Appendix 1. Governing equations and parameters used to calculate production possibility frontiers (PPFs) in Figure 3, which provides a stylized representation of the tradeoffs between agricultural production and species richness at the national scale, and at local scales within 3 different ecological regions, in Mexico.

General species-area and agricultural production-area functions

The trade-off between the biodiversity or species richness (S) that can be sustained from land area in natural habitat (A_H) on the one hand, and the agricultural production (P) that can be derived from land area dedicated to crops (A_C) can be expressed mathematically as follows: The total land area (A_T) under consideration can be partitioned between habitat (A_H) and crop (A_C) production such that

$$A_T = A_H + A_C. (A1.1)$$

Both species richness and agricultural production are a function of area such that

$$S = \alpha A_{H^z} \tag{A1.2}$$

$$P = \beta A_C, \tag{A1.3}$$

where z is the slope of the log-log relationship between S and A_H , α is a constant (y-intercept) and β is the crop yield per unit area. The relationship between species richness (S) and agricultural production (P) can thus be written as:

$$S = \alpha (1 - P/\beta)^{z} \tag{A1.4}$$

Calculations of stylized PPFs for Figure 3

Figure 3 provides an example of an aggregated land area, in this case the country of Mexico, that is subdivided into three regions (i=1,2,3), each of which has different biophysical capacities to support agriculture and biodiversity. The full spatial extent of the aggregated region, A_T , is set to unity; m_i is the fraction of total land area apportioned to the regional subdivision i, and these values also sum to unity.

$$m_1 + m_2 + m_3 = A_T = 1$$
 (A1.5)

The regional-level coefficient α_i is the y-intercept log-log species-area relationship for region i, and influences the total number of species that can accumulate in a given area of land in that region; z_i is the slope of the log-log species-area relationship for region i.

Crop area, A_{Ci} , for each region i is the total land area less the area conserved as habitat for biodiversity A_{Hi} ,

$$A_{Ci} = m_i - A_{Hi} \tag{A1.6}$$

and total crop area for the aggregated regions, rearranged from (A1.1) is $A_{CT} = A_T - A_{HT}$.

Each region has a different capacity to produce food, determined by the coefficient, β_i . Total crop productivity at the aggregate national scale, P_T , can be written as

$$P_{T} = \beta_{1} A_{C1} + \beta_{2} A_{C2} + \beta_{3} A_{C3}$$

$$P_{T} = \Sigma \left[\beta_{i} A_{ci} \right]$$
(A1.7)

Each region has a different capacity for maintaining species diversity, determined by parameters α_i and z_i . The total number of species (S_T) that can accumulate in the nation if all land is conserved as habitat for biodiversity is the sum of each parcel:

$$S_{T} = \partial_{1} \left(m_{1} A_{H} \right)^{z_{1}} + \partial_{2} \left(m_{2} A_{H} \right)^{z_{2}} + \partial_{3} \left(m_{3} A_{H} \right)^{z_{3}}$$

$$S_{T} = S_{\tilde{e}}^{\dot{e}} \partial_{i} \left(m_{i} A_{H} \right)^{z_{i}} \dot{U}$$
(A1.8)

Table A1.1: Parameters used to simulate three distinct ecological regions (i=1,2,3) and generate PPFs in Figure 3.

Region (i)	Region label	$lpha_i$	Z_i	eta_i	m_i
	in Figure 3				
1	A	20	0.3	10	0.25
2	В	10	0.26	15	0.35
3	С	5	0.27	20	0.4

R-code to run the example shown in the paper can be found at https://github.com/cavender/Trade-offs.