approach to conceptualizing these systems while
accounting for feedbacks (Liu et al. 2007, Alberti et al. 2011). The
CHANS framework describes human-environment systems as
nonlinear complex systems. A challenge of dealing with CHANS
is that the processes that determine or affect system dynamics
often operate across a range of spatial, temporal, and
organizational scales. Given these cross-scale interactions, lags
may develop among system responses. Feedbacks between the
environment and human systems may affect system dynamics over
space and time. Understanding the dynamics of CHANS requires
modeling approaches that can incorporate complex couplings
between human and environmental change. 

There is a growing body of literature exploring CHANS at a range
of scales. Acevedo et al. (2008) compared simulation of land-use
change in four study sites, two in the United States and two in
Venezuela, using a modeling framework allowing feedbacks
between land owner’s actions and land cover. Le et al. (2012)

considered the role of feedbacks and adaptation in moderating
land-use transition in Vietnam, finding that the inclusion of
alternative ways of representing learning in LULC models can
substantially affect model results. The role of feedbacks in slowing
or accelerating policy responses to environmental change has also
received attention. Horan et al. (2011) examined how feedbacks
between social and ecological systems may affect regime shifts,
finding that undesirable outcomes can result from management
institutions not responding to feedbacks from ecological systems.
Jarvis et al. (2012:668) argued that feedback links “need to exist
between climate change and societal actions” for policymakers to
limit carbon dioxide emissions. Miller et al. (2012) reviewed the
literature on feedbacks between conservation actions and social
responses, finding that positive feedbacks have thus far been
reported more often than negative feedbacks in social-ecological
systems. Miller et al. (2012), is in accord with the recent review
from Chin et al. (2014:38), which found that more “detailed case
studies,” using interdisciplinary approaches and integrative
methods, are needed to enable researchers to build a general
understanding of feedbacks in these systems. 

CHANS research draws heavily on the extensive literature
connecting population, and LULC change (Lambin et al. 2001,
Carr 2004, de Sherbinin et al. 2007). Migration has been shown
to play a particularly strong role in the dynamics of CHANS.
Research in Latin America has shown that the balance of rural-
rural migration (Carr 2009) and rural-urban migration (Aide and
Grau 2004) can affect deforestation rates. Barbieri et al. (2005),
working in the Northern Ecuadorian Amazon, an area with
limited opportunities for agricultural extensification, found
population growth can cause fragmentation of land plots, both
through “endogenous” demand for land arising from the offspring
of previous settlers, and “exogenous” demand from new in-
migrants. 
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Household-level dynamics also play an important role in
CHANS. Research in the Brazilian Amazon has found that the
type of smallholder farming system at the household level could
be explained in part by household structure (including the size of
the household labor force, and number of dependent elderly or
children), in addition to distance metrics measuring market access
(Walker et al. 2002, Caldas et al. 2007). Working in the Wolong
Nature Reserve, in China, Liu et al. (2003) have shown the
influence of household demographics on the landscape, showing
that changes in the number of persons per household can be an
important determinant of habitat degradation due to household
activities such as fuelwood collection (Liu et al. 2001, Linderman
et al. 2005, Bearer et al. 2008, He et al. 2009). Marriage age, family
size preferences, and the time between marriage and the first birth
(referred to hereafter as “first birth timing”) can also affect land
cover change, with a time lag between the first changes in marriage
age or fertility patterns, and the first observed changes in
landscape-level outcomes (An and Liu 2010). 

VanWey (2003) showed that households in Nang Rong, Thailand
pursued temporary migration as a form of income diversification,
with the size of land holdings affecting the probability of
migration differentially for male and female migrants. Barbieri et
al. (2009) additionally found that community-level context,
including access to road networks, health centers, and schools
affects the balance of rural-rural and rural-urban migration.
Although road networks were found to increase rural-urban
migration, increased road access is also associated with increased
off-farm employment opportunities in rural areas. Increased
access to health services appeared to reduce out-migration
(Barbieri et al. 2009). 

Although much has been learned from these studies on the
connections between population and environment in CHANS (de
Sherbinin et al. 2007), there has been less work to date on the
effects of feedbacks between individual-level decision making and
the environment in these systems. We do not feel this is due to a
lack of recognition in the literature of the important role
feedbacks may play in CHANS, but rather due to the limitations
of commonly used regression approaches that do not allow direct
consideration of reciprocal causation in a single model. The
objective of this analysis is to build on the literature by exploring
the role of feedbacks between land use and population that act
at the individual-level, focusing on a developing rural region
bordering a high priority conservation area. We seek to address
two key questions regarding feedbacks in the Chitwan Valley
CHANS: (1) How are feedbacks between population and land
use (focusing on marriage timing and fertility) manifested at the
individual-level? (2) What is the dynamic effect of reciprocal
connections between land-use change and microlevel human
decision making? 

In this study we investigate two specific feedback loops connecting
land use and demographic decision making. Yabiku (2006a),
working in Chitwan, found that changes in community context
can influence marriage age. In particular, people living in
neighborhoods that are predominantly agricultural tend to marry
sooner than those in other neighborhoods, even when controlling
for other covariates. Ghimire and Hoelter (2007), and Ghimire
and Axinn (2010) also working in Chitwan, found that women in
agricultural neighborhoods also tend to have their first child

sooner after marriage than those in more urban areas (when
controlling for relevant covariates). Rindfuss (1991) showed that
activities in the “demographically dense” young adult years, in
which individuals experience rapid transitions in family,
education, employment, and marital status, are particularly
important determinants of lifetime fertility. Because very few
births occur in Chitwan outside of marriage, the timing of
marriage, and of the first birth after marriage, act as controls on
lifetime fertility.

STUDY SITE
The Chitwan Valley, located in south-central Nepal (Fig. 1), offers
an ideal setting for studying feedbacks between population and
land use. The area was partially deforested in the 1950s to make
way for settlement and agriculture, and the subsequent
eradication of malaria in the area was followed by a rapid increase
in population (Barber et al. 1997). The population of the western
part of the Chitwan District considered here (Chitwan District
itself  extends to the east outside the study area, see Fig. 1) was
approximately 284,939 people as of 2011 (CBS 2012). The valley
is part of the lowland Terai landscape at the foothills of the
Himalayas, is fairly flat, with a mean elevation of 165 m in the
settled area, and is bordered by rivers to the west and north, and
the Chitwan National Park and Barandabar forest (a protected
buffer zone forest) to the south and east, respectively. The national
park and Barandabar forest are both habitat for endangered
species including the Bengal tiger (Panthera tigris tigris) and One-
horned rhinoceros (Rhinoceros unicornis; Carter et al. 2012).

Fig. 1. Overview map of the Chitwan District. CVFS =
Chitwan Valley Family Study.
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Beginning in 1996, the Chitwan Valley Family Study (CVFS) has
tracked land use and demographic data on a sample of the local
population of the valley (Axinn et al. 2011). Through continuing
longitudinal surveys of 1551 sample households (1551 is the
sample size for the original 1996 sample) in 151 sample
neighborhoods in Chitwan, the CVFS has gathered
neighborhood and individual life-history data from periodic in-
depth interviews, and monthly follow-up questionnaires. The
CVFS also produced detailed maps of LULC (with tape measure
and compass) in all sample neighborhoods in 1996, 2001, and
2006. 

How to define measures of community context is a continuing
discussion in the literature (Zvoleff  et al. 2013). Community
context is generally defined by constructing neighborhood
boundaries, within which measures of land cover, social
organizations, or other variables can be defined. The
neighborhoods used in the CVFS were defined by the project prior
to the beginning of CVFS data collection in 1996 (data collection
began in 1997 for the household registry). After determining the
settlement boundaries used in the 1991 Nepal Census, the
researchers defined the neighborhoods within each settlement
through field visits and interviews with residents (Barber et al.
1997). Because the Chitwan Valley is primarily rural,
neighborhoods tend to be well defined. Households in the valley
are often clustered together, and surrounded by agricultural fields.
Irrigation canals and small roads often separate neighborhoods. 

Since February 1997, the CVFS has collected monthly records of
life events (births, deaths, marriages, and migrations) from the
residents of all sample neighborhoods. We use this monthly
dataset in conjunction with three detailed household-level
interviews focusing on household-level consumption and
agriculture conducted in 1996, 2001, and 2006 to parameterize
the models in this paper.

METHODS
To address our two primary research questions on the effect of
feedbacks between demographic change and land use within the
Chitwan Valley CHANS, we use an agent-based model (ABM).
Computer simulations using agent-based models (ABMs) have
proven powerful in many disciplines for the study of complex
systems (Axtell et al. 2002, Parker et al. 2003, Deadman et al.
2004, An et al. 2005, in press, Brown and Robinson 2006, Entwisle
et al. 2008, Evans and Kelley 2008, Walsh et al. 2008, An 2012,
Chen et al. 2012, Zvoleff  and An 2014). ABM is capable of
integrating data from multiple scales, allowing investigation of
CHANS while considering feedbacks, heterogeneity, multiple
equilibria, and unstable dynamics. 

ABMs represent CHANS as a series of interacting components
(or agents) at various levels of hierarchical organization. An ABM
focusing on LULC change, for example, might represent the
actions of, and interactions among, a number of different types
of agents, including person agents, household agents (composed
of individual person agents), neighborhood agents (composed of
household agents), and policy agents (a class representing the
combined influence of policymakers). The structure of ABM
allows researchers to consider the possibility of emergent
phenomena that may arise from lower-level interactions (Liu et
al. 2007, Werner and McNamara 2007, Manson et al. 2012). 

ABM is useful to CHANS analysts because of its ability to
integrate data from multiple spatial, temporal, and/or
organizational scales, to include heterogeneous agents, their
interactions and resulting emergent phenomena, and to be
coupled with cellular models (An et al. 2005, Liu et al. 2007,
Werner and McNamara 2007). Rindfuss et al. (2008) argued that
given the importance of these individual and household-level
decision-making processes in land-use change, ABM is uniquely
positioned to enable the generalization of case study findings.
Usage of ABM in CHANS research continues to increase rapidly.
ABMs have seen much use in LULC change research in particular.
Reviews of ABM in CHANS modeling include Parker et al.
(2003), focusing on LULC change modeling, and An (2012) on
modeling decisions in human-environment systems. Though
representation of feedbacks is a commonly cited strength of ABM
for CHANS research, few studies have explicitly investigated the
effects of feedbacks in CHANS. A recent example is Le et al.
(2012), who used an ABM to explore the role of feedback loops
between human decision making and land-use change in Vietnam,
finding that when adaptation and learning processes are
represented in land-use change models, the resultant feedbacks
can lead to decadal-scale differences in land-use outcomes. 

To extend the literature on feedbacks in CHANS, we use an ABM,
the “Chitwan ABM,” to explore the decadal time scale dynamics
of land use and population change in the Chitwan Valley, while
accounting for feedbacks between agricultural land use, marriage
timing, and first birth timing. With our modeling work we do not
seek to make outright predictions, such as the exact land use
composition of the Chitwan Valley at a specific point in the future,
but rather to characterize the system dynamics under a range of
scenarios, and to better understand the effect of feedbacks
between demographic change and land use. 

Land-use change within the populated area of Chitwan is
occurring primarily because of new building construction (in
accordance with our empirical data and field observations at the
study site, An et al., in press). Marriage is closely tied to land use
in Chitwan because new households in Chitwan are established
primarily after marriage (or after in-migration). Fertility is
connected to land use because, in the confined area in Chitwan
where population cannot expand into the protected areas to the
south or east, a larger population size will tend to require more
private infrastructure, occupying land that was previously under
agriculture. 

Given these linkages between population and land use, we
hypothesize that loss of agricultural land, holding other factors
constant, will lead to delayed marriage, and a delay in the first
birth after marriage. This will act as a negative feedback on further
conversion of agricultural land to new buildings. We will use the
Chitwan ABM to test this hypothesis.

Overview of the Chitwan ABM
ABMs can be difficult to describe in writing. Given the complexity
of ABMs and the many context-specific details that often go into
model construction, a standardized description format is helpful
to ensure that model descriptions are both “understandable and
complete” (Grimm et al. 2010:1). The overview, design concepts,
and details (ODD) framework is one approach that has seen
increasing usage within the ABM community (Grimm et al. 2006,
2010). ODD provides a structured framework for model

http://www.ecologyandsociety.org/vol19/iss2/art31/


Ecology and Society 19(2): 31
http://www.ecologyandsociety.org/vol19/iss2/art31/

description that facilitates evaluation of individual models
(Grimm et al. 2010), and intercomparison among models (An et
al., in press), while also providing sufficient details for other
researchers to allow reproduction of results from existing models.
For applied research in CHANS, there are several key areas not
directly addressed in the original ODD framework: model
verification and validation, sensitivity analysis, and uncertainty
analysis (An et al., in press, Schmolke et al. 2010). For
completeness, we include these components in our ODD
description, following the recommendations advocated by An et
al. (in press). 

For lack of space, we cannot provide a full ODD description of
the model here. In the sections that follow, we give an overview
of the key details of the Chitwan ABM, focusing on the details
relevant to our focus on feedbacks between population and land
use. We refer readers to the supplemental materials in Appendix
1 for a complete ODD model description. The model code is
available online at http://www.openabm.org/model/3640.

Objectives and key assumptions
The Chitwan ABM was constructed to explore the role of
feedbacks between land use and demographic change in
determining decadal scale dynamics of land-use change in the
Chitwan Valley. The model is used as a laboratory for testing the
relative effects of different drivers of demographic and land use
and cover change, and for the exploration of alternative
development scenarios. 

We represented the population of the western Chitwan Valley
using a hierarchical structure of individual people nested within
households, nested within their broader neighborhood (~ 250 m
radius spatial scale). Consistent with past findings from the
literature, we assumed that individual-level decision-making
processes regarding fertility, marriage, and migration were shaped
by neighborhood characteristics, and that neighborhoods that
were close together (in space) were more strongly linked than those
that were more distant (people were likely to establish new
households nearby their old neighborhoods, for example).
Furthermore, and consistent with empirical observations, we
assumed that the dominant land-use change in the settled area of
the valley was land conversion out of agriculture and into the
built environment, and that new household formation was the
major driving force behind this change.

Representation of human agents
The Chitwan ABM simulates a sample of the total population of
the western Chitwan study area. The sample used in the Chitwan
ABM was taken from the respondents of the CVFS. The 1996
CVFS sample included 1551 households out of the 30,838
households resident in Chitwan as of the 1991 census (CBS 1991).
Consistent with past work in Chitwan, the Chitwan ABM
excluded 29 households from very rare ethnic groups from
consideration because there was an insufficient number of
households to establish statistically significant effects for these
groups. Therefore, the final household-level sample size for the
Chitwan ABM was 1522 households. The CVFS household
sample was distributed among 151 neighborhoods spread
throughout Chitwan. 

The Chitwan ABM represented the population of the Chitwan
valley using a multilevel structure mirroring that used in the CVFS

(individuals, households, and neighborhoods) as well as the
observed social context (electrification, existence of nonfamily
organizations or NFOs), and land-use patterns. See Table 1 for
an overview of the agent hierarchy in the Chitwan ABM. The
lowest-level agent in the model was a “person” agent. The person
agent represents a single individual person from the CVFS survey.
The model was initialized with 8245 person agents. Each person
agent had a number of attributes assigned based on the survey
data, e.g., person ID number, age, gender, ethnicity, ID numbers
of direct relatives. Each person agent was in turn assigned to one
of 1522 households, by matching the household ID number of
each individual in the CVFS survey to the appropriate household
ID number in the ABM. Each household had a set of attributes
assigned from empirical data, e.g., household ID number, whether
the household uses any nonwood fuel sources, whether the
household owns any land. Household agents were assigned to one
of 151 neighborhoods, by linking household and neighborhood
ID numbers from the CVFS survey. Neighborhoods, in turn, had
a set of attributes, e.g., neighborhood ID number, land use within
each neighborhood, distance to the nearest school, distance to
the nearest health post, distance to the nearest bus stop, distance
to the nearest market, distance to the nearest employer. For
complete lists of the attributes assigned to each person,
household, and neighborhood agent see Appendix 1 and also the
discussion in An et al. (in press).

Table 1. Agents types in the Chitwan agent-based model. “Parent
agent” is the agent at the next higher level in the hierarchy.

 Agent Type Number of Agents Parent Agent

Person 8245 Household
Household 1522 Neighborhood

Neighborhood 151 Region
Region 1 World

The 151 neighborhoods in the model acted as a set of “windows”
into human-environment interactions within Chitwan. The
decision to pursue this type of windowed ABM was made for
both theoretical and practical reasons. First, the major purpose
of the Chitwan ABM was to explore feedbacks between
population and environment, with a heavy focus on community
context and individual-level variation. For this purpose, a subset
of the data will suffice, the entire population is not required, and
accurate representation of individual characteristics and
community context is important. Second, because the Chitwan
ABM agents were survey based, and were drawn from the
population using a systematic sample, if  we are interested in the
total population of the Chitwan Valley, we can upscale our
findings from our sample to the population level simply by
applying weighting factors to our results according to the
sampling design of the original CVFS survey (see Barber et al.
1997, for details on the CVFS sampling frame). Third, given the
longitudinal demographic and socioeconomic data available
through the CVFS project, we were hesitant to create agents in
our model (using up scaling or resampling), because we might
have lost or diluted the interrelationships between the agents and
agent state variables in our model. Last, a practical concern was
the population size in Chitwan, i.e., 215,000 people in almost
45,000 households by 2001 (CBS 2001), which, given the
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complexity of our model, would slow down the simulation speed
considerably, with little benefit, if  we were to attempt to
incorporate all 215,000 people in the model.

Representation of the landscape
Agricultural land is the predominant land use category within the
cleared area of the study site (occupying greater than 80% of the
total nonforested land area) as of 1996, when the first CVFS
mapping was conducted. The CVFS collected land use data at
three points in time (1996, 2000, and 2007) at the neighborhood-
level. Each neighborhood was mapped by hand, with compasses
and tape measures. The original survey mapped 18 different
classes, for simplicity, and consistency with prior analyses (such
as Yabiku 2006a, Axinn and Ghimire 2007, Ghimire and Hoelter
2007); we collapsed these 18 classes into 5 classes: agricultural
vegetation, nonagricultural vegetation, private buildings, public
buildings, and other (canals, ponds, rivers, silted land, and
undeveloped land). 

Land-use data were collected at the neighborhood level through
the CVFS; individual land parcels were not connected to
individual households, because no unique IDs exist in the
mapping data to match a household plot with its owner. Given
this limitation, the ABM tracks land use at the neighborhood
level. Land use within the model was stored as point data, where
each point was the centroid of a neighborhood. Each point has
a value assigned for the total land area (in hectares) within each
of the five land-use classes. Summary statistics on LULC in the
neighborhoods included in the Chitwan ABM are listed in Table
2.

Table 2. Summary statistics of the five land-use classes as mapped
in 1996, 2000, and 2007 as a part of the Chitwan Valley Family
Study. Listed first in each cell is the land area in hectares (summed
across all neighborhoods) within that class. Listed in parentheses
is the percentage of total land area in each class. Note that the
total changes slightly between years; this is due not to differences
in neighborhood size but rather to the margin of error in the
neighborhood mapping data.

 Class 1996 2000 2007

Agricultural
Vegetation

879.9 ha
(80.0%)

875.6 ha
(79.4%)

854.2 ha
(77.6%)

Nonagricultural
Vegetation

50.2 ha
(4.6%)

35.3 ha
(3.2%)

54.4 ha
(4.9%)

Private Buildings 82.3 ha
(7.5%)

88.4 ha
(8.0%)

94.4 ha
(8.6%)

Public Buildings 59.2 ha
(5.4%)

64.3 ha
(5.8%)

66.9 ha
(6.1%)

Other 28.4 ha
(2.6%)

39.5 ha
(3.6%)

31.2 ha
(2.8%)

Total 1100.1 ha
(100%)

1103.1 ha
(100%)

1101 ha
(100%)

Processes in the model
The Chitwan ABM drew on theory from the literature on the
drivers of LULC change, and on the key determinants of
demographic change, including past studies conducted in
Chitwan. Existing work in Chitwan has shown the influence of
land-use change (such as the prevalence of agriculture in an
individual’s neighborhood) on human behaviors including

fertility (Ghimire and Hoelter 2007, Ghimire and Axinn 2010),
migration (Massey et al. 2010), and marriage (Yabiku 2006a,b).
Drawing on this body of evidence, the Chitwan ABM used
separate submodels to model demographic and land-use change,
allowing for reciprocal causation, whereby changes in land use
can influence human behaviors, which, in turn, determine land
use patterns. 

The model ran with a monthly time step, beginning in February
1997 (the first month of the CVFS household registry data
collection), and ending in December, 2050. A monthly time step
was chosen to match the available data from the CVFS and the
time scale on which the demographic events that we model operate
(see Appendix 2). A series of submodels were run in succession
at each time step (Fig. 2). Each time step began with the fertility
submodel, which has separate procedures for modeling women’s
first children after marriage, and for modeling subsequent births
to women who have already had their first child. The mortality
submodel ran next. The marriage submodel followed, and then
the migration submodel, which allowed in- and out-migration at
the individual and household levels. The last submodels to run
were the divorce submodel and the education submodel.
Landscape change due to new household formation was modeled
in both the marriage and migration submodels (see Appendix 1
for details).

Fig. 2. Process scheduling in the Chitwan agent-based model.

The subset of submodels that apply to a particular person agent
in the model during a given time step was determined by that
agent’s age and, for some submodels, by their marital status,
education status (in or out of school), and sex. If  during a
particular time step an agent did not meet the age, sex, or marital
status requirements for a submodel, that agent would not
experience that submodel. 

To clarify, we can consider a hypothetical person agent to see how
they might experience the submodels seen in Figure 2. The
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increment ages and mortality submodels will be experienced by
this agent for every time step for their entire life (they will always
age, and are always at risk of dying, though the probability of
death varies by age and sex), and the fuelwood usage and demand
submodel applies to all household agents for all time steps. Other
submodels will only apply at particular points during a person
agent’s life course. The marriage submodel will only apply to
unmarried agents after they have reached the minimum marriage
age (default of 15 years old). The divorce submodel will only apply
to married agents. Male person agents will never experience the
fertility submodel. A woman person agent will only experience
the fertility submodel after she has married and reached the
minimum birth age (default of 15 years old), and it will no longer
apply after she reaches her desired number of children or the
maximum birth age (default to 45 years). The migration submodel
applies to all person agents resident in Chitwan that are older
than the minimum age of out-migration (default of 15 years old).
The education submodel only applies to agents older than the
minimum age to start schooling (6 years old) but below their
model-determined final level of education (see Appendix 1 for
more details on the education submodel).

Chitwan ABM model details
To give readers a clearer idea of the structure of the processes and
structure of the Chitwan ABM, we describe the initialization of
the model, and the primary submodels of importance for our
focus in this paper (marriage timing, first birth timing, and land-
use change). For additional details, see Appendix 1.

Initialization
The Chitwan ABM was initialized using household registry and
survey data from the CVFS survey. The number of agents of each
type followed the distribution of the CVFS data. The initial
populations of each of the three primary types of agent (persons,
households, and neighborhoods) were determined by the number
of respondents in the CVFS survey data. The respondents from
the CVFS survey were represented in the model using a one-to-
one mapping.

Submodels
Marriage, fertility, mortality, migration, education, and land-use
change were modeled based on relationships derived from existing
empirical works, and from our analysis of time series data from
the CVFS. We focused in detail here on the marriage, fertility, and
land-use change submodels because these models were central to
our research question in this paper. Additional details on the
remaining submodels, including model coefficients, are available
in Appendix 1. 

The marriage submodel used regression results to parameterize
the marriage process based on a number of covariates. Existing
work in Chitwan has shown that individuals within primarily
agricultural neighborhoods marry sooner than those in primarily
urban neighborhoods, even when controlling for other factors
(Yabiku 2006a). To represent this in the model, the marriage
submodel used regression coefficients derived from a discrete-
time hazard analysis predicting probability of marriage within a
given month (Table 3). The covariates included in the marriage
timing model were chosen based on the work of Yabiku (2006a)
in investigating the effects of land-use change on marriage timing
in Chitwan. See Yabiku (2006a) for more detailed discussion of
this model. 

The regression model used to represent marriage timing in the
Chitwan ABM was rerun for this paper based on the modeling
strategy and controls used in Table 2, model 5 in Yabiku
(2006a:456), to obtain the intercept for the regression equation,
and the values of the monthly dummy variables included in the
model to represent the baseline hazard (these parameters were
estimated, but not published in Yabiku 2006a). Because different
statistical software was used, the regression coefficients presented
here vary slightly from those in the original paper, though the
significance and effect sizes for the coefficients generally agree. 

We converted the regression coefficients to odds ratios
(exponentiated regression coefficients) so that they could be more
easily interpreted (Table 3). An odds ratio greater than one on a
covariate therefore meant that an increase in the covariate would
lead to a decrease in marriage age (by increasing the monthly
probability of marriage). In each time step, the marriage
submodel calculates the monthly probability of marriage for each
eligible individual based on the values of these covariates during
that time step.  

Following the work of Yabiku (2006a), the marriage timing
regression model included the log of agricultural vegetation as a
covariate, to be consistent with theoretical expectations of the
feedback of land-use change on marriage timing. The log scale
represents, for example, the expectation that the transition from
10% to 20% agriculture (a 10% change) would be expected to have
more of an effect on individuals than the transition from, for
example 80% to 90% agriculture (again a 10% change). Although
the magnitude of both these changes is identical, the relative
impact of a doubling of agricultural land use (10% - 20%) would
represent a greater qualitative change in a neighborhood than
going from 80% - 90% agriculture. 

To address our question of the effects of feedbacks on landscape
dynamics, we used two different models of marriage timing in our
experiments: (1) the “full model” including a coefficient linking
change in agricultural vegetation to marriage timing, and (2) the
“reduced model” in which we did not include the agricultural land
use covariate. All other covariates were identical between the two
models. 

To model the marriage process, at the beginning of each time step,
a list was made of all unmarried individuals, both male and
female. The marriage process in the Chitwan began with the model
first running through this list and checking if  each person (male
or female) had reached the minimum marriage age (15), and was
below the maximum marriage age (35, both are empirically
determined). For those meeting these requirements, the
probability of marriage within that time step was calculated for
each individual using whichever of the two marriage models (full
or reduced) had been chosen for the model run. Once this
probability was calculated, a random number was drawn on the
interval of [0, 1], and, if  the number was less than or equal to the
probability of marriage for that individual, the person was added
to a list of individuals to be married in that time step. To model
in-migration through marriage, individuals may marry an in-
migrant with a probability of 0.1, as calculated from the 48
months of the CVFS household registry data. 

Next, males and females within the list were paired up, subject to
the requirement that all individuals marry within their own ethnic
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Table 3. Marriage models (following the work of Yabiku 2006a). Odds-ratios are from a discrete-time event history analysis predicting
monthly hazard of first marriage. Listed in parentheses are the z-scores for each odds-ratio.

 Full Model Reduced model

Odds Ratio p Sig. Odds Ratio p Sig.

Percent neighborhood in agriculture (logged)
 

1.138 0.064 ∙

Nonfamily organizations (min. by foot)
School 1.012 0.138 1.012 0.152
Health post 0.999 0.711 1.000 0.885
Bus stop 1.005 0.282 1.006 0.181
Market 0.999 0.842 1.000 0.902
Employer
 

1.003 0.305 1.004 0.189

Nonfamily activities
Years schooling completed 0.997 0.893 0.995 0.798
Enrolled in school
 

0.669 0.000 *** 0.679 0.001 ***

Month
February 2.904 0.000 *** 2.905 0.000 ***
March 4.847 0.000 *** 4.848 0.000 ***
April 1.430 0.253 1.431 0.253
May 4.603 0.000 *** 4.598 0.000 ***
June 2.261 0.004 ** 2.259 0.004 **
July 2.405 0.002 ** 2.403 0.002 **
August 0.678 0.305 0.679 0.305
September 0.397 0.040 * 0.397 0.040 *
October 0.512 0.105 0.512 0.105
November 0.687 0.320 0.687 0.320
December
 

2.510 0.001 ** 2.510 0.001 **

Female†

 
2.245 0.000 *** 2.241 0.000 ***

Ethnicity‡

Lower Caste Hindu 1.014 0.942 1.009 0.964
Newar 0.786 0.229 0.717 0.089 .
Hill Tibeto-Burmese 1.187 0.256 1.191 0.245
Terai Tibeto-Burmese
 

0.906 0.508 0.907 0.512

Age§ 0.745 0.004 ** 0.742 0.004 **
Age-squared§ -0.014 0.018 * -0.014 0.019 *
Intercept 0.000 0.000 *** 0.000 0.000 ***
Degrees of freedom 42,619 42,620
Residual deviance 4666.9 4670.7
AIC 4720.9 4722.7

Two sided P-values. Significance is coded as: ∙ for P < 0.1, * for P < 0.05, ** for P < 0.01, *** for P < 0.001.
†The odds-ratio for sex is relative to males.
‡The odds-ratios for ethnicity are relative to Upper-caste Hindus.
§For age and age-squared, coefficients are listed rather than odds ratios because for these two covariates odds ratios are not directly interpretable,
for example, age cannot be held constant without varying age-squared.

group. The empirical data shows that spouses tended to be fairly
close in age, with the man tending to be slightly older than the
woman. To account for the expected age differential between
spouses, we used a multinomial logistic regression predicting
spouse age, with sex, age, and ethnicity as the predictors (see
Appendix 1). 

There were three parts to the fertility model in the Chitwan ABM.
First was the determination of a woman’s desired family size.
Second, a submodel was used to model the first birth after
marriage. Third, a separate procedure modeled all subsequent
births, up until a woman’s desired family size was reached (or until

she was no longer married, or died). These models were developed
using empirical data from the CVFS household registry, which
contains monthly records of live births for all individuals in the
survey. 

Desired family size was determined based on the desired family
size reported in the CVFS data. For new agents born into the
model, a desired family size was assigned to each woman at
marriage based on a histogram constructed from the reported
data (see Appendix 1). Although future work may take into
account covariates associated with desired family size, this is not
done at present. 
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Table 4. Models of first birth timing (following the work of Ghimire and Hoelter 2007, Ghimire and Axinn 2010). Odds-ratios are
from a discrete-time event history analysis predicting monthly hazard of first birth. Listed in parentheses are the z-scores for each odds-
ratio.

 Full Model Reduced Model

Odds Ratio p Sig. Odds Ratio p Sig.

Percent neighborhood in agriculture
 

1.006 0.458

Community characteristics
Neighborhood area 0.420 0.428 0.286 0.194
Distance to urban center 1.007 0.548 1.007 0.550
Electricity available 1.298 0.105 1.308 0.094 .
Nonfamily services within a 15-min walk
 

0.996 0.619 0.998 0.778

Controls
Parents’ characteristics 0.968 0.824 0.988 0.933
Mother’s number of children 0.977 0.504 0.976 0.479
Mother’s education 0.922 0.678 0.939 0.743
Mother’s work 0.930 0.686 0.938 0.720
Father’s education 0.874 0.324 0.875 0.325
Father’s work
 

0.721 0.021 * 0.722 0.022 *

Respondent’s ethnicity†

Low Caste Hindu 1.026 0.922 1.019 0.944
Hill Tibeto-Burmese 0.539 0.003 ** 0.537 0.002 **
Newar 0.619 0.210 0.635 0.234
Terai Tibeto-Burmese
 

0.958 0.816 0.956 0.806

Respondent’s marital experiences
Age at first marriage
 

0.968 0.201 0.968 0.201

Marriage duration
Marriage duration before 1997
 

0.994 0.452 0.995 0.484

Marriage duration during obs. period
Married for 1–6 months 11.300 < 0.001 *** 11.311 < 0.001 ***
Married for 7–12 months 7.118 < 0.001 *** 7.141 < 0.001 ***
Married for 13–18 months 5.386 < 0.001 *** 5.387 < 0.001 ***
Married for 19–24 months 3.156 < 0.001 *** 3.175 < 0.001 ***
Married for 25–30 months 1.523 0.236 1.540 0.224
Married for 31–36 months 2.278 0.010 * 2.295 0.010 **
Married for 37–42 months
 

1.300 0.476 1.310 0.463

Educational attainment
4–7 years of schooling 1.621 0.043 * 1.617 0.044 *
8–11 years of schooling 2.345 0.063 ∙ 2.338 0.064 ∙
12 or more years of schooling
 

3.688 0.019 * 3.669 0.020 *

Intercept 0.028 < 0.001 *** 0.022 < 0.001 ***
Degrees of freedom 4679 4680
Residual deviance 1969.7 1970.2
AIC 2025.7 2024.2

Two sided P-values. Significance is coded as: ∙ for P < 0.1, * for P < 0.05, ** for P < 0.01, *** for P < 0.001.
†The odds-ratios for ethnicity are relative to Upper-caste Hindus.

First birth timing was modeled in a similar manner to marriage
timing, by using the results of a regression model to predict the
monthly probability of birth for each eligible woman for each
time step. Following the results of Ghimire and Hoelter (2007)
and Ghimire and Axinn (2010), we used discrete-time event
history analysis to develop a regression model relating a series of
covariates, including agricultural land use at the neighborhood
level, to the monthly odds of a newly married woman having her

first birth (Table 4). See Ghimire and Hoelter (2007) and Ghimire
and Axinn (2010), for more detailed discussion of this regression
model. 

The regression model used in the Chitwan ABM was rerun for
this paper based on the modeling strategy and controls used in
panel A, model 3 in Table 2 in Ghimire and Hoelter (2007:309),
to obtain the intercept for the regression equation (which was not
published in Ghimire and Hoelter 2007). Because different
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Table 5. Parameter values for the three sets of scenarios. For columns 3 and 4, the first number listed in each cell is an odds ratio, and
the number in parentheses is the equivalent coefficient value. The scenario set letters (A-C) are referred to in text and in later figures.

 Scenario set Scenario Type First birth model agricultural vegetation
coefficient

Marriage model agricultural vegetation
coefficient

Baseline Baseline (reduced model) (reduced model)
A

(first birth timing)
Calculated effect 1.0057 (0.0057)

Half effect 1.0028 (0.0028)
Double effect 1.0113 (0.0113)

(reduced model)

B
(marriage timing)

Calculated effect 1.1381 (0.1294)

Half effect 1.0690 (0.0667)
Double effect 1.2761 (0.2438)

(reduced model)

C
(combined)

Calculated effect 1.0057 (0.0057) 1.1381 (0.1294)

Half effect 1.0028 (0.0028) 1.0690 (0.0667)
Double effect 1.0113 (0.0113) 1.2761 (0.2438)

statistical software was used, the regression coefficients used here
vary slightly from those in the original paper, though the
significance and effect sizes for the coefficients generally agree. 

An odds ratio greater than one on a covariate means that an
increase in the covariate will lead to a decrease in first birth timing
(by increasing the monthly probability of a first birth). We also
estimate a reduced model not including the agricultural land use
term (eliminating the land use – first birth timing feedback).
Depending on the ABM scenario, the full or reduced model is
chosen to allow or disallow a connection between agricultural
land-use change and first birth timing. 

At the beginning of each time step, a list was constructed of all
married women who had not yet had their first birth, and who
had a desired family size greater than zero. For each woman, a
probability of first birth in that month was then calculated based
on the values of the model covariates in that month. A random
number was drawn, and if  it was less than the woman’s probability
of first birth, she would have had a first birth in that month. 

Following the first birth, additional births occurred randomly
distributed on the interval of 9-48 months following the previous
birth. The interval was chosen from the empirical histogram of
birth intervals (see Appendix 1). The maximum total number of
births per woman is limited by the woman’s desired family size.
Once a woman is beyond the maximum possible age to give birth
(defined as age 45) or has reached her desired number of children,
she is excluded from the fertility submodel. 

When a new household is constructed in Chitwan, the land area
it occupies is determined from a probability distribution of
household land areas taken from empirical mapping data from
the CVFS. To simulate land use conversion, an amount of land
equal in area to the area of the new household was deducted from
either the agricultural land-use category (preferentially) or the
nonagricultural vegetation land use category (if  insufficient
agricultural land existed) and was added to the private buildings
category of the appropriate neighborhood. The household was
preferentially built in the husband’s parent’s neighborhood. If
there was not enough land available in that neighborhood for this
to happen, the household was located in the closest neighborhood

to the household of the husband’s parents that did have available
land.

Scenario modeling approach
To isolate the spatial and temporal effects of feedbacks between
human decision making and land use, we present three sets of
scenarios in which we vary two key model parameters in a
systematic manner (as seen in Table 5). In the first set of scenarios,
we vary the effect size of the connection between agricultural land
use and first-birth timing (scenario set “A”). Second, we vary the
effect size of the connection between agricultural land use and
marriage timing (scenario set “B”). Third, we vary all three of
these parameters together (scenario set “C”). To give an idea of
the sensitivity of the model to changes in these parameters, we
vary each parameter over a range around the empirically
calculated value: half  the calculated value, the calculated value,
and double the calculated value.  

For comparison with these three sets of scenarios, we ran a
baseline scenario with the reduced models of marriage timing
(Table 3) and first birth timing (Table 4). In the baseline scenario,
agricultural land-use change by definition has no effect on first
birth timing or on marriage timing, so no feedback loop exists.
We eliminated the feedback loop in the baseline scenario in using
the reduced models of first birth timing and marriage timing,
which do not include the agricultural vegetation coefficients. Note
that we did not simply set the coefficients on the agricultural
vegetation covariate to zero because this would lead to an
underestimation of marriage and first birth timing rates, because
of the dependence of the other regression coefficients in the model
on the estimated value of the agricultural vegetation coefficient.
Instead we re-estimated the regression models without including
the agricultural vegetation covariate. 

In scenario sets A-C (Table 5) we varied the coefficients on
agricultural land use in the first birth timing and marriage timing
models to see if  these parameter changes led to any significant
differences in model outcomes when they were compared to those
from the baseline. This approach tests the question of whether
feedbacks between agricultural vegetation, first birth, and
marriage timing affect the outcomes we observed in the model.
We ran the model 40 times for each of the 10 scenarios. We present
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Table 6. Final values of women’s mean first birth time, marriage age, and mean neighborhood percent agricultural vegetation for the
year 2020 and the year 2050 for each of the 10 scenarios outlined in Table 5. Values are the mean values from 40 model runs of each
scenario, ± 1.96 * the standard error of the mean. Values in bold vary significantly from the baseline scenario.

 Scenario set Scenario Type First birth time
(months)

Marriage age
(women only, years)

Agricultural land use
(percentage)

2020 2050 2020 2050 2020 2050
Baseline No effects 17.29

±0.70
18.87
±0.75

20.20
±0.24

20.29
±0.20

48.86
±0.14

26.89
±0.20

A
(first birth timing)

Calculated effect 14.65
±0.52

16.64
±0.61

19.95
±0.20

20.23
±0.26

48.62
±0.15

26.20
±0.20

Half effect 15.12
±0.55

17.42
±0.46

20.08
±0.25

20.26
±0.18

48.62
±0.15

26.28
±0.19

Double effect 13.23
±0.36

17.22
±0.59

19.93
±0.17

20.36
±0.23

48.61
±0.15

25.93
±0.18

B
(marriage timing)

Calculated effect 17.37
±0.56

18.37
±0.63

20.44
±0.23

21.00
±0.29

48.74
±0.15

27.03
±0.22

Half effect 17.32
±0.82

19.19
±0.79

20.92
±0.26

21.25
±0.17

49.41
±0.16

28.53
±0.20

Double effect 17.16
±0.51

18.87
±0.75

19.24
±0.18

20.25
±0.22

48.12
±0.16

25.17
±0.19

C
(combined)

Calculated effect 14.36
±0.39

16.69
±0.59

20.26
±0.20

21.01
±0.25

48.82
±0.12

26.66
±0.18

Half effect 15.57
±0.6

17.17
±0.57

20.74
±0.21

21.42
±0.29

49.44
±0.12

28.39
±0.19

Double effect 13.64
±0.42

16.82
±0.54

19.08
±0.19

20.18
±0.21

48.08
±0.14

24.36
±0.16

the mean values from these runs of three outcome variables from
the model: first birth timing, mean marriage age (women only),
and mean percentage of neighborhood agricultural land use for
2020 and 2050 (Table 6). For the first birth timing and mean
marriage age outcomes, we focused on women in neighborhoods
that were predominantly agricultural (those in the fourth quartile
of neighborhoods based on percentage agricultural cover in
1996), because these women were most likely to be influenced by
any feedbacks of agricultural land-use change. All results stated
to be “statistically significant” are significant at P ≤ 0.05 based on
a two-tailed t-test.

RESULTS
In scenario set A (first birth timing), we examined three different
scenarios including a link between agricultural land use and first
birth timing. The outcome, mean percentage of neighborhood
agricultural land use, was calculated by summing the fraction of
land devoted to agriculture (as a percentage) across all
neighborhoods, and dividing by the total number of
neighborhoods (to get the mean). We used this outcome rather
than change in total land area because it is a better indicator of
changing community context. In all three scenarios, the
percentage of agricultural land remaining in 2050 was
significantly lower than in the baseline scenario, in which no link
exists between agricultural land use and first birth timing.
Agricultural land use declined to 26.20% ±0.20% in the calculated
effect scenario, to 26.28% ±0.19% in the half  effect scenario, and
to 25.93% ±0.18% in the double effect scenario. 

In set B (marriage timing), we varied the size of the coefficient
linking marriage timing and agricultural land use. Again 2050
land use differed significantly from the baseline under all three
scenarios, but in this case the percentage of remaining agricultural
land was higher than the baseline in the calculated effect (27.03%

±0.22%) and half  effect (28.53% ±0.20%) scenarios, and lower
than the baseline in the double effect scenario (25.17% ±0.19%). 

In set C (combined), we varied both parameters together. When
the calculated effect sizes were used in the marriage timing and
first birth timing models, agricultural land use in 2050 (26.66%
±0.18%) did not vary significantly from the baseline. Agricultural
land use in 2050 in set C differed significantly from the baseline
only under the half  effect (28.39% ±0.19%, higher than the
baseline) and double effect (24.36% ±0.16%, lower than the
baseline) scenarios. 

In Figure 3, we plot the total population (left side of Fig. 3) and
the mean percentage neighborhood agricultural land use (right
side of Fig. 3). These figures give a qualitative view of the
dynamics of land-use change over the 53-year model run (see
above for a discussion of the statistical significance of 2020 and
2050 outcomes). Each line of Figure 3 represents the mean value
from 40 model runs. The shaded error bars represent ± 1.96 * the
standard error of the mean of the 40 model runs. 

First, we considered the population outcomes from the three set
of scenarios (left side of Fig. 3). Including the positive effect of
agricultural vegetation (Scenario set A) on first birth timing led
to a significantly higher 2050 population (24,592 in the calculated
effect scenario) compared to the baseline (23,609). Including the
positive effect of agricultural vegetation on marriage timing
(Scenario set B) led to a reduction in population (22,787 in 2050)
compared to the baseline. In the combined scenario (Scenario set
C), we saw a small, but statistically significant, decrease in
population from the baseline (23,461 in 2050). 

Next, we considered the land-use outcomes from the three set of
scenarios (right side of Fig. 3). When we included the positive
effect of agricultural vegetation on first birth timing, we saw little

http://www.ecologyandsociety.org/vol19/iss2/art31/


Ecology and Society 19(2): 31
http://www.ecologyandsociety.org/vol19/iss2/art31/

Fig. 3. Population (left) and agricultural vegetation (right) plotted for the three sets of scenarios over a 53-year
model run (1997-2050).

difference in agricultural land-use change between the baseline,
calculated, half, and double effect scenarios. When we included
the positive effect of agricultural vegetation on marriage timing,

the calculated effect scenario did not vary significantly from the
baseline; however, the half  effect scenario showed a slight decrease
in conversion of agricultural land, while the double effect scenario
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showed a slight increase. In the combined scenarios, we saw large
differences between the double effect and half  effect scenarios,
but little difference between the calculated effect scenario and the
baseline. 

To look in detail at feedbacks between first birth timing and land
use, we plotted the mean number of months from marriage to
first birth for women in predominantly agricultural
neighborhoods, for women from scenario set A (Fig. 4). As
accurate marriage dates were not known for women prior to the
beginning of the model, we focused on women married on or after
the first time step of the model; for this reason the mean first birth
time appeared to rise until about 2001. This is because it takes a
number of time steps for women married on or after the first time
step (February 1997) to begin to experience their first births after
marrying. We see in Figure 4 the effect of including the link
between first birth timing and land use: at the beginning of the
no effect scenario model run, women have their first birth, on
average, 18 months after marriage. Using the calculated effect size
for the first birth timing-land use coefficient leads to a first birth
timing of 15 months. The calculated effect, half  effect, and double
effect scenarios all show steady increases in mean first birth times
throughout the duration of the model run; this is in response to
the effect of agricultural land-use change on first birth timing. As
agricultural land decreases, women begin to delay births.

Fig. 4. First birth timing for women in agricultural
neighborhoods, plotted for the four scenarios in scenario set ‘A.
’

We saw the effect of including the connection between agricultural
land-use change and first birth timing quite clearly; when the
connection is included, land-use change over the course of the

model leads to an increase in first birth times of four months over
the duration of the model run (Fig. 4). Any delay in first births
after marriage decreases the total time a woman is subject to the
fertility model. Therefore this increase in first birth time should
act as a negative feedback on transition of land out of agriculture
by slowing population increase, and therefore slowing new
household formation. However, instead we saw a slight increase
in 2050 population compared to the baseline when the effect was
included, and a resultant very slight increase in conversion of land
out of agriculture. 

Last, we considered the difference in marriage age between the
scenarios in set B, where the effect of agricultural land use on
marriage timing is varied. In Figure 5 we plot the mean marriage
age for women in predominantly agricultural neighborhoods
from scenario set B, for women who reached the earliest possible
marriage age (defined in the model as 15) on or after the first time
step of the model. This ensures that the sample of women shown
in Figure 5 was exposed to the Chitwan ABM marriage model
for the entire time they were eligible for marriage. The rapid rise
in mean marriage age that appeared to occur until 2010 was a by-
product of this restriction, not a real phenomenon in the model.
As expected, under the no effect scenario marriage ages did not
vary over time, and were significantly lower in 2050 than under
the calculated effect scenario. The double calculated effect
scenario showed the lowest initial marriage age, but most rapid
rise over time because of the effect of agricultural land-use change
on marriage timing.

Fig. 5. Mean marriage age for women in predominantly
agricultural neighborhoods, plotted for the four scenarios in
scenario set ‘B.’
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In set B, we saw the effect of including the connection between
agricultural land use and marriage age (Fig. 5). When the
calculated effect size was used, marriage age increased by
approximately a year over the duration of the model run. This
increase should have acted as a negative feedback on agricultural
land transition by directly slowing new household formation, and
indirectly by slowing population increase. As expected, we saw a
slight decline in 2050 population when the effect was included,
and a slight, though not statistically significant, increase in 2050
agricultural land (Fig. 3).

DISCUSSION
The Chitwan ABM integrates social and environmental data to
consider the role of feedbacks between population and
environment in land change. The unusual level of detail in the
demographic components of the model allows us to test the role
of very specific microscale connections (first-birth timing –
agricultural land use and marriage-timing – agricultural land use)
in affecting broader scale land cover change while controlling for
individual, household, and neighborhood level factors that also
influence human decision making. Our results indicate that
feedbacks between agricultural land use and marriage timing and
between agricultural land use and first birth timing lead to
statistically significant differences in population and in land use.
This result confirms that changing microlevel demographic
processes can be significantly linked with broader scale LULC
change (Carr 2004). 

Although the effects of land-use change are clearly present in the
model outcomes they directly affect (first birth timing and
marriage timing) the effects of the hypothesized negative
feedbacks loops between population change and land use is less
clear. Though statistically significant differences exist in model
outcomes between the baseline scenarios not including the
feedback loops and the scenarios including the feedback loops,
the differences are relatively small (differences in observed land
use relative to the baseline ranging from -5.25% to 7.36% over 53
years). This could be due to the outcomes chosen here; for this
paper first birth timing and marriage timing were chosen for the
express purpose of investigating indirect linkages between
decisions and land use. New household formation after marriage
(household fission), as the primary direct determinant of land-
use change in the Chitwan ABM, has a large effect on land use
because of its direct connection to land clearing for new
households. Were potential feedbacks between environmental
change and household fission included in the model, the effect of
the feedbacks would likely be more pronounced. Future work
with the Chitwan ABM could include a direct representation of
fuelwood and fodder collection processes in the Chitwan Valley,
allowing a more direct link between changing demographics,
resource collection practices, and environmental change. 

However, understanding weak feedbacks resulting from indirect
couplings is a continuing challenge in CHANS research (Chin et
al. 2014). The results of this paper suggest that indirect couplings
can result in statistically significant differences in the observed
states of CHANS over sufficiently long (decadal in this case) time
scales. The time lag before differences in land use were observed
between the baseline and feedback scenarios in this analysis is
similar to the findings of Le et al. (2012), who used an ABM to
consider the effects of two different types of adaptation processes

(one reactive, the other a learning process), finding that each
process lead to alternative pathways of land-use change over a
decadal time scale. 

The small size of the difference between the land-use outcomes
in the range of scenarios examined here is perhaps unsurprising
given the small per unit size of the effects of land use change on
marriage and first birth timing in the regression models presented
earlier. In the first birth model, for example, a 1% increase in
agriculture leads to an increase of only 0.6% in the hazard of a
first birth in a given month (Table 4). There are numerous factors
that affect an individual’s decision to have a child, many of which
are represented in the regression model used to parameterize the
ABM presented here. Several of these factors have much larger
effects on marriage or birth timing than does changing
agricultural land use, e.g., marriage duration and education. 

Though the potential exists for weak feedbacks to lead to
significant changes in observed land use outcomes over a
significantly long time scale, when considering regression and
ABM results with the goal of informing policy it is important not
to lose sight of the larger picture. Though we may find noteworthy
couplings within systems, such as the two feedbacks examined
here, if  these feedbacks are weak, their effect on system dynamics
may be dwarfed over long time scales by other feedback processes
and other changes in factors more directly connected to human
and landscape change. In the case of the Chitwan Valley,
increasing access to education and off-farm employment, for
example, could be expected to have larger long time scale effects
on land-use change than the feedbacks we describe here. 

This result should not be taken to mean that weak feedbacks in
general are not important. However, it is a reminder that we must
carefully consider the results of statistical models, including both
effect size and significance, particularly when making policy
recommendations regarding the long time scale dynamics of
population and environment change. Although a regression
model, for example, may reveal a covariate to be a statistically
significant predictor of a given outcome, we must take a holistic
view of the system to evaluate the importance of the covariate in
terms of its effects on the long-term evolution of a system. 

One limitation of this study that must be kept in mind is the
assumption we make that relationships are constant over the 53-
year time span of the model. Changes in local livelihoods due to
increased market access, and the effects of increasing
international migration on the local economy are just two areas
that deserve additional attention. Further studies to allow
demographic processes, such as migration, and livelihood
strategies to vary in response to socioeconomic change are
ongoing. It is also possible that feedbacks could exist between
environmental change and the structure of decision models; as
an area urbanizes, for example, we might expect the effect of land
cover change on fertility decisions to vary in time. Further study
of the effect of allowing variation in the structure of decision
models over time would be a fruitful area for additional research.  

Finally, when interpreting ABM model results the structure of
the ABM and the approach used to parameterize the model must
be taken into account. A particular concern in modeling CHANS
is how to represent human decision-making models (An and
López-Carr 2012). One approach for model parameterization is
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to build a rule-based model, in which, for example, heuristic rules
or preference-based decision models might be used to model agent
behaviors (An 2012). Given our interest in building an empirically
grounded ABM with which to test the effects of empirically
observed relationships, such as the first-birth timing and
marriage-timing feedbacks we explore here, we use a different
approach. In the Chitwan ABM, stochastic process models are
used to model events, with probabilities of event occurrences
determined from statistical analyses of empirical data. We include
in the statistical models covariates selected based on current
theoretical understanding of the processes we model. This
approach allows us to control in each decision model for a range
of covariates that might influence human decisions, allowing us
to isolate and examine particular relationships in the model.

CONCLUSION
To investigate the role of feedbacks between land use and
microscale decision making (marriage timing) on the emergent
dynamics of land use and population, we constructed an ABM
of a CHANS in the Chitwan Valley, Nepal. Prior work has
suggested that land conversion out of agriculture in Chitwan
might act as a negative feedback on future land-use change, by
increasing the time from marriage until the first birth (Ghimire
and Axinn 2010), and by increasing the age of marriage (Yabiku
2006a). Population and land-use outcomes were compared from
a set of 53-year model runs from models run both with and
without inclusion of an effect of land-use change on fertility and
marriage timing. Population and environment researchers have
recognized that connections in CHANS “are not unidirectional
but reciprocal” (de Sherbinin et al. 2007:363). The framework
adopted here enables a direct look at the impact of feedbacks on
decadal scale dynamics of a CHANS. 

Our work concluded that feedbacks between land-use change and
individual-level marriage and fertility decision-making can lead
to significant, though small, differences in model outcomes, with
the mean percent of neighborhood land devoted to agriculture
varying significantly (p < 0.001) from the baseline when feedbacks
are included, from -5.25% lower to 7.36% higher than baseline,
with the size of the difference depending on the calculated effect
size. The small size of these differences should not be taken to
mean that feedbacks in general are not important. However, it is
a reminder that analysts and policy makers must carefully
consider the results of statistical models and ABMs, including
both effect size and significance, particularly when making policy
recommendations regarding the long time scale dynamics of
CHANS. 

The research here focused on two specific couplings: further work
is needed on the dynamic effects of other couplings that have
already been uncovered in the population and environment
literature, such as links between migration and land use and cover
change. Additional consideration is also needed on the effects of
spatially varying relationships in CHANS and on the effects of
alternative decision models that might exist in different groups of
agents, such as in groups defined by ethnicity or educational
background. López-Carr et al. (2012) showed using multilevel
modeling and geographically weighted regression (GWR) that
the direction of relationships between socioeconomic indicators
and land-use change can vary spatially. Similarly, we might expect
the determinants of marriage timing and fertility preferences to
vary depending on household-level livelihood strategies. The

mixed regression models used to parameterize the Chitwan ABM
capture linear relationships between the predictors in the model
and observed marriage timing and fertility decisions; future work
to allow decision models to vary between groups might reveal
further dynamic complexity.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/6243
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Figure A1.1: Process scheduling in the Chitwan ABM. 
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Figure A1.2: Empirically derived histogram of spouse age differences (in years) used to weight 

the probability of a given person agent marrying a particular potential spouse. 
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Figure A1.3: Desired number of children, plotted for male and female respondents, based on 

data from the CVFS. 
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Figure A1.4: Time between births, plotted from survey data from the CVFS. 
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Figure A1.5: Mortality model from the Chitwan ABM. The annual probability of dying is 

empirically derived based on monthly data from the CVFS, and calculated independently for 

males and females in a number of different age groups. 
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Figure A1.6: Empirically derived histogram of individual out-migration times (time from out-

migration until return to Chitwan) in the Chitwan ABM. 
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Figure A1.7: Empirically derived histogram of new household plot sizes (area in sq. m). 
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Table A1.1: Attributes of the 'person' agent type. 

Note that the initial values listed here and in Table A1.2 are the values given to agents that are endogenously 

generated during a model run (for people, through birth or in-migration). The initial values of attributes for person 

agents present in 1997 at the beginning of the model are taken directly from the survey data. Parameters with initial 

 conditional statements are used in the 

ng level of 
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Table A1.2: Attributes of the 'household' agent type. 

From CVFS data Axinn and Ghimire (2007)  
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Table A1.3: Attributes of the 'neighborhood' agent type.  



Appendix 1: Overview, Design Concepts, and Details (ODD) of the Chitwan ABM 

Page 24 of 25 

    

    

    

    

       

     

     

       

-     

-     

-      

-      

       

-      

-     

     

-     

       

 -    

    

    

Table A1.4: Model of local-distant migration (following the work of Massey et al. 2010). 

Odds-ratios are from a discrete time event history analysis predicting monthly hazard of making a move outside of 

the Chitwan Valley. Two sided P-values. Significance is coded as:  for P < 0.1, * for P < .05, ** for P < 0.01, *** 

for P < 0.001. The odds-ratios for ethnicity are relative to Upper-caste Hindus.
 

For month and month-squared 

coefficients are listed rather than odds ratios as for these two covariates odds ratios are not directly interpretable 

(e.g. month cannot be held constant without varying month-squared).  
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Table A1.5: Education model used in the Chitwan ABM. 

The model is derived from analysis of a sample of CVFS data including all individuals aged 25-30 in 1996. Odds-

ratios are from an ordinal logistic regression predicting education level as 0, 0-4, 4-8, 4-11 or >11 years. P-values 

are two-sided. Significance is coded as:  for P < 0.1, * for P < .05, ** for P < 0.01, *** for P < 0.001. n=715, 

pseudo R
2
=.435. The odds-ratios for ethnicity are relative to Upper-caste Hindus. 
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Table A2.1: Time scales of data collection for the three key CVFS datasets used to parameterize the Chitwan 

ABM. 
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