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Combining biophysical optimization with economic preference analysis for
agricultural land-use allocation
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ABSTRACT. Agricultural production provides food, feed, and renewable energy, generates economic profits, and contributes to social
welfare in many ways. However, intensive farming is one of the biggest threats to biodiversity. Although current market forces and
regulations such as the European Union’s Common Agricultural Policy, seem to foster agricultural intensification, a socially and
ecologically optimal land-use strategy should seek to reconcile agricultural production with biodiversity conservation. Research on
spatial land-use allocation lacks studies that consider both aspects simultaneously. Therefore, we developed a method that finds land-
use strategies with a maximum contribution to social welfare, taking into account the landscape’s biophysical potential. We applied a
multiobjective optimization algorithm that identified landscape configurations that maximize agricultural production and biodiversity
based on their contribution to social welfare. Social welfare was approximated by the profit contribution of agricultural production
and society’s willingness to pay for biodiversity. The algorithm simultaneously evaluated the biophysical outcomes of different land
uses using the Soil and Water Assessment Tool (SWAT) and a biodiversity model. The method was applied to an agricultural landscape
in central Germany. The results show that, in this area, overall social welfare can be increased compared to the status quo if  both social
benefits from biodiversity and economic profits from agricultural production are considered in land-use allocation. Further, the resulting
optimal solutions can create win-win situations between the two, usually conflicting, objectives. The integration of preference
information into the biophysical optimization allows reducing the usually large set of Pareto-optimal solutions and thus facilitates
further stakeholder-based analyses. Our explorative study provides an example of how socioeconomic data and biophysical models
can be combined to support decision making and the development of land-use policies.

Key Words: agricultural production; biodiversity; multiobjective optimization; Pareto frontier; preferences; social welfare; trade-offs;
willingness to pay

INTRODUCTION
Traditional land uses have been shaping the European
countryside for millennia. They have created a diversity of
cultural landscapes that has fostered biodiversity (Vos and
Meekes 1999, Plieninger et al. 2006). Today, European
agrobiodiversity is considered a valuable resource that needs to
be protected (European Learning Network on Functional
Agrobiodiversity 2012). However, in the mid-20th century,
agricultural production became more intensive and has since led
to a dramatic and still ongoing decline in biodiversity (Donald et
al. 2001, Beckmann et al. 2019). Farmland birds, which are
commonly used as an indicator for biodiversity in agricultural
areas, have seen the highest decrease in population sizes compared
to other bird species (Inger et al. 2015). In Germany, for instance,
one reason for the decline in open-land bird species is the loss of
grassland. Additionally, large fields and fast-growing, tall-
statured crops hinder ground-breeding birds during the breeding
season, and the use of pesticides reduces the available food
(Hötker et al. 2014). Although agricultural production is
considered one of the biggest threats to biodiversity (Behrman et
al. 2015), it also provides food and economic benefits to humans.
However, biodiversity is an important factor for the proper
functioning of various ecosystem services (ESS), particularly for
agricultural production (European Learning Network on
Functional Agrobiodiversity 2012). One of the most prominent
ESS examples is pollination (Hass et al. 2018). A high level of
species diversity in agricultural systems also enhances resistance

to pests, adaptability to changes in the system, and resilience.
These functions are of special importance in the face of climate
change and the resulting climate variability (Frison et al. 2011).  

Because of the conflicting societal demands on land for
agricultural production and biodiversity, it is of growing interest
to find land-use strategies that enhance landscape multifunctionality
(i.e., the provision of multiple ESS within a landscape) and
heterogeneity (e.g., diversity of habitat types, arrangement of
habitat patches; Hass et al. 2018, Hölting et al. 2019) so that
landscapes are used and shaped in a way that reconciles ecological
and socioeconomic objectives. So far, only a few land-use
optimization studies simultaneously take into account
biodiversity and socioeconomic aspects (see, for example, Polasky
et al. 2008, Butsic and Kuemmerle 2015, Verhagen et al. 2018).
Cavender-Bares et al. (2015) emphasize that for managing social-
ecological systems, it is necessary to understand both the
biophysical trade-offs between different ESS and how these ESS
contribute to the well-being of different stakeholders. Analyzing
trade-offs between ESS helps in finding ecologically meaningful
land uses and land-use allocations. These analyses are often done
by applying multiobjective optimization methods that lead to a
whole set of “optimal” land-use allocation strategies (Kaim et al.
2018). To find applicable solutions for real-world implementation,
stakeholders are increasingly involved in the decision-making
process (Memmah et al. 2015, Lienhoop and Schröter-Schlaack
2018). Stakeholder inclusion can be achieved by considering their
preferences at different stages of the optimization, for example,
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Fig. 1. Methodological framework for the analysis. The biophysical models for agricultural production
and biodiversity are coupled with their respective willingness to pay (WTP) and interact with the
optimization algorithm. From the resulting set of nondominated solutions (Pareto frontier), the
solution with the highest sum of both WTP categories creates the highest contribution to social welfare,
taking into account the biophysical potential of the landscape.

with previous weight setting, interactive and iterative adjusting of
objective functions and constraints, and by applying methods from
the field of multiattribute decision-making afterward (for more
information, see Kaim et al. 2018). A similar approach has been
put forward by Cavender-Bares et al. (2015), who present an
ecological-economic framework that combines utility functions of
different stakeholders (indifference curves) with the biophysical
Pareto frontier. They illustrate the method by giving an example
that identifies land-use strategies for agricultural production and
biodiversity that are most desirable for stakeholders (see also King
et al. 2015).  

Here, we develop an approach that combines methods from
ecology and economics with multiobjective optimization. In
contrast to Cavender-Bares et al. (2015), we use preference
information (willingness to pay for biodiversity and contribution
margins for agricultural production) directly within the
optimization process, instead of using utility functions after the
optimization. This way, the applied algorithm identifies optimal
land-use strategies that maximize social welfare (i.e., an aggregate
monetary measure of preference satisfaction), given the available
preference information, while simultaneously taking into account
the biophysical potential of the landscape. As a proof of our
concept, we demonstrate a simplified real-world application of the
method to a river basin in central Germany.  

We next define social welfare for the purposes of this study and
explain how we approximate. We then provide insight into the
optimization process and the calculation of a final optimal
solution. Finally, we present the application of our method to a
case study area and discuss the results.

METHODS
Our approach combines biophysical optimization with preference
information, following the economic concept of social welfare.
Social welfare is an aggregate function of individual welfares, i.e.,
expressions of “the value [each individual] attaches to his personal
circumstances in a social state” (Dasgupta 2001:14). It is an
aggregate measure of preference satisfaction, including
preferences for ecosystem services and biodiversity (Millennium
Ecosystem Assessment 2005).  

Here, we focus on the contributions of agricultural production and
biodiversity to social welfare. We approximate social welfare by

combining aggregate willingness to pay (WTP) for biodiversity
and contribution margins for agricultural production. Both
factors are measures of opportunity costs of the two goods in
question (biodiversity and agricultural production).  

In the methodological framework of our analysis (Fig. 1),
agricultural production and the level of biodiversity are both
modeled by means of biophysical models and linked to the
respective WTP. This information is then passed on to an
optimization tool that evaluates different land-use configurations.
The result is a set of mathematically optimal land-use
configurations (Pareto frontier; see Methods: Optimization for a
detailed definition). For each point on the frontier, i.e., each
specific land-use strategy, we calculate its contribution to social
welfare by summing the respective WTP for both objectives.
Consequently, the land-use strategy with the highest sum is the
solution with the maximum contribution to social welfare.

Modeling social welfare
We next describe the details of how the contributions of
agricultural production and biodiversity to social welfare are
modeled by combining the respective biophysical models with
socioeconomic data (yellow and green boxes in Fig. 1).

Social value of agricultural production
We model agricultural production using the Soil and Water
Assessment Tool (SWAT; Arnold and Fohrer 2005). For the
simulation period from 1995 to 2009, SWAT calculates the annual
amount of harvested biomass for each potential land-use type in
each hydrological response unit (HRU; i.e., the smallest spatial
model unit defined as a unique combination of soil type and land
use per sub-basin). Information on model input data and
performance is provided in Appendix 1. The social value of
agricultural production (an approximation of the WTP for it) is
assumed to equal the annual contribution margin (€/ha) averaged
over each HRU and the entire simulation period. HRU-level
contribution margins are estimated by multiplying the simulated
biomass yield by crop-specific market prices less the variable costs,
e.g., for field activities and fertilizer, as obtained from standard
agronomic data of the Association for Technology and Structures
in Agriculture (KTBL: http://www.ktbl.de/). Subsequently, this
information is transferred to a look-up table (for code and input
data see Jungandreas et al. 2020). It should be taken into account
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that, because of the focus on agricultural landscapes, we do not
consider any contribution margins for forest.

Social value of biodiversity
To estimate the social value of biodiversity for a specific
landscape, it is first necessary to derive the level of biodiversity
in the area. We use a bird habitat suitability model and then
combine its output, a bird habitat index, with the WTP for the
respective biodiversity level. To describe the relationship between
different values of this bird indicator with the respectively
changing WTP, we developed WTP functions for biodiversity.
These functions are also used in the optimization process to
evaluate the social value of biodiversity for changing landscapes.

We apply a biodiversity model that has been developed by Anne
Jungandreas in the context of the project “Towards
multifunctional agricultural landscapes in Europe - TALE”
(https://www.ufz.de/tale/). The model has been tested for the
Middle Mulde River basin in Germany, of which the case study
area is a sub-basin (see Methods: Application). More information
about the model can be found on the TALE learning environment
(http://tale.environmentalgeography.nl/wp2-indicators-and-models/)
and in the presentation by Jungandreas et al. (http://tale.
environmentalgeography.nl/wp-content/uploads/2020/03/
Gfo2018_JungandreasA.pdf). Furthermore, the model, as used
here, is available on GitHub (see Jungandreas et al. 2020). The
biodiversity model calculates an index based on the percent
change in suitable habitat for different bird species compared to
the initial land use of the respective area (in our case, the status
quo). For each species, it runs a random forest model that is driven
by spatially distributed data on land use and land cover, climate,
and soil. We selected nine Red List bird species (Table 1) assuming
that the habitat suitability for these species is positively linked to
the habitat suitability of more common birds with similar
requirements. For the status quo, the indicator always returns a
value of 1 because it serves as a reference for the change in suitable
habitat for different land uses. Thus, if  the land use changed and
the model returns an indicator value that is > 1 (e.g., 1.3), the
amount of suitable habitat increased (by 30%) compared to the
initial land use; if  the indicator value is < 1 (e.g., 0.8), suitable
habitat decreased (by 20%).

Table 1. Red List bird species considered in the biodiversity model.
 

Common name Scientific name

Whinchat Saxicola rubetra
Western Jackdaw Coloeus monedula
Common Kingfisher Alcedo atthis
Common Redstart Phoenicurus phoenicurus
Crested Lark Galerida cristata
Wood Lark Lullula arborea
Northern Lapwing Vanellus vanellus
Barn Owl Tyto alba
Northern Wheatear Oenanthe oenanthe

We obtained data about WTP for biodiversity in Germany from
the study by Hirschfeld et al. (2021). In 2013, they carried out a
choice experiment as part of a population survey with citizens
from across Germany. In total, 8800 questionnaires were

completed. The study was considered representative; only salary
and education level of respondents were slightly above average.
In the survey, respondents could select from among scenarios that
described how the landscape should develop within a 15 km radius
of their area of residence. These scenarios included various
landscape features such as “share of forest in the landscape”, “size
of fields and forests”, “share of corn production in agricultural
crop land”, etc., that were considered cultural ecosystem services.
Additionally, they included two biodiversity features:
“biodiversity in forests” and “biodiversity on agricultural land”.

The results were used to identify the individual WTP for the
different features, of which we used only WTP for biodiversity on
agricultural land. These monetary values were defined as a yearly
financial contribution to a landscape fund. Changes in
biodiversity that the respondents had to evaluate were expressed
by means of a bird indicator developed by the Federal Agency
for Nature Conservation (Bundesamt für Naturschutz - BfN;
Dröschmeister and Sukopp 2009, German Government 2017).
This indicator uses birds as an umbrella species for overall
biodiversity (plants and animals) for different landscape types.
The biodiversity level is evaluated using a scoring scale: A score
of 100 points serves as a reference value for the desired level of
biodiversity. Thus, if  an area gets a score ≥ 100 points, it is deemed
particularly suitable for typical animal and plant species. In
Hirschfeld et al. (2021), the status quo indicator value was
assumed to be 65, according to the indicator values for
agricultural landscapes by the BfN. The results of the choice
experiment showed that people were willing to pay 22 € person−1 
yr−1 and 53 € person−1 yr−1 to reach a score of 85 and 105 points,
respectively.  

Because Jungandreas’ bird model is applied in the optimization
(see Methods: Optimization), the bird indicator values need to be
aligned to the biodiversity indicator values from Hirschfeld et al.
(2021). Therefore, we develop functions that assign each
biodiversity indicator value (based on Jungandreas) to the WTP
for the respective biodiversity level. This alignment can be done
because both bird indicators (from Hirschfeld et al. 2021 and
Jungandreas) are based on suitable habitat and we therefore
consider them comparable. Furthermore, we assume that the
status quo biodiversity index of 65 used by Hirschfeld et al. (2021)
is representative of the current status in the case study area. This
assumption is based on a study from the State Office for
Environmental Protection Saxony-Anhalt (Landesamt für
Umweltschutz Sachsen-Anhalt 2015) that used the same bird
indicator as Hirschfeld et al. (2021) and found similar results for
the status quo. Saxony-Anhalt is geographically close to the case
study area in the northern part of Saxony and has a similar
landscape (see Methods: Application).  

The first step is to translate the biodiversity indicator used by
Hirschfeld et al. (2021), for example, 85, into the indicator
developed by Jungandreas, which will be used throughout the
optimization process. This transformation is done by applying the
mathematical “rule of three”: for the status quo, 65 points
(Hirschfeld et al. 2021) equates to an index of 1 (Jungandreas).
Taking this latter into account, the transformation of 85 points
(Hirschfeld et al. 2021) is as stated in Eq. 1, with [HF] referring
to the index by Hirschfeld et al. (2021) and [JA] to that by
Jungandreas.
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Additionally, the monetary values for WTP must be expressed in
the same units as those that represent the contribution margin of
agricultural production, i.e., € ha−1 yr−1. WTP obtained by
Hirschfeld et al. (2021) is in units of € person−1 yr−1 referring to
the agricultural area within a 15 km radius. For simplicity, we
assume that population and agricultural area are evenly
distributed within Germany. Therefore, it is sufficient to multiply
WTP by the number of people of legal age in Germany in 2013
(67.23 million; Destatis 2016, Hirschfeld et al. 2021), when the
choice experiment took place, and divide it by the total amount
of agricultural area in the same year (16.7 million ha; World Bank
2018). The respective calculation is given in Eq 2. 

€ € ha
ha  

Eqs. 1 and 2 can be calculated analogously for a biodiversity score
of 105. Linking the indices to the respective WTP, we obtain the
results given in Table 2. These data form the basis for the
development of the WTP functions. Because three data points are
not enough to perform an interpolation, we define two different
WTP functions to explore different options of how these data
points could be related (Fig. 2). Furthermore, the functions
should be economically reasonable: In economic theory, it is
assumed that the marginal utility of a good, and thus the WTP
for it, decreases for every additional unit that is provided until it
converges at some point (Gossen’s First Law; Gossen 1983).
Therefore, both WTP functions follow the shape of a saturation
curve. The level of biodiversity for the highest WTP (105 points)
already slightly exceeds the goal of the BfN that has been set for
the year 2030 (100 points). Additionally, no data about the WTP
beyond this point are available. Consequently, we assume that
saturation starts at a biodiversity index of 105/1.6. Both WTP
functions are noncontinuous and defined piecewise as follows.

Table 2. Biodiversity indices according to Hirschfeld et al. (2021)
related to their respective biodiversity indices according to
Jungandreas and willingness to pay.
 

Biodiversity index
(Hirschfeld)

Biodiversity index
(Jungandreas)

Willingness to pay
(€ ha−1 yr−1)

65 1.0 0
85 1.3 88.57
105 1.6 213.36

Fig. 2. Two possible willingness to pay (WTP) functions used in
the study. The two functions (WTP 1 and WTP 2) describe
WTP for a certain level of biodiversity; their shape was
determined by the given data points (red).

:=

0,

:=

1 < x < 1.6
 x > 1.6_

(4)
x < 1_

  

Where x ϵ R;+
0 is the biodiversity indicator of Jungandreas.

Optimization
The aim of our study, i.e., to find the optimum combination of
agricultural production and biodiversity conservation with the
highest contribution to social welfare, can be formulated as a bi-
objective optimization problem: 

x∈{1,2,3,4}n

∈

s.t. land transition rule s
      minimum/maximum land cover

i∈I

x∈{1,2,3,4}n
 max

   max

x∈{1,2,3,4}n
max

  

 ℝ
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The landscape is divided into multiple decision units I = {1, ...,
n} that determine the number of decision variables of the
optimization problem and x is a vector of indicator variables xi 
stating the land use of patch i ϵ I. The decision variables take only
discrete values that represent the land-use type of the respective
unit, i.e., 1 for cropland, 2 for extensive grassland, 3 for intensive
grassland, and 4 for forest. Therefore, Eq. 5 can be characterized
as a combinatorial optimization problem. The first line of the
problem formulation maximizes the sum of the contribution
margins c for all patches xi, and the second line does the same for
the WTP for biodiversity b. Furthermore, the optimization
problem is constrained by specific land transition rules (i.e., which
land use can be converted into what other land use) and values
for the minimum and maximum land cover of each land-use type
(for further details, see Methods: Application).  

This type of problem is usually solved by applying local search
algorithms such as genetic algorithms (Kaim et al. 2018). We use
the optimization tool CoMOLA (constrained multi-objective
optimization of land allocation; Strauch et al. 2019), which is
based on the nondominated sorting genetic algorithm II (NSGA-
II; Deb et al. 2002). For each optimization run, CoMOLA first
creates an initial set of land-use maps (individuals). These
solutions are passed to the biodiversity model and SWAT look-
up table that return the respective WTP. Then, the NSGA-II
evaluates the WTP of each solution, and those with the best
performances (i.e., highest WTP for each objective) are merged
by crossover and mutation, and thus, form the next generation.
Individuals of the offspring population that do not satisfy the
constraints are considered infeasible and are transformed into
feasible individuals by a repair mutation algorithm (Strauch et al.
2019). Again, the WTP for these solutions are calculated,
evaluated, and used as parents for the next generation. This
process continues until a certain stopping criterion, e.g., the
maximum number of generations, is met. The algorithm then
selects those solutions that are nondominated. In a maximization
case, a feasible solution is nondominated or Pareto-optimal if
there is no other feasible solution that performs better in at least
one objective without decreasing another objective simultaneously
(Coello Coello et al. 2007). Finally, the set of all nondominated
solutions, i.e., land-use strategies, forms the Pareto frontier.  

We select the solution with the highest contribution to social
welfare from the Pareto frontier by maximizing the sum of each
objective’s WTP (see simplified illustration in Fig. 1 red box and
Eq. 6). 

6
 p = (pB, pC)∈P

 pB+pCmax
  

Here, P is the set of nondominated solutions p, B the WTP for
biodiversity, and C the WTP for agricultural production.

Application
We applied our approach to the Lossa River basin, a sub-basin
of the TALE project’s (https://www.ufz.de/tale/) case study area,
the Middle Mulde River basin, which is located in central
Germany (Fig. 3). The case study area was selected because it is
a river basin (as required for running SWAT) and its size (14,076
ha) is not too large for running the optimization via CoMOLA.
It is dominated by agricultural land use, primarily winter wheat

(36.1%), rapeseed (22.6%), winter barley (15.6%), and corn
(14 %). Also, forests and mainly intensively used grassland cover
parts of the landscape (Figs. 3 and 4A). Furthermore, the area is
habitat of different open-land bird species, of which we take into
account nine Red List species in the biodiversity model.

Fig. 3. Map showing the location of the case study area and pie
chart showing the proportions of land-use categories. The
Lossa River basin is part of the Middle Mulde River basin in
central Germany.

Fig. 4. Land-use map of the Lossa River basin for the status
quo (A) and the optimal solution with highest social welfare
(Biomax; B).

The study area was divided into HRUs, which served as decision
units for the optimization but were also needed to apply the SWAT
model, which calculates the contribution margins for each HRU.
For cropland, we used typical crop rotations representative of the
status quo. As shown in Table 3, We distinguished four land-use
types: cropland, extensive grassland, intensive grassland, and
forest (Table 3). The land-use transition rules and maximum
allowed land cover of each land-use type (Table 3) were used to
constrain the optimization (Eq. 5) and were set according to the
results of a stakeholder workshop with farmers, conservationists,
and employees of state ministries. The procedure and results of
that workshop are described in Karner et al. (2019). Parts of the
case study area that were urban, wetlands, water bodies, or forests
in the status quo were not allowed to change and were thus
excluded from the optimization process. Similarly, to decrease the
number of decision variables, HRUs < 5 ha were not considered
in the optimization, though the associated contribution margins
were added to the total value of agricultural production.
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Table 3. Transition rules for the optimization and maximum land
cover of each land use. A ✓ means that the land use types can be
converted into one another; an X means that a conversion is not
allowed. For example, extensive grassland can remain extensive
or can be transformed into intensive grassland or forest, but it
cannot be transformed into cropland.
 

Land use Cropland Extensive
grassland

Intensive
grassland

Forest Maximum
land cover

(%)†

Cropland ✓ ✓ ✓ ✓ 63.02
Extensive
Grassland

X ✓ ✓ ✓ 7.22

Intensive
Grassland

X ✓ ✓ ✓ 15.36

Forest X X X ✓ 23.07
†Proportion of the full study area.

Approximately 9657 ha (~69%) of the case study area was
considered in the optimization. To avoid extreme land-use
changes due to very large HRUs, we split them along roads and
railways so that no decision unit was > 1 km², leading to a total
of 243 HRUs. For each HRU, the optimization algorithm varied
the land use according to the transition matrix (Table 3).
Furthermore, the optimization was constrained by minimum
fitness values for the two objectives, i.e., solutions with a value <
0 €/ha were excluded in both cases. With these settings, we ran the
genetic algorithm with a population size of 100 individuals (i.e.,
land-use maps) over 200 generations (each generated by crossover
and mutation from the previous generation). This procedure was
done in seven independent repetitions (i.e., optimization runs),
due to the stochastic nature of the algorithm, for each of the two
WTP functions.

RESULTS
The overall Pareto frontiers for both biodiversity WTP functions
illustrate that, with increasing biodiversity, the solutions of WTP
1 first dominate those of WTP 2 and then, after an inflection
point in the middle of the plot, the solutions based on WTP 2
tend to dominate those based on WTP 1 (Fig. 5). This pattern
could be explained by the shape of the WTP functions (Fig. 2),
where WTP 1 first dominates WTP 2, and then after their
intersection at a biodiversity index of 1.3 (88.57 €), WTP 2
dominates WTP 1. The plot also shows that the current land use
can be improved by all solutions found by the optimization
algorithm. For example, the solutions located at the edges of the
Pareto frontiers are those with the highest WTP for agricultural
production (Agrimax) or biodiversity (Biomax). Compared to the
status quo, the Agrimax solutions indicate a possible gain in
contribution margin by up to 10 €/ha, whereas the WTP for
biodiversity only increases by about 8 €/ha (WTP 2) and 19 €/ha
(WTP 1; Fig. 6). In contrast, the highest possible gain in WTP for
biodiversity (Biomax) is, according to the definition of the WTP
functions (Eqs. 3 and 4), 213.36 €/ha. In this case, the gain in
contribution margin would only be approximately 3 €/ha for both
WTP functions.

Fig. 5. Pareto frontiers based on the two willingness to pay
(WTP) functions, WTP 1 and WTP 2. Each of the seven
optimization runs per WTP function returned a set of Pareto-
optimal solutions (light-colored, unfilled points). The
nondominated solutions of these sets form the overall Pareto
frontiers. Orange asterisks at the upper left indicate points with
the highest WTP for agricultural production (WTP 1, light
orange; WTP 2, dark orange) and green asterisks at the lower
right indicate points with the highest WTP for biodiversity
(WTP 1, light green; WTP 2, dark green). Blue asterisk = status
quo.

Fig. 6. Changes in willingness to pay (WTP; € ha−1 yr−1) and
land use (%) compared to the status quo for the Pareto-optimal
solutions with maximum WTP for agricultural production
(Agrimax) and maximum WTP for biodiversity (Biomax) based
on WTP functions 1 and 2, respectively.

By comparing WTP 1 and WTP 2, there is no major difference
between the Agrimax or Biomax solutions in the land-use map.
Generally, for both extreme solutions, cropland decreases in favor
of intensive grassland (Fig. 6), which nearly reaches the maximum
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land cover allowed by the constraints. Nevertheless, there is a
higher loss in cropland for Biomax than for Agrimax, which is
due to a gain in extensive grassland. In all cases, there is no
significant change in forested area. Because the results for the two
WTP functions are very similar, we next focus only on those based
on WTP 2.  

According to Eq. 6, we identified the Pareto-optimal solution
with the highest contribution to social welfare (yellow star in Fig.
7; Fig. 4B) to be the solution with the highest WTP for biodiversity
(Biomax), which has already been discussed. Instead of
comparing spatial land-use changes for this solution only with
the current (status quo) landscape, we decided to analyze the 15
best solutions (yellow to orange in Fig. 6). This procedure makes
it possible to identify not only patches that have to change to
achieve a particular solution, but also how frequently patches
have been selected for a particular land use when the solution
reached a high contribution to social welfare.

Fig. 7. Overall Pareto frontier of the optimization based on the
willingness to pay (WTP) function 2. Light grey unfilled points
= the sets of nondominated solutions for all seven optimization
runs. Colored points and scale = the social welfare of the
overall nondominated solutions starting from 250.85 € ha−1
yr−1 (status quo, dark blue) to 466.84 € ha−1 yr−1 (best
solution, yellow). Blue asterisk = current state of the landscape;
yellow asterisk = optimal solution with highest social welfare.

As already noted from the comparison of land-use changes for
the extreme solutions (Fig. 6), there was also no significant change
for the 15 best solutions of WTP 2 in forest. Cropland was mainly
transformed into intensive grassland because it has a higher
contribution margin per area than does extensive grassland and,
in many cases, cropland (Figs. 8 and 9). Furthermore, a
considerable number of patches with intensive (extensive)
grassland were mainly converted into extensive (intensive)
grassland, and few of them into forest. Intensive grassland close
to water bodies was not converted to another land use (Fig. 8).
On the contrary, there was a significant gain in grassland, which
occurred because the biodiversity model uses a distance
parameter for water bodies and thus prefers grassland along these
areas.

Fig. 8. Gain and loss of intensive grassland patches for the 15
best solutions for willingness to pay function 2 compared to the
status quo. Red = loss of intensive grassland; orange = no
change; green = gain in intensive grassland. Counts indicate the
number of times out of 15 that the patch was affected.

Fig. 9. Gain and loss of extensive grassland patches compared
to the status quo and prediction of suitable habitat for the
Northern Wheatear across the 15 best solutions for willingness
to pay function 2. Red = loss of extensive grassland; orange =
no change; green = gain in extensive grassland. Purple dots =
suitable habitat for Northern Wheatear. Counts associated with
colors indicate the number of times out of 15 that the patch
was affected (grassland) or how often the bird was predicted at
that spot (Northern Wheatear).

DISCUSSION
The results of the optimization suggest land-use strategies that
improve the social welfare in the Lossa River basin, as measured
in terms of contribution margins from agricultural production
and WTP for increases in biodiversity. Particularly, the social
welfare gains from biodiversity can be substantial without
compromising on economic gains from agricultural production.
This analysis shows that optimization algorithms can help to
identify desirable land-use options as compared to the status quo.
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They can do so not only by changing one objective in favor of
another; in some cases, even win-win solutions may be attainable
(Hanspach et al. 2017).  

The main aim of our exploratory study was to test and implement
the conceptual idea of combining multiobjective land-use
optimization with preference information in a real-world context.
With this in mind, our specific results should be regarded with
caution and not be interpreted in terms of policy
recommendations. Rather, they are stylized results showing a
“proof of concept”. We next discuss a number of challenges to
provide a ground for future research in the field of social-
ecological landscape optimization.

Quality of underlying data and models
To a large extent, the optimization results are influenced by the
quality of the underlying data and models. The bird model that
we used considers nine Red List bird species. Their habitat
requirements are relatively balanced among the different land-use
types, though with a focus on open-land bird species because of
the characteristics of the study area. We assumed that the selected
species serve as a good indicator for the overall biodiversity level
in the region, which implies that if  there is suitable habitat for
these threatened species, more common species will also occur in
these habitats. However, we are aware of the possible bias of this
approach and that there might be species that cannot be
represented by this indicator (Bonn et al. 2002). However, similar
bird-based indicators of biodiversity are quite common in the
literature and are, for example, used in the German national
strategy on biological diversity (Federal Ministry for the
Environment, Nature Conservation and Nuclear Safety 2007).
Furthermore, the bird model from Jungandreas can be applied to
any bird species for which the necessary data are available so that
future studies could select other species they consider
representative for the study area.  

The biodiversity model can also help to explain the optimization
algorithm’s allocation of intensive grassland close to water bodies.
The combination of urban areas that include abandoned
buildings, parks, and small gardens with cropland and,
particularly, grassland, offers habitats for nesting and feeding for
many bird species considered in our study (e.g., Western Jackdaw,
Common Redstart, Crested Lark, and Barn Owl). In the Lossa
River basin, many towns and villages are located close to water
bodies, which might cause the allocation of grassland close to
these areas. Some birds also prefer the proximity of water (e.g.,
Northern Lapwing, Kingfisher). Additionally, the grassland
along Lossa Creek connects the different habitats, purely due to
the geographical characteristics of the case study area because
the bird model does not consider habitat connectivity. This idea
should be taken into account when applying the model to other
areas.  

As could be expected, forest cover did not change significantly.
This result is because of both land-use transition rules that
prohibit the cutting of forest and the low potential for
afforestation (maximum land-cover rules) in the mainly
agricultural area, which is why we focused on open-land bird
species.  

Extensive grassland patches increase, especially in the southeast
of the study area (Fig. 9). Contrary to expectation, this increase

is not because of low soil quality and thus low contribution
margins for agricultural production. Rather, the biodiversity
model predicts this area as a highly suitable habitat for Northern
Wheatear (Oenanthe oenanthe). The gain in large extensive
grassland patches coincides with the prediction of this bird (i.e.,
dark and light purple dots in the dark and light green patches,
respectively, in Fig. 9). The prediction of Northern Wheatear in
the north and central south relate to the suitable habitats the bird
already had before the optimization.  

The high values for the bird indicator and thus the resulting high
WTP for biodiversity for these solutions can be explained by the
immense gain in suitable habitat for Northern Wheatear. Breaking
down the bird indicator, which is about 1.6 for all best solutions,
into the indicator values of each bird species, Northern Wheatear
achieves an average index of 5.61. The indicators of all other
species remained near the status quo (see Table A2.1 in Appendix
2).  

Similarly, the simulation of biomass production with SWAT is
based on simplified assumptions about farm management
operations (e.g., crop rotations, fertilizer, and tillage practices). A
different and possibly more detailed model may influence the
results but would also require more detailed information input,
which is usually not available at the landscape scale.

Detail of modeling vs. computational effort
If  data availability allows, the models and the formulation of the
optimization problem could be improved by adding more detail.
For example, one of the outcomes of optimizing agricultural
production and biodiversity is that additional patches of intensive
grassland are located mainly close to water bodies, although that
may negatively affect water quality. Considering other objectives
such as maximizing water quality could thus lead to different
optimization results. Also, the analysis is only partial in economic
terms. It is based on the implicit assumption of ceteris paribus
(“other things being equal”); ideally, a larger bundle of ecosystem
services (and possibly other effect domains) would be considered
in the optimization. However, such inclusion could be challenging
given that the approach requires that all objectives can be
described economically using the same units (i.e., € ha−1 yr−1).  

Furthermore, we used the CoMOLA optimization framework
that can be coupled with various spatially explicit models. An
economic model could be added instead of or additional to the
biodiversity and SWAT model. However, it should always be taken
into account that adding models, objective functions, or decision
variables to the optimization can increase the computational
effort substantially.

Quality of preference information
The shape of the WTP function can influence optimization results
(Fig. 5). We tested two possible versions, a simple piecewise linear
function and an economically more realistic 6th degree function
(Eqs. 3 and 4). Of course, other functional relationships between
the three given points (Table 2) could be considered. In this
context, it should also be noted that the saturation point has an
influence on the point with highest social welfare from
biodiversity and in our case also on the optimal solution because
it sets a limitation for the maximum bird index that can be achieved
in the landscape. For the optimization algorithm, solutions with
a bird index of, e.g., 1.8 are equal to solutions with an index of
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1.6 because they coincide with the same WTP. Therefore, there is
no incentive for the algorithm to find solutions with an even higher
biodiversity level; instead, it would aim to improve the second
objective, the agricultural contribution margin.  

The quality of the preference information used in an optimization
exercise such as ours plays an important role. In this respect, we
used rather simple proxies. For policy relevance, regionally
specific contribution margins and WTP for biodiversity would
have been necessary; however, these were neither available nor
necessary for our exploratory purposes. In this context, it should
also be mentioned that the simplified assumptions made in Eq. 2
(population and agricultural land are evenly distributed in
Germany) could be improved. Ideally, the calculation of WTP
per unit area would consider information about the share of
agricultural land and the number of people living within a 15 km
radius of each respondent in the choice experiment. Because we
did not have any information about the distribution of the survey
participants and their WTP beyond this 15 km radius, our
calculation in Eq. 2 is imprecise and only an approximation. These
challenges should be taken into account in the assessment of WTP
that might later be used on a different spatial scale.  

Furthermore, it may be objected that monetary expressions of
preferences are imperfect; their informational value is limited,
especially in the context of biodiversity (Pascual et al. 2017). They
provide only a preliminary indication of the contribution of
ecosystem services and biodiversity to human well-being and
should be complemented by other indicators in the decision-
making process (Förster et al. 2019).  

In our case, even if  there were different values for WTP for
biodiversity, the optimization results would probably not change
significantly because of the Pareto-based two-objective
optimization approach. The algorithm searches for solutions that
maximize both WTP for agricultural production and WTP for
biodiversity. In other words, changes in the scale of one objective
would not change the topology of Pareto-optimal solutions. In
the case of a weighted-sum approach, in contrast, the results
would be completely different because these algorithms consider
only a single-objective function that already aggregates both WTP
values. For further discussion of Eq. 2 and a sensitivity analysis
of the effect of WTP values on the results, we refer to Appendix 3.

Identification of winners and losers
A related issue is the implicit application of the Kaldor-Hicks
criterion (Johansson 1993) that goes along with the type of
preference information used in our study. It does not allow for
the analysis of winners and losers. Generally, there are two
possible ways to add such an analysis: ex ante or ex post. The ex-
ante variant was discussed by Cavender-Bares et al. (2015) and
implies the identification of differently affected groups (e.g.,
farmers vs. the general public) before preference data are collected
and then uses them to see how much the losers lose. If  preference
data are collected directly in the study area, it may also be possible
to conduct cluster analysis on the basis of demographic and
socioeconomic control variables. In this case, however, it would
be necessary to have objective functions that maximize WTP for
biodiversity for each stakeholder type to distinguish among
stakeholders in the Pareto frontier. This process could easily lead
to a many-objective optimization problem (i.e., more than four
objectives) with an increased complexity that has to be solved by

algorithms other than NSGA-II. The alternative is to calculate
only biophysically optimal land-use configurations and to include
preference information in an ex-post evaluation, preferably
involving a wide range of stakeholders.

CONCLUSION
We presented a method that combines mathematical optimization
with methods from ecology and economics to identify socially
optimal land-use strategies that take into account the biophysical
potential of a landscape. We applied the method to a case study
in the Lossa River basin in central Germany. The optimization
could identify landscape configurations that would increase
overall social welfare in the region by creating a win-win situation
between the maximization of social benefits from biodiversity and
agricultural production. The integration of preference
information into the biophysical optimization allows reducing the
usually large set of Pareto-optimal solutions to a single (or
manageable number of) societally most beneficial solution(s)
without having to apply subsequent utility functions (Cavender-
Bares et al. 2015) or methods such as weighting approaches (see,
for example, Qi and Altinakar 2011). This selection of solutions
can also be used as input for further stakeholder-based analyses
and decisions. Though our approach does not allow for a purely
biophysical trade-off  analysis, a trade-off  analysis with respect to
the different contributions to social welfare of each objective is
still possible. The method can help to answer questions of
sustainable land-use planning by providing spatially explicit
solutions. These solutions can also be used for the development
of site-specific policy instruments, e.g., spatially explicit agri-
environmental schemes or management standards, which will
help to balance ecological and social demands on landscapes.  

Our method can be applied to other real-world case studies, even
in broader or different contexts. The selection of the objectives is
flexible as long as they can be linked to preference information
measured in the same (e.g., monetary) unit so that calculating
changes in overall social welfare is possible. For future studies
that follow the optimization of biodiversity and agricultural
production on a regional or local scale, we suggest paying
particular attention to the quality of the data and models used
because they have a strong influence on the final result. Another
general issue that should be borne in mind when interpreting the
results of multiobjective social-ecological optimization (and an
area where we see the largest need for further innovative research)
is that it is a purely “comparative-static analysis”, i.e., it compares
one state (X) to another (Y). It does not tell much about the road
from X to Y, regarding practical feasibility given political,
behavioral, economic, and other constraints. To study these
contraints and how the socially optimal state Y may actually be
achieved, one would need additional information and methods
such as agent-based models (Brunner et al. 2016, Haslauer et al.
2016).

Responses to this article can be read online at: 
https://www.ecologyandsociety.org/issues/responses.
php/12116
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Appendix 1 - SWAT model input data and performance 

 

A1.1 - Input Data 

- Spatial domain: Middle Mulde River Basin (1611 km²) 

 

- Weather data 

o Raw data: time series of measured daily precipitation, solar radiation, minimum 

and maximum temperature, wind speed, and relative humidity for DWD weather 

and precipitation stations in period 1980-2014 

o Processed data: Regionalized weather data using Thiessen polygons, precipitation 

was corrected for measurement errors according to (Richter 1995) 

- Digital elevation model (DEM) 

o ATKIS-DGM25 (25 m resolution raster map) 

- Land use 

o Raw data: ATKIS Basis DLM provided by the Federal Agency for Cartography 

and Geodesy (BKG) for the year 2010; Corine Land Cover data provided by the 

European Environment Agency (EEA) for the year 2012, Color-infrared (CIR)-

based biotope and land-use map provided by the Saxon State Agency for 

Environment, Agriculture, and Geology (LfULG) for the year 2005 

o Processed data: Raster map (25 m resolution) based on ATKIS Basis DLM, 

refined for type of forest (mixed, deciduous, coniferous) based on Corine and type 

of grassland (intensive or extensive) based on the CIR biotope and land-use map 

 

- Soil 

o Raw data: BK50 digital soil map for the state of Saxony provided by LfULG for 

the year 2012, including a soil property database 

o Processed data: to obtain soil parameters not included in the databases we used 

pedotransfer functions provided by the Ad-hoc-Arbeitsgruppe Boden (2005) 

o The final database includes the hydrologic soil type, maximum rooting depth and 

layer specific depth, texture, organic carbon content, bulk density, available water 

capacity, saturated hydraulic conductivity, USLE C factors 



- Land management 

o Spatio-temporal crop management data (crop rotations for different farm types 

including specification (type, amount, date) of tillage, fertilizer, planting and 

harvest operations as typical for soil-climatic regions in Central Germany (Witing 

et al. 2014) 

o Crop share and yield statistics 1991-2012 for municipalities (Landkreise) 

o To estimate agricultural gross margins we obtained crop-specific market prices 

and variable production costs from the Association for Technology and Structures 

in Agriculture (KTBL) (accessed in 2017) 

 

- Hydrological data 

o Measured discharge (daily) and water quality (e.g. N and P species, bi-weekly to 

monthly) for different gauging stations and varying time periods 

o Point sources: average nutrient loads from waste water treatment plants 

 

A1.2 – Calibration and performance of the SWAT model 

For the Middle Mulde Basin, SWAT was calibrated against daily streamflow and monthly loads 

of sediment as well as nitrogen and phosphorus fractions at three gauges (Bad Düben, Golzern 

and Erlln), taking into account four performance metrics (Nash-Sutcliff-Efficiency – NSE, 

relative index of agreement – rd, Kling-Gupta-Efficiency – KGE and percentage bias – PBIAS). 

We used the R package ‘SWATpasteR’ (Schürz et al. 2017) for both sensitivity analysis and 

model calibration. After sensitivity testing of 130 model parameters which were sampled for 

14,076 model simulations using the STAR method (Razavi and Gupta 2016), we carried out 

further 10,000 Latin-Hypercube sampled SWAT simulations to calibrate the most sensitive 29 

model parameters. Table A1 summarizes the performance values of the best model simulation, 

which we defined as the simulation with the minimum total rank sum of all performance metrics 

for all variables and gauges. 

 

According to the classification of Moriasi et al. (2015), model performance ranged from 

satisfactory to very good for daily streamflow and was very good at all gauges for monthly loads 

of Nitrate-N. For all other variables, model performance was rather unsatisfactory with a few 

exceptions at single gauges (Tab. A1.1, see also Fig. A1.1). 

 

Moreover, we manually adjusted SWAT plant parameters in order to fit simulated yields of 

single crop types to the yields observed in period 1995 to 2009 (Fig. A1.1). Our results illustrate 

the difficulty in identifying a single parameter set that simultaneously satisfies multiple 

performance criteria for multiple variables at multiple gauges in the Middle Mulde Basin. 



However, it nevertheless appears reasonable to use the model for land use change impact 

assessments regarding crop yield, streamflow, Nitrate-N and sediment loads. 

 

 

 

 

Figure A1.1: SWAT model performance for predicting daily streamflow, monthly water quality 

and mean annual crop yields the Middle Mulde Basin. 

 

 

 

 

 



Table A1.1: Performance metrics for the Middle Mulde Basin. 

Calibration (1999-2003) Validation (2004-2009) 

Variable Gauge NSE dr KGE PBIAS NSE dr KGE PBIAS 

Daily 

streamflow 

Bad 

Düben 0.66 0.97 0.73 15.7 0.69 0.94 0.75 20.3 

Golzern 0.87 0.99 0.87 9.6 0.86 0.97 0.86 10.3 

Erlln 0.74 0.98 0.76 6.8 0.66 0.96 0.77 11.5 

Monthly 

Nitrate-N 

load 

Bad 

Düben 0.71 0.95 0.64 -29.4 0.72 0.95 0.63 -21.6 

Golzern 0.76 0.96 0.72 -25.9 0.82 0.97 0.72 -19.1 

Erlln 0.7 0.97 0.7 -25.9 0.74 0.97 0.8 -15.2 

Monthly 

Nitrite-N 

load 

Bad 

Düben -4.57 0.37 -1.01 141.9 -5.33 -0.01 -1.42 218.9 

Golzern -2.41 -0.1 -0.51 103 -8.28 -3.46 -1.06 192.9 

Erlln -0.94 -0.61 -0.09 83.5 -7.15 -1.47 -0.95 177.2 

Monthly 

Ammonium-

N load 

Bad 

Düben 0.66 -1.66 0.66 31.6 0.37 0.61 0.38 59.3 

Golzern 0.29 -6 0.48 43.8 0.4 -19.09 0.2 74.4 

Erlln 0.67 -1.77 0.65 24.9 0.18 -9 0.11 74.9 

Monthly 

organic N 

load 

Bad 

Düben -0.87 0.65 -0.07 -78 -0.96 0.65 -0.09 -77.6 

Golzern 0.08 0.83 0.07 -62 0.13 0.7 0.22 -49.3 

Erlln 0.35 -1.59 0.28 -50.4 0.23 0.48 0.19 -46.2 

Monthly 

mineral P 

load 

Bad 

Düben -2.85 0.62 -0.83 133.9 -15.05 -1.09 -1.95 251.5 

Golzern -0.45 0.85 -0.13 72.5 -6.42 -0.16 -0.31 104.7 

Erlln 0.54 -1.39 0.45 49.7 -2.08 -1.35 -0.16 107.9 

Monthly 

organic P 

load 

Bad 

Düben 0.04 0.84 -0.02 -67.3 -0.17 0.7 0.14 -55.4 

Golzern 0.53 0.93 0.25 -48.4 0.21 0.13 0.15 -25.1 

Erlln 0.7 0.92 0.7 -26.4 0.08 0.92 -0.09 -52.2 

Monthly 

sediment 

load 

Bad 

Düben 0.05 -7.46 0.46 33.4 0.08 -14.97 0.15 67.4 

Golzern 0.72 -1.61 0.53 -15.7 0.29 -14.96 0.31 51.1 

Erlln -4.02 -1.77 -2.02 244.4 -0.04 -22.48 0.08 73.1 
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Appendix 2 – Bird indicators for the 15 best solutions 

 

Table A2.1: Single species and mean bird indicators for the 15 best solutions (best 1 – best 15). 

Species abbreviations stand for: Sr - Saxicola rubetra (Whinchat), Cm - Coloeus monedula 

(Western Jackdaw), Aa - Alcedo atthis (Common Kingfisher), Pp - Phoenicurus phoenicurus 

(Common Redstart), Gc - Galerida cristata (Crested Lark), La - Lullula arborea (Wood Lark), 

Vv - Vanellus vanellus (Northern Lapwing), Ta - Tyto alba (Barn Owl), Oo - Oenanthe oenanthe 

(Northern Wheatear). 

Spe-

cies 

best 

1 

best 

2 

best 

3 

best 

4 

best 

5 

best 

6 

best 

7 

best 

8 

best 

9 

best 

10 

best 

11 

best 

12 

best 

13 

best 

14 

best 

15 

Sr 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 

Cm 1.07 1.12 1.12 1.12 1.12 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.07 1.10 

Aa 0.99 0.98 0.99 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.99 1.01 0.99 1.00 

Pp 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.99 0.98 0.99 0.98 

Gc 0.97 0.96 0.96 0.96 0.97 0.95 0.96 0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.97 

La 1.05 1.05 1.03 1.03 1.03 1.04 1.04 1.04 1.07 1.05 1.06 1.03 1.04 1.07 1.05 

Vv 0.89 1.03 1.03 1.03 1.02 0.92 0.93 0.92 0.94 0.94 0.94 1.01 1.03 1.05 0.98 

Ta 1.00 1.02 1.02 1.02 1.03 1.00 1.00 1.00 1.01 1.01 1.01 1.02 1.02 1.01 1.02 

Oo 6.47 5.95 5.95 5.95 5.95 5.83 5.83 5.83 5.44 5.44 5.37 5.22 5.01 4.95 4.89 

Mean 1.60 1.57 1.57 1.57 1.57 1.54 1.54 1.54 1.50 1.50 1.49 1.48 1.46 1.46 1.45 



Appendix 3 – Impact of the willingness to pay for biodiversity on the solution with highest 

contribution to social welfare 

A3.1 – Transformation of the willingness to pay value units 

The willingness to pay (WTP) values by Hirschfeld et al. (in press) are in €/person/a and refer to 

agricultural land within a 15 km radius of the respective respondent. For further processing, we 

had to transform the units to €/ha/a, which has been done in Equation 2 under the assumption 

that population and agricultural land are evenly distributed in Germany. In order to make the 

spatial reference of the WTP values more visible, Equation 2 can also be formulated as: 

22 €/𝑝𝑒𝑟𝑠

70,685.8 ℎ𝑎
∗

67.23 ∗ 106 𝑝𝑒𝑟𝑠

16.7 ∗ 106 ℎ𝑎
∗ 70,685.8 ℎ𝑎 = 88.57

€

ℎ𝑎
 (Eq. A. 1) 

The first factor determines the WTP per person per hectare within a 15 km radius (70,685.8 ℎ𝑎). 

The second factor calculates the number of people per hectare agricultural land and multiplied 

with the third factor, this gives the number of people per hectare agricultural land within a 15 km 

radius. Since the 70,685.8 ℎ𝑎 can be cancelled, Equations A.1 and 2 are equivalent. 

Alternatively, it is also possible to formulate Equation 2 as: 

22 €/𝑝𝑒𝑟𝑠

33012.18 ℎ𝑎
∗

67.23 ∗ 106 𝑝𝑒𝑟𝑠

35,758,100 ℎ𝑎
∗ 70,685.8 ℎ𝑎 = 88.57

€

ℎ𝑎
 (Eq. A. 2) 

The first factor calculates the WTP per person per hectare agricultural land within a 15 km 

radius. It is determined by: 

16.7 ∗ 106ℎ𝑎

35,758,100 ℎ𝑎
∗ 70,685.8 ℎ𝑎  (Eq. A. 3) 

Here, 16.7 ∗ 106ℎ𝑎 is the agricultural land in Germany in 2013, 35,758,100 ℎ𝑎 the total area of

Germany and 70,685.8 ℎ𝑎 the area defined by a 15 km radius. 

The second factor of Eq. A.2 calculates the number of people per hectare in Germany and 

multiplied with the third factor, this gives the number of people per hectare within a 15 km 

radius. 

By using Eq. A.3, it is trivial to proof that Equations A.1 and A.2 are equivalent. 

A3.2 – Sensitivity analysis of the impact of the WTP for biodiversity on the solution with 

highest contribution to social welfare 

With changing values for the WTP for biodiversity, the trade-offs between the two objectives – 

max WTP for biodiversity and max WTP for agricultural production – will not change 

significantly since they are based on two biophysical models. This means that high values for the 



bird index and, respectively, high values for the WTP for biodiversity can only be achieved at 

lower levels of agricultural production. 

With changing values of the WTP for biodiversity, the solution with highest contribution margin 

would most likely not change. However, the total contribution margin calculated by Eq. 6 will be 

affected. Let us differentiate three cases (assuming no change in the modelling of WTP for 

agricultural production): 

WTP for biodiversity decreases, WTP for agricultural production > WTP for biodiversity: In 

this case, WTP for agricultural production > WTP for biodiversity since even the lowest value of 

WTP for agricultural production (i.e. 253.48 €/ha in Biomax) is larger than the currently highest 

value of WTP for biodiversity (i.e. 213.36 €/ha). Due to the small range of WTP for agricultural 

production values, the solution with the highest WTP for biodiversity would thus mostly be the 

solution with the highest contribution margin, too. Only, if the highest achievable value for the 

WTP for biodiversity is lower than the difference between the highest and lowest value of the 

WTP for agricultural production (e.g. 260.79 €/ha – 250.48 €/ha = 10.31 €/ha), solutions with 

high WTP for agricultural production will be selected. 

WTP for biodiversity increases, WTP for agricultural production = WTP for biodiversity: Due 

to the almost linear negative trade-off relation, all solutions would roughly lead to the same 

contribution margin, i.e. they would be equally preferable. 

WTP for biodiversity increases, WTP for agricultural production < WTP for biodiversity: In 

this case, solutions with a higher WTP for biodiversity would lead to a higher contribution 

margin. 
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