
Appendix 2. Summary of dataset in Eitzel et al. (2020) and description of statistical models used
in sensitivity analysis of average annual harvest. 

Summary of model parameter sweep dataset

In our parameter sweeps conducted in Eitzel et al. (2020), we ran a total of 499,200 simulations.  
Below are the distributions of both response variables (average annual harvest and persistence) 
and the predictor variables (categorical management interventions and rainfall scenarios, 
continuous management interventions, and continuous underlying variables that had been 
perturbed by 5% above and below their stated values).  For results in this paper that use more 
than one set of simulations with persistence thresholds chosen randomly between biological and 
Muonde-determined minima, the predictor variables are distributed in the same way (just 
multiplied 10 times in frequency), so only one version is reported.  For the response variables, 
see below for both versions.

Persistence (response variable)

Of the 499,200 runs in our analysis, 136,548 (27%) of runs persisted for 60 model years (using 
the biologically minimal thresholds, as in Eitzel et al. 2020).

When we allow thresholds to vary randomly between biological and Muonde-determined 
minima randomly in each of the 499,200 runs (a global sensitivity test of the thresholds), and 
then follow this procedure 10 times (creating 10 different versions of the model outputs), only 
26,468 of the 4,992,000 runs persisted all 60 years (0.5%).



Average annual harvest (response variable)

Figure A2.1: Average annual harvest distribution (for biologically minimal persistence 
thresholds), all data (left) and data from only models which lasted for at least a year, making an 
average harvest more meaningful (left).

Figure A2.2: Average annual harvest distribution (for the 10 different model datasets with 
randomly selected persistence thresholds), all data (left) and data from only models which lasted 
for at least a year, making an average harvest more meaningful (left).



Categorical rainfall scenarios (predictor variables)

Out of all the simulations, the rainfall scenarios were distributed as follows:

Table A2.1: Runs were evenly distributed between different rainfall scenarios using NetLogo’s 
BehaviorSpace tool.  “Constant” has fewer runs because subsidy interventions are never used.

Constant Extreme Historical Random Statistical-
extreme

Statistical-
random

19200 96000 96000 96000 96000 96000

(Note that the present paper only uses results from the “Historical” and “Statistical-extreme” 
(high-variation) rainfall scenarios.)

Categorical management variables (predictor variables)

Out of all the simulations, the categorical management variables were distributed as follows:

Table A2.2: Runs were evenly distributed between different management interventions

Subsidize Cows Move Cows Stone Walls Preserve 
Forest

Crop 
Innovations

Store Grain

Feed 70%:            96000
Feed all:               96000
Transport 70%:    96000
Transport all:       96000
No Subsidy:       115200

Yes: 249600
No:  249600

Yes: 249600
No:  249600

Yes: 249600
No:  249600

Yes: 249600
No:  249600

Yes: 249600
No:  249600



Continuous management variables (predictor variables)

Figure A2.3: Distribution of proportion-crops variable; this variable ranged up to 97%, hence 
the short bar at 100.

Figure A2.4: Distribution of Moran’s I (top left), Geary’s C (top right), Crop cluster size in 
hectares (bottom left), and total perimeter of the “crop” class (bottom right).



Underlying variables (predictor variables)

Figure A2.5: Distributions of underlying parameters, which were perturbed by 5% above and 
below their stated values.



Statistical sensitivity analysis: Generalized Additive Models (GAMs) of average annual 
harvest

We used statistical models to compare the relative impacts of different variables while 
controlling for the others, focusing on effect size rather than exclusively on significance.  With a 
simulation model, the sample size (number of model runs) can be increased to an arbitrarily large
number so statistical significance has less meaning.  We assume statistical distributions only for 
the response variables.  Many of our simulations had cows, woodland, or harvest below one of 
the thresholds after the five-year intitialization period (31% of our runs), leading to runs that 
lasted zero years.  The distribution of average annual harvest was therefore zero-inflated, and we 
used a Tweedie distribution in the GAM estimation process.  These distributions are appropriate 
for zero-inflated, semi-continuous distribution like our harvest variable (Tweedie 1984, 
Jorgensen 1997).  The Tweedie power parameter p was estimated to be 1.788 (between 1 and 2, 
as expected for a distribution with a point mass at zero and continuous positive values 
otherwise).  

We used GAMs in the “mgcv” package (Wood 2017) in R to test the sensitivity of persistence 
and average annual harvest to underlying parameters, rainfall scenarios, and management 
variables.  We chose generalized statistical models because the outcome variables are not 
normally distributed and additive models using smoothing splines because our proportion-crops 
and spatial configuration variable varied over a wide range of values and a local linear 
assumption was not appropriate.  To represent spatial configuration, we used Moran’s I (Moran 
1950) because it is a classic landscape ecology indicator used to represent spatial diversity, and 
was least correlated with the proportion-crops of the variables we calculated (see above in Figure
A2.4 for distributions of other spatial configuration variables).  

For sensitivity testing of underlying variables, we used a local linear approximation.  We also 
centered and scaled each of the continuous variables to enhance comparability of parameter 
estimates and interpretability of the overall model intercept.  For the discrete management 
variables and rainfall scenarios, we used categorical factors.  For our outcome variables, we 
report untransformed parameter estimates in order to compare the magnitude of different model 
parameters’ influence on model results, but also discuss transformed parameters using the log 
link.  Note that all parameters significant at the p<0.05 level are highlighted in bold text.  The 
above analysis is the same as was used in Eitzel et al. (2020) for persistence, with the exception 
of the Tweedie distribution (for annual harvest) as opposed to a binomial/Bernoulli distribution 
(for persistence).

Average annualized harvest response variable GAMs

Transformed estimates have had the model intercept added to the estimate before transformation,
so annual harvest for that management intervention, rainfall scenario, or underlying variable can 
be compared with the intercept for the base case with constant rainfall, no management 



interventions, and average values of all continuous variables (0.776, an annual harvest of 2.173 
metric tons, p<<0.01).

Note that this appendix uses the names for variables from the NetLogo code; see Eitzel et al. 
(2018) for definitions.

Table A2.3: Rainfall Scenario parameter estimates for the average annual harvest model (t 
statistic = 320.22, df = 5, p<<0.01).

Rainfall Scenario Estimate

Transformed
Estimate

(metric tons)

historical -0.236  1.716

statistical-random -0.287 1.632

random -0.289 1.627

extreme -0.355 1.524

statistical-extreme -0.418 1.431

Table A2.4: Management Intervention parameter estimates for the average annual harvest model.
See Figure A2.6 for the functional forms for proportion crops and Moran’s I.

Management Intervention Estimate

Transformed
Estimate
(metric tons)

Degrees of 
Freedom t Statistic p-value

s(proportion.crops) (Fig A2.1) 8.990† 36376‡ 0.00

s(morans.i) (Fig A2.1) 8.993† 1369‡ 0.00

how.long.to.store.grain3 1.207 7.268 1 80131 0.00

muonde.projects10 0.2055 2.669 1 2360.5 0.00

subsidy.proportiontransport-0.7 0.07572 2.344 4 62.571 0.00

subsidy.proportiontransport-1 0.05584 2.298 4 62.571 0.00

invincible.fencestrue 0.055 2.296 1 169.08 0.00

subsidy.proportionfeed-0.7 0.02644 2.232 4 62.571 0.00

subsidy.proportionfeed-1 -0.01664 2.138 4 62.571 0.00

key.resources10 -0.2007 1.778 1 2251.5 0.00

times.per.day.farmers.move.cows1 -0.7359 1.042 1 30012 0.00
†df is ‘effective df’, reference df 9.000
‡F-statistic



Figure A2.6: Smooth functions of proportion-crops and Moran’s I from the average annual 
harvest model.

Table A2.5: Underlying variable parameter estimates for average annual harvest model.

Underlying variable Estimate

Transformed
Estimate

(metric tons)
Degrees of

Freedom t Statistic p-value

crop.growth.slope 0.034 1.069 1 251.18 0.00

livestock.not.reproduction.rate.per.year 0.025 1.061 1 144.33 0.00

muonde.efficiency 0.018 1.053 1 71.25 0.00

cow.maintenance.energy.rate 0.009 1.044 1 19.305 0.00

cow.working.energy.per.hour 0.005 1.040 1 6.5545 0.01

total.mud.crop.perimeter 0.005 1.039 1 5.9519 0.01

termite.activity 0.003 1.038 1 2.4822 0.12

kcal.per.kg.of.cow 0.003 1.038 1 2.4752 0.12

hours.to.plough.ha 0.002 1.037 1 1.3486 0.25

min.cow.mass 0.002 1.037 1 1.2402 0.27

max.cow.mass 0.002 1.036 1 0.66224 0.42

production.efficiency 0.001 1.035 1 0.33075 0.57

catabolism.efficiency -0.001 1.033 1 0.081553 0.78

wood.to.build.fence.per.meter -0.002 1.032 1 0.55755 0.46

calf.birth.mass -0.003 1.031 1 1.6416 0.20

kcal.per.kg.of.crop -0.003 1.031 1 1.9649 0.16

kcal.per.kg.of.browse -0.006 1.028 1 6.8944 0.01

woodland.growth.slope -0.019 1.015 1 81.558 0.00

zero.crop.growth.intercept -0.021 1.012 1 102.12 0.00



We note that for the biologically minimal persistence thresholds, sensitivity analysis of the 
average annual harvest had different significant underlying biomass-related variables than the 
persistence variable did (compare with Eitzel et al. 2020), and more of them (12 were significant 
as opposed to 10 for the sustainability model), but were still mostly smaller in magnitude than 
the rainfall scenarios and management interventions (except storing grain).
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