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Ecological and financial strategies provide complementary benefits for
smallholder climate resilience: insights from a simulation model

Tim G Williams', Gunnar Dressler?, Anne Elise Stratton® and Birgit Miiller?

ABSTRACT. Researchers and development organizations regularly grapple with competing ecological and financial strategies for
building climate resilience in smallholder agricultural systems, but rarely are such approaches considered in tandem. Using a social-
ecological simulation model, we explored how different combinations of legume cover cropping, an ecological insurance, and index-
based crop insurance, a financial insurance, affect the climate resilience of mixed crop-livestock smallholder farmers over time. The
model simulates interactions between soil nutrient dynamics, crop yields, and household wealth, which is carried solely in the form of
livestock. We assume legume cover cropping provides biological nitrogen fixation, thereby increasing soil fertility and productivity over
time, whereas microinsurance gives payouts in drought years that provide ex-post coping benefits. Our model results indicate that the
benefits of cover cropping to mean household income strongly complement the shock-absorbing benefits of microinsurance. Specifically,
we found: (1) insurance always provides larger benefits during and in the wake of a drought, while cover cropping progressively reduces
poverty in the medium- to long-term; (2) the use of crop insurance solely as an ex-post coping strategy may not reduce the incidence
of poverty; and (3) legume cover cropping offers larger relative benefits in more degraded environments and for poor farmers. These
results underscore the complementary roles that ecological and financial strategies could play in building resilience in smallholder
agricultural systems. The stylized model constitutes an important social-ecological foundation for future empirical research to inform
agricultural innovation and sustainable development priorities.
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INTRODUCTION

How to support climate resilience in smallholder agricultural
systems remains a topic of uncertainty and debate among
researchers and development organizations (Hansen et al. 2019,
Tomich et al. 2019a). Institutional interventions such as
microinsurance schemes have recently gained traction as tools for
agricultural development and poverty reduction in the Global
South (Hazell et al. 2010, SwissRe 2013, Kramer et al. 2019).
Simultaneously, there is an increasing drive for ecological
intensification to sustain or enhance both livelihoods and natural
resources (Bommarco et al. 2013, FAO 2018, HLPE 2019). Such
financial and ecological strategies both act as a form of insurance
by reducing risk in agricultural production, yet they function
through distinct mechanisms: ecological insurance improves
ecological functioning to stabilize and increase production over
time, whereas financial insurance stabilizes agricultural income
on a seasonal basis against climate shocks. Given these distinct
mechanisms, ecological and financial strategies may provide
benefits for smallholder systems that are heterogeneous both
throughout the population and over time. Thus, when considered
together, these disparate strategies may be complementary. To
make progress toward sustainable development therefore requires
an integrated perspective on the benefits of ecological and
financial development strategies. We aim to provide a valuable
contribution toward this goal by conducting a rigorous
comparative assessment of how two particular ecological and
financial strategies may affect smallholder climate resilience.

Microinsurance is a form of low-sum financial insurance
specifically targeted at low-income households. In recent decades,
it has gained traction in the international agricultural community

as a resilience-enhancing strategy (SwissRe 2013, Miiller et al.
2017, Kramer et al. 2019). By providing financial compensation
during droughts, microinsurance directly builds the ex-post
coping capacity (i.e., following the occurrence of a shock event)
of smallholder households. Additionally, by reducing production
risk, microinsurance can provide ex-ante benefits that enable risk-
averse households to engage in different production activities and
potentially escape poverty traps (Barrett et al. 2007, Carter et al.
2018). Index-based insurance, which gives payouts based on a
predetermined climate index (e.g., rainfall) has been advocated as
a tool for sustainable development because it helps to overcome
some of the “moral hazard” issues associated with conventional
indemnity-based insurance, i.e., the tendency for insured
households to reduce their own risk management and increase
costs for insurers (Hazell et al. 2010).

Farm management practices based on ecological principles take
a different approach to smallholder climate resilience. By
increasing ecosystem functions and diversity, they provide
farmers a form of natural insurance (Finger and Buchmann 2015,
Valente et al. 2019, Schaub et al. 2020). In particular, planting of
nitrogen (N)-fixing leguminous cover crops to be incorporated
into the soil as green manure builds resilience by increasing soil
organic matter (SOM) and nutrient availability, which help to
maintain or increase crop yields over time without other external
inputs (Drinkwater et al. 1998, Snapp et al. 2005, Blanco-Canqui
et al. 2012, Bommarco et al. 2013). Use of legume cover crops as
green manures is receiving increasing attention (in the academic
literature, from governments, and from non-profit and
development organizations) as an approach for building
smallholder resilience through conservation agriculture,

'Department of Industrial and Operations Engineering, University of Michigan, “Department of Ecological Modelling, UFZ - Helmholtz Centre
for Environmental Research, Leipzig, Germany, *School for Environment and Sustainability, University of Michigan


https://doi.org/10.5751/ES-12207-260214
https://doi.org/10.5751/ES-12207-260214
mailto:tgw@umich.edu
mailto:tgw@umich.edu
mailto:gunnar.dressler@ufz.de
mailto:gunnar.dressler@ufz.de
mailto:aestrat@umich.edu
mailto:aestrat@umich.edu
mailto:birgit.mueller@ufz.de
mailto:birgit.mueller@ufz.de
Adele
Typewriter


regenerative agriculture, and agroecology (Florentin et al. 2011,
Kaye and Quemada 2017, Wittwer et al. 2017, FAO 2018, HLPE
2019).

Despite their benefits, both microinsurance and legume cover
cropping exhibit potential tradeoffs that may affect their relative
performance. For example, insurance often does not incentivize
sustainable management practices (O’Connor 2013) and may even
lead to maladaptive outcomes in socio-environmental systems
(Miiller et al. 2017). In contrast, adopting legume cover cropping
may lead to short-term losses in labor or yields as farmers transition
to new management practices and build soil fertility (Martini et
al. 2004). The structure of the payouts that these strategies provide
may also contribute to divergent effects; although both entail
annual costs, the ex-post benefits of index-based microinsurance
are only experienced during shock years in which the index is
triggered, whereas cover cropping provides a more consistent,
though likely smaller, economic benefit (Rosa-Schleich et al. 2019).
When considered together, it is therefore possible that
microinsurance and cover cropping provide complementary
benefits (Hansen et al. 2019).

However, it remains a challenge to understand the conditions (i.e.,
when, where, and for whom) under which each of these strategies
may be most beneficial to smallholder climate resilience. A deeper
understanding of their benefits can help to inform and target
agricultural research and development and contribute to the debate
on the relative merits of financial and ecological development
approaches (Tomich et al. 2019b). Given the nascence of research
on the impacts of both microinsurance and legume cover cropping
on the global agricultural stage, observational datasets do not exist
to evaluate their relative or complementary effects. In addition,
both strategies involve feedbacks between household assets and
underlying ecological systems, necessitating an integrated social-
ecological perspective.

Process-based simulation models are powerful tools for extending
the understanding of these relationships and feedbacks beyond
existing empirical datasets, as well as exploring changes in
conditions and processes that would be impossible to control for
in the field (Magliocca et al. 2013). Simulation models that combine
social and ecological processes (henceforth social-ecological
simulation models) have been extensively used to explore questions
related to resilience and smallholder agricultural livelihoods
(Kremmydas et al. 2018, Dressler et al. 2019, Egli et al. 2019). In
the context of microinsurance, an agent-based model (ABM) was
used to show that there can exist long-term maladaptive feedbacks
related to livestock insurance in pastoral systems (John et al. 2019).
Models incorporating soil nutrient dynamics have shown that
access to credit, fertilizer, and improved seeds can help to reduce
poverty but does not guarantee long-term social-ecological
sustainability (Schreinemachers et al. 2007). Process-based models
have been used to explore the effects of different policies to mitigate
N losses (Kaye-Blake et al. 2019) and to assess the emergence of
poverty traps (Stephens et al. 2012). However, despite the
suitability of social-ecological simulation models to investigate
short- and long-term tradeoffs and to compare disparate resilience-
enhancing strategies across a population, such temporal and
distributional effects are rarely studied (Williams et al. 2020).

For this study, we developed a household-level, social-ecological
simulation model of a mixed crop-livestock smallholder
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agricultural system. Rather than being calibrated to a specific
location, the model was purposely stylized and represented the
general characteristics of many mixed crop-livestock systems in
the Global South. As such, the model is intended as a tool for
generating hypotheses to be empirically tested by researchers in
specific contexts, as well as for illustrating key social-ecological
dynamics relevant for informing future interventions, programs,
or public policy directed at poverty alleviation.

Using the model, we address the following questions:

1. What are the relative effects of planting legume cover crops
as green manure and index-based crop insurance on
smallholder households’ climate resilience?

2. Are there short- and long-term complementarities in these
effects?

3. How do these strategies differentially affect rich and poor
households?

In answering these questions, we operationalized the concept of
resilience using measures of household wealth and income. In the
model, these economic measures were mediated by ecological
capital (i.e., soil nutrients). Our perspective is therefore an
ecological-economic one. We hypothesized that financial
insurance provided greater benefits to resilience in the short-term,
but that over time the benefits of cover cropping for SOM would
provide equal or superior resilience benefits. Thus, when applied
together, the strategies will demonstrate complementarity over
time. Additionally, because cover cropping constitutes a
progressive ecological adaptation of the agroecosystem, we
expected its benefit to be strongest for poor households with
degraded soil fertility.

METHODS

Our model description generally follows the Overview, Design
Concepts, Details, and Decisions (ODD+D) format (Miiller et
al. 2013). We provide the full protocol in Appendix 1. The model
was implemented in Python and code is available at CoMSES.net
(refer to Data Availability Statement).

Model purpose

The social-ecological simulation model was developed to
investigate climate resilience in smallholder mixed crop-livestock
systems, which are prevalent in many dryland regions in the
Global South, in which crop growth is limited by rainfall (Powell
et al. 2004, Thornton and Herrero 2015). To more easily
disentangle the key social-ecological dynamics, we sought to limit
model complicatedness (Sun et al. 2016). As such, the model does
not draw from extensive empirical data to represent a specific
location, but we draw several parameters from Ethiopian data
sources to define the relative scales of model elements (e.g., crop
and livestock prices). We affectionately named the model
SMASH: Stylized Model of Agricultural Smallholder
Households.

Our model analysis examined the general mechanisms through
which selected household-level adaptation strategies affect
climate resilience. Because of the model’s stylized nature, we did
not seek to directly generate policy-relevant recommendations
through the model analysis. Rather, our assessment intends to (1)
generate hypotheses that can be tested by researchers in future
empirical studies and (2) provide theoretical grounding for future
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agricultural development and poverty reduction programs to
integrate ecological and economic adaptation strategies.

Entities, state variables, and scales

The model (Fig. 1) represents a population of smallholder
households that engage in agriculture and carry wealth solely in
the form of livestock. Each household is defined by static land
holdings and consumption requirements and has dynamicincome
and wealth. Livestock are grazed on a combination of on-farm
crop residues and an external rangeland, which is not explicitly
modeled. Each household’s land (or “field”) has an evolving level
of organic and inorganic nutrients, the dynamics of which
influence crop yields. The model is spatially implicit, no
environmental feedbacks beyond the household scale are
represented, and households do not interact.

Fig. 1. Conceptual diagram of the stylized model of
agricultural smallholder households (SMASH) showing the
main interactions. Triangles pointing inward (/outward)
indicate points at which nutrients are added to (/lost from) the
system.
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Process descriptions

The model operates at an annual time step. Each year of the
simulation involves calculation of (1) soil nutrient flows, (2) crop
yields, and (3) household income and wealth.

Nutrient dynamics

The model represents two pools of soil nutrients: organic and
inorganic. The organic pool represents SOM and soil organic N
together in a stylized manner, with fluxes primarily corresponding
to the organic N portion of SOM. Although crop yields are also
limited by other nutrients, we focused on N because it is generally
the most limiting nutrient for crop growth (Robertson and
Vitousek 2009). We henceforth refer to this pool as SOM, though
we note that we quantify it using kg N/ha rather than as a
percentage of bulk soil. Each year, inorganic nutrients are
mineralized from both added organic matter and from the SOM
pool (Fig. 1). These inorganic nutrients are available to that year’s
food crop.

There are several points at which nutrients enter and leave the
system (Fig. 1). First, a fraction of the mineralized nutrients is
lost through leaching. This fraction is higher with lower levels of
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SOM (Drinkwater et al. 1998, Bommarco et al. 2013). Second,
all nutrients contained in the harvested component of the crop
are exported from the modeled system. Third, 10% of the crop
residues are assumed to be lost or removed (Assefa et al. 2013).
Nutrients enter the system through livestock manure, which
qualitatively represents nutrient import from external grazing
land. Hence, households with larger livestock herds have larger
SOM additions, and consistent cropping with no replenishment
of SOM will slowly degrade soil fertility over time (Reeves 1997).

In many mixed crop-livestock systems, households apply
inorganic fertilizers to supplement in-soil nutrients for crop
growth. However, inorganic fertilizer was not included in this
version of the model. Including fertilizer would require additional
assumptions about household decision making related to
fertilizer use and livestock nutrient management, as well as
complicate the model dynamics. We interpreted our results in light
of this assumption.

Climate and crop yields

We modeled crop yields using the yield gap concept, in which
yields are reduced from a maximum potential value through water
and/or nutrient limitations (Tittonell and Giller 2013). We first
simulated the regional climate condition, which was the same over
all households and was independently sampled each year from a
normal distribution. Using this, we calculated field-level water
reduction factors. Here, field-level SOM helps to reduce drought
sensitivity (Bommarco et al. 2013). Next, if the available field-
level inorganic N was insufficient to produce this water-
constrained yield, production was limited by the available
inorganic N. Finally, the resulting value was perturbed by a field-
level, normally distributed stochastic error term. This term
conceptually represents all uncontrollable factors affecting crop
yields and other positive or negative household-level shocks, as
well as local variability in the observed climate conditions within
a region containing a population of smallholder households.

Household income and wealth

The model makes several assumptions with respect to household
income and wealth. First, households do not have access to
financial savings and instead use livestock as a bank account.
Hence, wealth and livestock are equivalent in the model. Second,
we do not consider non-farm employment markets. Third,
households cannot purchase fodder for their livestock under
baseline conditions, making livestock a risky wealth stock. These
conditions are characteristic of many mixed crop-livestock
systems in the Global South (Powell et al. 2004, Thornton and
Herrero 2015), in which livestock are the primary savings
mechanism. We interpreted our results in the light of these
assumptions.

Households have a fixed annual consumption requirement. They
earn income solely from harvested crops, which are sold each year
at a constant price. If net income is in surplus, households add to
their wealth stores by purchasing livestock. If net income is in
deficit, households sell the required amount of livestock as a
coping measure (Bellemare and Barrett 2006, Moyo and
Swanepoel 2010). If income is in deficit and the household has
no available wealth stores, we assume that they can perfectly
reduce their consumption (i.e., wealth cannot be negative, and
households do not exit the modeled system). Finally, we do not
model livestock reproduction or mortality.
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The ability for households to accumulate wealth is constrained
by fodder availability for livestock (Valbuena et al. 2012, Assefa
et al. 2013); we assume that a fixed percentage of livestock feed
requirements must come from on-farm crop residues and that
households cannot keep livestock that they cannot feed. Hence,
households with larger land area (i.e.,, producing a greater
quantity of crop residue) have larger wealth capacities.
Additionally, this implies that in a year of complete crop failure,
householdslose all livestock that were dependent on crop residues.

Feedback loops

The structure of the model implies the existence of a feedback
loop; surplus income enables accumulation of livestock,
providing additional organic matter, which both decreases
drought sensitivity and increases future crop yields and income.
A household’s ability to experience this positive feedback cycle is
mediated by a combination of random and non-random factors;
households’ attributes such as land endowment and SOM
determine their wealth-generating ability and hence predispose
them to certain trajectories. In addition, stochasticity through
household-level random yield effects introduces a degree of path
dependence into the model; a household that is unlucky one year
(i.e., has a large, negative random effect in their crop yields) may
be pushed into a poverty trap (Tittonell 2014, Haider et al. 2018)
with decreasing livestock herds, SOM, crop yields, and income.

Calibration and specification of household types

Given our interest in exploring the distributional effects of
resilience strategies, we specified the model with three types of
households that differ exclusively in their land endowment. We
referred to these types as: land-poor, middle, and land-rich. We
used pattern-oriented modeling (POM; Grimm et al. 2005) to
estimate values for unknown model parameters that lead to a set
of desired emergent model behaviors. To qualitatively represent
both chronic and transitory poverty dynamics (Barrett 2005), we
selected baseline parameters such that the land-poor households
were “always poor” (i.e., never maintain positive levels of wealth
throughout the simulation), the middle households were
“sometimes poor,” and the land-rich households were “never
poor”. Additionally, we required that SOM never increased to a
maximum value under baseline conditions and that the middle
households could recover from shocks. See further details in
Appendix 1.

Resilience-enhancing strategies

We represented both microinsurance and legume cover cropping
in the model as scenarios, rather than as an outcome of an explicit
decision-making process. Thus, we did not focus on the question
of “how” to expand the use of these strategies. Instead, we
explored what the potential benefits might be “if” each strategy
istaken up, when these benefits may be experienced, and by whom.
We therefore assumed that households always engaged in a given
strategy, regardless of their previous experiences or wealth.

We included a representation of index-based crop insurance. A
household with insurance must pay an annual premium to
participate and receives a payout in any year that the climate
condition is below a pre-specified threshold (e.g., the 10™
percentile). The payout rate is the same for all households and is
equivalent to the crop yield under average climate conditions,
assuming a nutrient limitation factor of 0.5. Insurance payouts
supplement the households’ income and, in contrast to regular
income, can be used to buy fodder for livestock. Thus, the
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insurance de-risks the wealth stock and represents a form of asset
protection rather than replacement (Carter et al. 2018). Because
we did not model fertilizer or other agricultural production
investments, we considered only the ex-post coping effects of
microinsurance and not its ex-ante risk-reducing benefits.

Legume cover crops are grown in the fallow season and
incorporated into the soil as green manures. Through biological
N, fixation and production of high-N biomass, green manures
provide additional organic N inputs to the soil. Livestock are not
grazed on the cover crops. We assume that the cover crops’ growth
declines under adverse rainfall conditions in the same way as crop
yields; thus, in a year with no rainfall, cover crops fail and no N
is fixed (Serraj et al. 1999). We assumed an annual financial cost
equal to the annual cost of insurance. By assuming that the labor
required for cover cropping would otherwise be applied to other
income-generating activities, this financial proxy for labor is
appropriate.

Outcome measures: poverty reduction and shock absorption

We operationalized climate resilience in two distinct ways. We
conceptualized both of these as nested within “development
resilience,” which describes “the capacity over time...to avoid
poverty in the face of various stressors and in the wake of myriad
shocks” (Barrett and Constas 2014). The first measure represents
the longer-term capacity of households to avoid poverty (i.e.,
retain positive livestock holdings) in the presence of climate
variability and evolving SOM levels.

We referred to this resilience measure as the “poverty-reducing”
capacity, R™":

RP%=Pp(wealth >0
( t:Tva ) (1)
where the probability is evaluated over 300 model replications at
time T , (e.g., Tpm 50 years). We conducted a convergence
analy51s to determine the appropriate number of model
replications that ensured our estimates were not strongly

influenced by model stochasticity (Appendix 2).

To compare a household’s poverty-reducing capacity under cover
cropping (CC) and insurance (Ins), we calculated:

P(CC> Ins)P”=P(R}L>RYY) %)

Ins

where the > sign is read as “is preferable to.”

The second resilience measure assesses the shorter-term capacity
of a household to maintain or increase its income in the wake of
a drought. We referred to this as the “shock-absorbing” capacity,
R Tts measurement requires some explanation. First, we
simulated the system under randomly generated climatic
variability with a single-year “shock”(i.e., drought event) imposed
inyear T, .. Wemeasured the drought’s severity by its percentile
in the climate distribution. For example, a 5% drought represents
a 1 in 20-year event. The drought interacted with the model
through its effect on food crop and cover crop yields in the same
year, as well as any possible insurance payout (Fig. 1). This could
have long-term implications if the household was required to sell
livestock because this both reduces their future buffering capacity
and reduces organic N inputs to their field.


https://www.ecologyandsociety.org/vol26/iss2/art14/

Table 1. Simulation parameters under each experiment.
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Experiment pr Ty T e Cover crop Microinsurance Complementarity Other
parameters
N, fixation Cost factor’ % of years Cost factor
(kg N/ha) with
payout|

1: shock absorption - 1-50 1-15 95T 1 10 1 Yes Baseline
2: poverty reduction 50 - - 95" 1 10 1 Yes Baseline
3: strategy 20 10 3 40-200 0.1-4 1-30 0.1-4 No Baseline
characteristics )
4: social- 50 20 5 95" 1 10 1 No Varied

environmental

characteristicf

" Drawn from empirically measured values in temperate settings (Badgley et al. 2007). See Appendix 1, Figure A1.3.
! This represents the annual cost of cover cropping relative to the baseline value for microinsurance.

§ We used different T and T
I'See Chantarat et al. (2017)

To investigate the temporal dynamics of the shock-absorbing
capacity, we ran experiments that differed across two dimensions.
The first dimension represents the point in time at which the shock
occured in the simulation (7, ,). Because both strategies
(microinsurance and cover cropplng) are applied in every year,
T, is equivalent to the amount of time the given strategy has

been in use. The second dimension represents the period of time
over which the effects of and recovery from the shock are assessed

( Tas.&‘e.\'.\') °
Thus, we calculated:

T
Rshock —

shock+ Tassess
income . ©)

t= Tshock

To compare the shock-absorbing capacity of a household under
the two strategies, we calculated:

shock _ ,shock 4
cc >Rins ) @)

P(CC > Ins)*™*=p(R
To investigate complementarities between the two strategies, we
compared the resilience outcomes with both strategies
implemented together (i.e., the households engage in both
microinsurance and cover cropping and paying the costs for both)
against the outcomes of each strategy in isolation. We considered
complementarity as a situation in which engaging in both
strategies yielded additional benefits above that derived from
engaging in one strategy alone (either cover cropping or
microinsurance) and a tradeoff as a situation in which engaging
in both strategies was less beneficial than engaging in a single
strategy. Tradeoffs may occur, for example, if the benefits of
adding microinsurance to complement cover cropping do not
offset the increased cost for the insurance premiums.

For both measures of resilience, our focus on wealth and income
may appear to represent solely economic outcomes and not
ecological ones. However, because a household’s wealth- and
income-generating abilities are mediated over time by SOM, we
indirectly incorporated ecological capital into our resilience

in this experiment for visual clarity in the plotting. We verified that this does not affect the shape of the relationships.

measures. Additionally, through our dual resilience measurement,
we combined stability properties with the ability to resist or
undergo qualitative changes in structure (Holling 1973). Thus, a
resilient household can both cope with drought-induced
disturbance and resist entering a social-ecologically degraded
“poor” state. However, because we did not focus on household
decision-making or landscape-level processes, we did not consider
facets of resilience related to adaptive responses or transformative
system-level transitions (Folke 2016, Walker 2020).

Simulation experiments

We structured our analysis into four main experiments (Table 1).
The first and second experiments respectively examined the
shock-absorbing capacity (R™%) and the poverty-reducing
capacity (R") of households under a range of time horizons. In
these two experiments, we examined resilience under cover
cropping and microinsurance, as well as with both strategies
implemented together. In the third experiment, we tested how
different assumptions about costs and benefits of the two strate-
gies affected the resilience comparisons (i.e., P(CC > Ins)shock
and P(CC > Ing)P®) to identify “robust regions’ within the
parameter space (Lempert 2002). Here, we systematically varied
the annual costs of both microinsurance and cover cropping, the
microinsurance “strike rate” (i.e., percent of years with a payout),
and the amount of N fixed by the cover crops. When the
microinsurance cost factor is one, the insurance is actuarially fair.
A cost factor less than one represents subsidized insurance and a
factor greater than one implies net profits to the insurer.

In the final experiment, we explored how the resilience
comparisons changed under different socio-environmental
conditions. To do this, we conducted a sensitivity analysis on the
parameters of the model. We employed a meta-modeling
approach for global sensitivity analysis (Iooss and Lemaitre 2015)
in which we first ran our model under a wide range of perturbed
parameter configurations and then fit a non-parametric
regression model to explain how both resilience assessments
changed over the perturbed parameter space. From the meta-
model, we constructed a measure of “partial dependence,” which
describes the relationship between each parameter and the
resilience measures as assessed by the meta-model. We described
this methodology in Appendix 3.
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RESULTS

Model dynamics

Before presenting the results of our main experiments, we first
illustrate the representative behavior of the model under three
simulations: baseline conditions with regular climate variability
(Fig. 2A), in the wake of a drought (Fig. 2B), and with the two
strategies (Fig. 2C). To most effectively demonstrate the relevant
characteristics of the model, we assessed a different time period
and different outcome measures in each representative simulation.

Fig. 2. Model dynamics under representative simulation runs.
Part A shows the evolving wealth and soil organic matter
(SOM) of the three household types under baseline conditions
(i.e., without insurance or cover crops) and regular climate
variability. Each line represents a single household. Birr is the
Ethiopian currency. B shows the average effect of an imposed
10% shock in year 15 on the middle household type under
baseline conditions. C shows the average effect of the two
strategies on the middle household type under regular climate
variability. The vertical lines in C indicate years in which
insurance payouts are triggered.
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First, as specified by the calibration approach, under baseline
conditions and regular climate variability, the land-poor
households do not earn enough income to satisfy their
consumption requirements and so always become poor (i.e., have
zero wealth), whereas the middle households sometimes become
poor and the land-rich households are never poor (Fig. 2A). The
divergent outcomes for the middle households emphasize the path
dependence in the model; all middle households begin the
simulation in the same condition, but the randomness in the
calculation of crop yields leads to divergent trajectories,
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particularly when droughts cause some households to either
irrevocably lose their wealth reserves or to experience transitory
poverty. Households with positive wealth reserves, through
external nutrient input from livestock manure, are able to
maintain their SOM, but SOM steadily declines for households
with no wealth reserves (Fig. 2A). An imposed drought leads to
a decline in wealth that persists for several years (Fig. 2B). Due
to the wealth-SOM feedback in the model, this results in a
marginally lower SOM than the drought-free counterfactual (Fig.
2B).

Microinsurance and cover cropping affect the model dynamics in
several ways. Microinsurance premiums, which cost 10% of
average yields, slightly decrease income under regular years, but
the insurance payouts buffer the effects of drought when payouts
are received (Fig. 2C). Cover cropping’s benefit to income in
general increases over time and is strongest in years with higher
rainfall (Fig. 2C). These effects are due to the higher inorganic
nutrient availability (from decomposition of cover crop residues)
that reduces the extent to which nutrients inhibit crop yields.
Because nutrient availability is more critical in high-rainfall years
when water is not a constraining factor, the largest benefits are
therefore experienced at these times.

Shock absorption

Our results conform with our main hypothesis, showing that
insurance as an ex-post coping strategy is preferable in the short-
term recovery from a drought, but that there is a time at and
beyond which cover cropping provides larger benefits (Fig. 3).
This is not a single point, however, but a line of (T, ., T,....)
pairs. When assessing the effects solely in the year of the shock
(T, = 1), insurance is the preferable strategy (i.e., P( CC>Ins)
<0.5) in 100% of the simulations over all time. After 15 years of
legume cover cropping, it takes approximately 5 years following
a shock for the cumulative benefits of cover crops to outweigh
the benefit of the insurance payout (i.e., transition to red in Fig.
3). After 25 years of cover cropping, this decreases to 3. These
effects are qualitatively consistent for each of the three household
types (Appendix 4, Fig. A4.3), showing that all types of
households strongly benefit from insurance in the wake of a
shock. However, when the drought is not severe enough to trigger
an insurance payout, cover cropping consistently provides
superior shock absorption benefits (Appendix 4, Fig. A4.4).

Because of the strong power of microinsurance in buffering the
effects of drought, adding microinsurance to complement cover
cropping always increases shock-absorbing capacity (Fig. 4A). In
contrast, adding cover cropping to complement microinsurance
leads to tradeoffs in the short-term (black region in Figure 4B).
This is for two reasons. First, in the year of the drought (i.e., T,

= 1), crop yields are constrained by water availability rather than
nutrient availability, so cover cropping provides little or no direct
benefit to offset its costs. Second, it takes time for cover cropping
to build SOM and, consequently, the water retention capacity of
the soil. Thus, tradeoffs are stronger when T, . is lower.
Nevertheless, as the amount of time for which cover cropping is
practiced increases (i.e., as T, , increases), its direct benefits to
water retention enabled through higher SOM lead to
complementary effects even in the year of the shock (Fig. 4B).
Similarly, as T increases, cover cropping provides

assess
progressively larger benefits that lead to long-term
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complementarity. Additional experimentation reveals that the
long-term benefits of microinsurance and legume cover crops are
greater than the sum of both strategies in isolation, i.e., they are
synergistic (Appendix 5).

Fig. 3. Comparison of strategies’ shock-absorption benefits.
Probability that cover cropping provides larger benefits to
shock absorption (P(CC >Ins)") as a function of the year at
which the shock occurs (T, ) and the number of years over
which the effects are assessed (T, ). Red areas represent
situations in which cover cropping provides larger benefits than
microinsurance. This shows the outputs for a middle household
(i.e., “sometimes-poor”). The outputs for other household types
were qualitatively consistent and are shown in Appendix 4.
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Fig. 4. Complementarity of strategies for shock absorption.
Probability that implementing both strategies together provides
greater shock absorption benefit than (A) cover cropping in
isolation and (B) insurance in isolation. Green areas indicate
complementarity, black indicates tradeoff.
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Poverty reduction

Under regular climate variability, legume cover cropping reduces
poverty (Fig. 5). The effect is strongest for the land-poor
households, who after 50 years of cover cropping are 21% more
likely to avoid poverty. For the middle households, cover cropping
almost eliminates poverty altogether. These strong effects are
explained by the ecological feedback that cover cropping enables;
higher SOM increases the productive ability of the households,
thus increasing income over time (Appendix 4, Fig. A4.1A).
However, there is a one- to two-year period in which the costs of
cover cropping outweigh the benefits, resulting in decreased
income for all household types (Appendix 4, Fig. A4.1A).
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The results show a very different effect for insurance; for both the
land-poor and middle households, insurance (modeled with ex-
post coping benefits only) is not effective as a poverty alleviation
mechanism (Fig. 5). Despite reducing income variability, the
lower mean income in non-drought years because of required
insurance premium payments leads to lower mean levels of wealth
and SOM (Appendix 4, Fig. A4.1). This demonstrates that
although the insurance scheme is actuarially fair, the required
premium payments can enable an ecological feedback in the
model whereby the payouts in shock years do not adequately
compensate the income losses in regular years.

With respect to complementarity, for both land-poor and middle
households, adding cover cropping to complement microinsurance
successfully reduces poverty (Fig. 5). However, particularly for
the land-poor households, the converse is not true; adding
microinsurance to complement cover cropping increases poverty
above the levels seen with cover cropping by itself. Hence, under
the conditions of the model, increasing mean incomes, in this case,
through cover cropping, is a more effective strategy for poverty
alleviation than reducing income variability.

The measure of poverty reduction assessed in Figure 5 is not
relevant for the land-rich households because they are not at risk
of poverty under baseline conditions. Supplementary
experimentation reveals that, in contrast to land-poor and middle
households, microinsurance enables a positive ecological
feedback with higher levels of wealth and SOM (Appendix 4, Fig.
A4.1). Thus, households not vulnerable to poverty derive some
benefit from the reduced income variability provided by
microinsurance. To examine this more deeply for a land-rich
household, in Appendix 6 we assessed the strategies’ effects on a
measure of risk-averse utility. Over a range of levels of risk
aversion, microinsurance provides welfare benefits to land-rich
households. This benefit is initially greater than that of cover
cropping, but over time cover cropping’s utility benefit surpasses
microinsurance’s.

Influence of insurance and cover crop characteristics

The superiority of microinsurance for shock absorption is robust
to changes in the assumed strategy characteristics (Figs. 6B, 6D).
When evaluating shock absorption over a three-year recovery
period, insurance provides on-par or superior benefits to cover
cropping up to cost factors of around two (i.e., a case in which
the annual premium is twice the expected annual payout). Cover
crops would need to be both freely available through household
production (i.e., cost factor of zero) and fix very high levels of N
to provide benefits equivalent to insurance (top-left of Fig. 6B).
When effects are assessed only during the year of the shock (i.e.,
T, .. = 1), insurance remains strongly preferable for shock
absorption under all conditions in which a payout is received
(Appendix 4, Fig. A4.5).

The superiority of cover crops for poverty reduction is also robust
(Figs. 6A, 6C). Only at high cover cropping costs and low N,
fixation rates does insurance become preferable (Fig. 6A).
Similarly, the cost factor for microinsurance generally has to be
lower than one for it to reduce poverty more than cover cropping
(Fig. 6C). Interestingly, more frequent microinsurance payouts
appear to provide better poverty reduction benefits (top-left of
Fig. 6C). Additional experimentation with the microinsurance
payout frequency revealed a tradeoff: providing more regular
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Fig. 5. The effects of the ecological and financial strategies on poverty reduction. P(wealth > 0) represents the probability that a
household has positive wealth reserves. This probability was calculated for each household type at each time step as the average
household poverty status across all simulation replications. We ran a 10-year burn-in period before implementing the strategies to

reduce the sensitivity to initial wealth levels.

Land-poor

1.0

Land-rich

P(wealth > 0)

0 10 20

—— baseline —-= insurance

payouts effectively buffers income losses from moderate shocks
but requires a higher annual premium that leads to increased
vulnerability during more extreme shocks even when payouts are
received (Appendix 7).

Fig. 6. Influence of ecological and financial strategy
characteristics on the resilience comparisons. The black dots
represent the baseline settings used in other experiments. For
cover cropping (A and B), the cost factor represents the annual
cost of cover cropping relative to the baseline annual cost of
insurance. For insurance (C and D), the cost factor represents
the ratio of the annual premium to the expected annual payout.
When this equals one, the insurance is actuarially fair. The
vertical axis for insurance represents the percent of years in
which an insurance payout is received. In all cases, we show
only the results for the middle household type; additional
results are shown in Appendix 4, Figure A4.5 and Figure A4.6.
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Sensitivity to socio-environmental characteristics

We use the sensitivity analysis (Fig. 7) both to assess the sensitivity
of the model to its parameters and to draw insights about which
resilience-enhancing strategy may be more preferable in different
socio-environmental contexts. In Figure 7, the slopes of the lines
give anindication of the magnitude and direction of the sensitivity
of the P(CC>Ins) assessments for each parameter. Because this

——=- covercrop -t both

30 40 50 60 0 10 20 30 40 50 60
Year Year

burn-in

was generated under a single set of settingsfor 7’ . T, .. and
T,,, (Table 1), in this section we are more interested in the slopes

of the lines than the absolute P(CC>Ins) values.

As consumption requirements (i.e., household living costs) are
increased in the model, cover cropping becomes a better strategy
for poverty reduction (i.e., the dashed line is upward sloping in
Fig. 7A). This complements the results of Figure 5; higher
consumption requirements result in more households becoming
poor (Appendix 4, Fig. A4.7A), thus accentuating the poverty-
reducing effects of cover cropping and further demonstrating
cover cropping’s pro-poor benefits. Other household-level
parameters do not exert considerable influence on the
comparisons (Figs. 7B, 7C), and this low sensitivity provides
strength to our results in the above sections.

Changes to the average climate condition have divergent and
nonlinear effects on the resilience strategy comparisons (Fig. 7D).
Cover cropping provides the largest relative poverty reduction at
moderate climate conditions. This is because under low climate
conditions (i.e., low rainfall), cover crops fix less N and so do not
provide long-term SOM benefits (Appendix 4, Fig. A4.7B),
reducing their relative ability as a poverty reduction strategy.
Conversely, with high climate conditions (i.e., more rainfall), more
households have livestock and so are able to maintain SOM in
their fields without cover crops (Appendix 4, Fig. A4.7B), also
reducing cover crops’ relative poverty reduction effect. For shock
absorption, microinsurance is more beneficial than cover
cropping under drier conditions (i.e., lower climate mean). Here,
cover cropping more effectively buffers shocks under conditions
of higher average rainfall because of SOM stabilizing yields
during the more moderate shocks.

Under higher climate variability, cover cropping provides larger
relative benefits to resilience (Fig. 7E). This is because cover
cropping, through building of SOM, moderates the relationship
between climate variability and yield variability. Although
microinsurance provides payouts when climate conditions fall
below the threshold, it does not buffer against climatic variability
in non-payout years. Thus, when climate variability is higher,
microinsurance has a lower relative benefit on average.
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Fig. 7. Sensitivity of the resilience assessments to changes in model parameters.
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marks indicate the default parameter values used

in the other experiments. Uncertainty bands represent 95% confidence intervals from 100 bootstrapped replications of the model
outputs. The method used to generate these plots is described in Appendix 3. The regional climate variable characteristically
represents the combined effect of water and temperature on crop yields, where a value of 1 indicates no climate-induced crop yield
stress. We plot only four land parameters, which were selected based on sensitivity and social-ecological relevance.
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Cover cropping offers larger relative benefits to resilience under
more adverse land characteristics, including situations with low
external rangeland availability (Fig. 7F), low soil fertility returns
from livestock (Fig. 7G), low soil fertility (Fig. 7H), and low yield
potential (Fig. 71). This result is not surprising because cover
cropping progressively builds the system’s natural capital.
Relationships are qualitatively consistent between the two
resilience measures.

DISCUSSION

Microinsurance alone may not reduce poverty

Our results suggest that, when used solely as an ex-post risk coping
strategy, microinsurance alone may not help households to escape
poverty (Figs. 5, 6). The premium payments required for
microinsurance pushed poor households into poverty traps,
thereby increasing poverty relative to baseline conditions. The
lack of benefit for poor households highlights potential concerns
regarding equity (Fisher et al. 2019) and is in accordance with
some empirical research on index-based livestock insurance
(Chantarat et al. 2017). In addition, we found that the vulnerable

4000 5000 5000 6000 7000 8000
Initial soil Maximum staple
fertility crop yield

== poverty reduction

non-poor (i.e., middle) households also experienced higher
poverty levels with the insurance alone. In part, this result is
explained by our exclusion of ex-ante effects of insurance that
would enable risk-averse households to engage in higher
productivity livelihood activities, e.g., fertilizer use, crop choice,
and other drought management strategies (Miiller et al. 2011,
Mobarak and Rosenzweig 2013, Karlan et al. 2014, Cole et al.
2017, Kramer et al. 2019). Inclusion of these effects may change
the outcomes for the middle households. Nevertheless, the
potential for microinsurance to cause vulnerable non-poor
households to enter (transitory or chronic) poverty warrants
further consideration in models with more complex household
behavioral representations, including issues of moral hazard and
interaction with other behavioral adaptations (O’Hare et al.
2016), as well as empirical investigation in different socio-
environmental contexts.

Ecologically based farm management enhances resilience over
time

The robustness of the relative benefit of legume cover cropping
for poverty reduction in our model is largely because of its
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assumed long-term benefits for agricultural productivity, which
enable poor households to “step up” out of poverty (Dorward
2009). Other production technologies, such as improved crop
varieties, cropping system diversification, irrigation, or
conservation agriculture practices, may offer similar risk- and
productivity-related benefits to cover cropping (Lin 2011, Hansen
et al. 2019). Additionally, other studies have argued for fertilizer
subsidies to break soil quality poverty traps (Barrett and Bevis
2015). Future research could evaluate and compare the resilience
effects of such productivity-enhancing technologies and policies.

However, our analysis highlights the value of an integrated social-
ecological perspective. Our results show that legume cover
cropping, i.e., investing directly in soil fertility itself, offers
substantial combined potential for long-term environmental
improvement and poverty reduction for smallholder farms, which
may not exist with non-ecological technologies like inorganic
fertilizer. Beyond the modeled effects, ecologically based
management strategies offer numerous benefits to field- and
landscape-level ecosystem services (Bommarco et al. 2013,
Dainese et al. 2019), as well as reduce dependence on external
inputs (Shennan 2008). Reduced externalities and ancillary
benefits may be difficult to quantify and slow to build, but
ultimately contribute to social-ecological synergies and resilience
of a more “general” nature than the “specified” version assessed
by our model (Cabell and Oelofse 2012, Jacobietal. 2018, Stratton
et al. 2020, Weise et al. 2020). Thus, we recommend that future
policies, projects, and programs for smallholder poverty reduction
empirically examine the benefits of integrated ecological and
economic approaches (Miiller and Kreuer 2016, Beck et al. 2019).

Our results revealed a one- to two-year period before cover
cropping provided net benefits, i.e., a transition period (Martini
et al. 2004, Lamine and Bellon 2009, Stratton et al. 2021). We did
not focus on decision making or barriers to cover cropping
adoption, but these results highlight that liquidity constraints and
large time discounting rates could make households unable or
unwilling to forgo these short-term losses to engage in cover
cropping or similar practices (Quaas et al. 2019). Thus, a long-
term view may not be pragmatic if focusing exclusively on cover
crops. Capacity building, educational opportunities, and
subsidies for cover crop seeds and labor during the transition
period may help to overcome this barrier (Baumgirtner and
Quaas 2010, DeLonge et al. 2016, Duff et al. 2017). Integration
of dynamic decision making and interactions with other
institutional structures are avenues for future research on
ecological resilience-enhancing strategies.

Harnessing ecological and financial complementarities for
climate resilience

Our results illustrate the strong complementarity of
microinsurance and cover cropping: when implemented together,
the strategies can provide greater benefit than either in isolation
(Fig. 4). Climate resilience and poverty reduction programs,
development agendas, and empirical studies could further test this
complementarity and investigate bundling of adaptation
strategies (Kramer and Ceballos 2018, Kramer et al. 2019, Wong
et al. 2020). Our study demonstrates the promise of simulation
models, whether empirically calibrated to specific locations or
stylized as in this study, as tools for ex-ante examination of
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resilience dynamics and interactions between strategies over long
timescales. Particularly in situations in which empirical evidence
is lacking, simulation modeling can provide important
information about time lags, barriers to adoption, and required
investments, which can help to inform the design of poverty
reduction programs and aid allocation.

Different types of households may require different forms of
intervention; our results showed that chronically poor (i.e., land-
poor) households benefited greatly from the ecological strategy
of cover cropping, which acted as a necessary “cargo net” to
mitigate risk and increase asset bases (Barrett 2005), but that
adding microinsurance to complement cover cropping did not
provide complementary poverty reduction benefits (Fig. 5). Thus,
risk mitigation strategies such as cover cropping could be
emphasized for enabling chronically poor households to step up
out of poverty. However, because cover cropping alone did not
bring all land-poor households out of poverty (Fig. 5), bundling
with additional interventions, such as social protection measures
(Hansen et al. 2019), may be necessary and should be investigated
in future research. Bundled cover cropping and microinsurance
appears to offer the greatest benefit for the vulnerable non-poor
(i.e., middle) and non-poor (i.e., land-rich) households. For the
middle households, the bundled strategies reduced poverty by a
comparable amount to cover cropping in isolation (Fig. 5), as well
as provided long-term complementarity in the wake of a drought
(Fig. 4). For the land-rich households, particularly those with
higher risk aversion, the bundled strategies provided immediate
welfare improvements (Appendix 6).

Environmental context can exert additional influences on the
appropriate combination of financial and farm-based strategies.
Forexample, legume cover cropping had a comparative advantage
in harsher and more degraded landscapes (Fig. 7). However,
annual cover cropping may not be an appropriate agricultural
practice in contexts with very low rainfall because this can limit
potential biomass accumulation and N fixation, as well as
potentially reduce soil moisture content and subsequent crop
yields (Unger and Vigil 1998). In these contexts, drought-tolerant
cover crops or other sustainable agriculture practices, such as
mulching or agroforestry (Shankarnarayan et al. 1987, Ewansiha
and Singh 2006, Bayala et al. 2012), may be more effective, both
in isolation and in combination with insurance. Additionally,
future case-based studies should target the insurance strike rate
to the given social-ecological context (Lybbert and Carter 2015,
Kramer et al. 2019) because context will affect climate-yield
relationships, cover cropping performance, and poverty
dynamics.

Generalizability of our results

We made several strong assumptions in our model that may
influence the generalizability of our results. Most importantly, a
critical component of our model is the wealth-based feedback
loop in which wealth (livestock) directly fosters organic nutrient
imports and improves crop productivity. In situations in which
financial resources other than livestock are available (e.g., savings
accounts), wealth would not be as strongly linked to field-level
nutrient import. Additionally, large areas of grassland may be
required to graze livestock to sustain nutrient applications on
cropland, which might be infeasible given social-political
constraints on land ownership and access (Dell’Angelo et al.
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2017). Furthermore, perfect import of nutrients from rangelands
is an optimistic assumption because of competing uses for
nutrients (Tittonell and Giller 2013, Berre et al. 2021). In all cases,
the implication is that the wealth-based feedback loop in our
model may be exaggerated and thus the strategies’ effects on
poverty overestimated. However, this exaggeration is the same
under each strategy, so by focusing on the relative benefits of the
two strategies, we reduced (though did not eliminate) the
implications of this bias for our assessment.

Our modeled system most closely approximates an isolated rural
community in which non-farm employment opportunities do not
exist, use of fertilizer is low, and wealth is constrained by local
environmental conditions (i.e., no access to savings accounts or
fodder for purchase). Smallholder systems globally are
undergoing diverse structural transformations, leading to
increased livelihood diversification both within agriculture and
into non-agricultural activities, increased intensification, and
commodification and consolidation of land ownership (Barrett
et al. 2010, De Schutter 2011, Alobo Loison 2015). Inclusion of
such processes would affect our results. For example, including
inorganic fertilizer as another mechanism to increase productivity
would likely diminish the relative benefits of cover cropping,
though fertilizer does not directly build SOM. Moderate fertilizer
application and cover cropping could therefore be
complementary practices (Giller et al. 1997). Non-farm
employment opportunities may help to increase smallholder
resilience under baseline conditions by providing a means through
which the poor can step out of poverty (Hansen et al. 2019).
Additionally, households may be willing to buy fodder to smooth
their asset stocks even at the expense of their own consumption
(Morduch 1995), which would reduce the effects of drought on
asset stocks seen in our results. Future research could expand the
scope of this stylistic model to include additional livelihood
activities, behaviors, or exogenous drivers and better match it to
specific empirical contexts.

Our study focused on potential benefits if support systems existed
such that smallholders were able to adopt legume cover cropping
and microinsurance. We did not incorporate household decision
making with respect to uptake of the strategies or their spillover
effects on other management practices. In reality, there exist
financial, social, and informational barriers to the adoption of
both ecological and financial strategies that have led to limited
uptake in smallholder systems to date. Integrating decision
making and approaches from ecological economics with the
resilience perspective in this article is a promising avenue for future
research.

CONCLUSIONS AND RECOMMENDATIONS

We assessed the effects of microinsurance and legume cover
cropping on climate resilience in a stylized mixed crop-livestock
smallholder system. Our study offers a fresh, reconciliatory
perspective to the current debate on strategies for climate risk
management and poverty reduction (Hansen et al. 2019). Distinct
agricultural development communities and organizations
advocate for microinsurance and ecologically based management,
sometimes with strong ideological disagreements. By providing a
rigorous comparative assessment of these strategies, we hope to
bring these paradigms together, illuminate their complementarity,
and seed future collaborative empirical assessments and
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integrated applications to programs and policies for sustainable
development.

Our model results can be boiled down to this: insurance provides
an important buffering effect to climate shocks, whereas legume
cover cropping progressively decreases poverty and the impacts
of shocks over time. Together, these benefits underscore the
potential complementarity of economic and ecological
adaptation strategies for smallholder resilience. Future
development programs and empirical research could test this
complementarity in different socio-environmental contexts,
including how it develops over time and throughout a
heterogeneous population of households. Finally, development
resilience provides a useful conceptual framework for quantitative
resilience analyses that jointly consider the capacities for poverty
reduction and shock absorption (Dou et al. 2020). An integrated
approach to resilience assessment shows promise to mitigate
tradeoffs and harness complementarities so as to improve
smallholder livelihoods and social-ecological functioning.

Responses to this article can be read online at:
https://www.ecologyandsociety.org/issues/responses.

php/12207
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APPENDIX 1 ODD+D model description

Al.l Overview

Al1.1.1 Purpose

The model was developed to investigate the short- and long-term resilience of a smallholder
agricultural farming system and the effects of different household-level adaptation strategies on
this resilience. It is intended to be used by researchers interested in exploring long-term
dynamics of agricultural adaptation options. The model represents a mixed crop-livestock
agricultural system, designed to be generally representative of a smallholder agricultural system
in the Global South. Given the interest in exploring the general mechanisms through which
different adaptation options affect resilience, the model is intentionally stylized and does not
draw from empirical data to be representative of a specific location.

Al.1.2 Entities, state variables, and scales

The model represents smallholder households that engage in agriculture and carry their wealth in
the form of livestock. Each household is defined by a static land holding and has dynamic
income and livestock holdings. Livestock are grazed on a combination of on-farm crop residues
and an external rangeland, which is not explicitly modeled. The household’s land has an
evolving level of organic nutrients, which represent SOM and soil organic N together in a
stylized manner. The model is spatially implicit, no environmental feedbacks beyond the
household scale are represented, and households do not interact with each other.

Al1.1.3 Process overview and scheduling

The model operates at an annual time scale. Each year of the simulation involves calculation of:
(1) soil nutrient flows; (2) crop yields; (3) household income; and (4) household wealth and
coping measures (Figure Al.1).
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Figure Al.1: Overview of annual simulation process.

Al.2 Design concepts

Al.2.1 Theoretical and empirical background

The model represents soil nutrient dynamics in a stylized way. It models slow-evolving stocks of
SOM and faster-acting pools of mineralized nutrients. Our representation is consistent with soil
representations in biogeochemical models (Manzoni and Porporato 2009) and is qualitatively
comparable to other more complicated process-based models of soil nutrient dynamics used for

agricultural applications (e.g., CENTURY (Metherell et al. 1993), DSSAT (Jones et al. 2003),
and APSIM (Keating et al. 2003)).

Our crop yield model assumes that yields are influenced jointly by climate and nutrient
availability. This representation generally follows Liebig’s law of the minimum, which assumes
that yields are influenced solely by the most constraining of these factors and plateau when each
factor is above some threshold (Tittonell and Giller 2013, Ferreira et al. 2017) (i.e., the crop can
be water- or nutrient-limited). Similar representations are used in other more complicated
process-based models of crop yield (e.g., CENTURY (Metherell et al. 1993), STICS (Brisson et
al. 2003)) and in other simulation models (Grillot et al. 2018).



Together, our soil nutrient and crop yield representations exhibit the following qualitative
characteristics:

1) Consistent cropping without replenishment of organic matter will slowly degrade soil
quality and hence crop yields over time (Giller et al. 1997, Reeves 1997, Bennett et al.
2012);

2) Soil quality can be maintained and built through organic inputs (e.g., manure or
leguminous cover crops) (Giller et al. 1997, Drinkwater et al. 1998, Wittwer et al. 2017);
and

3) Soil organic matter has benefits for drought sensitivity and nutrient losses (Drinkwater et
al. 1998, Bommarco et al. 2013).

Household decision-making represents wealth accumulation and coping measures, and is
modeled using a simple heuristic. This heuristic assumes that: (1) households store their wealth
in the form of livestock and do not have cash savings; (2) livestock are sold if necessary to meet
immediate cash needs (Bellemare and Barrett 2006, Moyo and Swanepoel 2010); and (3) total
herd size is limited by feed availability (Valbuena et al. 2012, Assefa et al. 2013).

Al.2.2 Individual decision making

The household makes two decisions related to their livestock wealth reserves, both of which are
governed by simple heuristics. First, if the household’s income in a given year is negative, they
make up the deficit by drawing from their wealth reserves (a proxy for the selling of livestock).
If wealth reserves are insufficient to make up the deficit, we assume that the household reduces
their consumption. Both livestock selling and consumption reduction are considered as coping
mechanisms. If, instead, their income is positive, they add this surplus to their wealth reserves (a
proxy for the buying of livestock). This latter case is mediated by the second heuristic; if a
household’s livestock herd (i.e., wealth reserves) is larger than could be fed by their crop
residues (assuming some percentage of their herd is grazed on common pastures), they are forced
to destock these animals that cannot be fed. Given that wealth can only be held in the form of
livestock — i.e., we do not model financial resources — the household receives no monetary
benefit for this destocking.

These heuristics are not influenced by any other factors and there are no notions of beliefs,
memory, learning, adaptation, or social or cultural norms.

Al.2.3 Learning
There is no notion of learning in the household’s decision-making.



Al.2.4 Individual sensing
Each year, the household observes its crop yields, residue production, and income, which
influence the decision heuristics.

Al1.2.5 Individual prediction
The household does not predict future conditions.

Al1.2.6 Interaction

There are no interactions between households. Livestock are assumed to be partially grazed on
common rangeland, which implies interactions with other households, but we do not explicitly
model the rangeland dynamics, so this interaction is not endogenous to the model.

Al1.2.7 Collectives
The household does not form collectives.

Al.2.8 Heterogeneity

The household is defined by its initial wealth reserves, initial soil quality, and land holdings. In
our simulations, we consider only the implications of different levels of land holdings. Given that
there are no interactions in our model, running the simulation for three households with
heterogeneous land endowments is equivalent to running it three times separately with a single
household.

Al.2.9 Stochasticity

There are two sources of stochasticity in the model: (1) the generation of yearly climate
conditions, which is constant across all households; and (2) a household-level random effect in
the calculation of crop yields. The household-level effect conceptually represents other non-
modeled factors that may influence crop yields, household-level (positive or negative) shocks,
and household-level variability in the experience of the regional climate condition. Together, this
requires us to simulate a set of hypothetical climate time series and, for each time series, run the
model for a set of households that experience different random crop yield effects. Under the
baseline model settings, the variability of the household-level effect is approximately half that of
the region-level effect. The model therefore allows for considerable path dependencies
introduced by household-level stochasticity.

Al1.2.10 Observation
Model outputs include yields, income, wealth, soil organic matter, and mineralized nutrients.
These are observed at the household level at an annual basis.



Al.2.11 Emergence

There exists a positive feedback loop, in which positive income enables accumulation of
livestock (wealth reserves), providing additional soil organic matter, which in turn increases
future crop yields and income. The ability for the household to experience this positive feedback
cycle is mediated by their land endowment, initial soil organic matter, climate, and random vyield
effects. As such, household “trajectories” emerge as a combination of these random and non-
random factors. Given the importance of stochasticity, there exists a considerable degree of path
dependence in the model; a household that is unlucky one year (i.e., has a large, negative random
effect in their crop yields) may be pushed into a downward spiral of decreasing livestock herds,
soil organic matter, crop yields, and income. We investigate the possibility for household
adaptation options (cover cropping and insurance) to influence these trajectories and hence
contribute to different emergent outcomes.

Al.3 Details

Al1.3.1 Implementation details
The model is implemented in Python 3.6. Code is available online at COMSES.net:
https://www.comses.net/codebases/ee47544a-7eb0-4482-8967-42d6b0c05060/releases/1.0.0/

Al1.3.2 Initialization

The model is stylized and does not draw from any extensive empirical datasets. To initialize a
single simulation, the climate time series is first generated, followed by a population of
households with heterogeneous land endowments. Household initial wealth and soil organic
matter levels are homogeneous and are specified by exogenous parameters (see section A1.3.3).
As stated above, a single model with multiple households is functionally no different to multiple
models with a single household, but we do it in this way both for computational efficiency
(through vectorization of calculations) and simpler management of random number seeds.
Within an experiment, the random number seed is the only factor that is varied upon
initialization.

A1.3.3 Input data and parameterization

Model parameterization is achieved through a combination of information from literature and a
pattern-oriented modeling calibration process. All model parameters are displayed in Table Al.1.
The calibration process is described in section A1.3.5. Although we do not intend the model to
be representative of any specific region or location, we chose to draw several of the parameters
from Ethiopian data sources. Ethiopia’s population is primarily engaged in smallholder
agriculture — many in mixed crop-livestock systems — and thus Ethiopia serves as a relevant
setting from which to draw stylized information. This enabled us to represent the relative scales
of different model elements (e.g., maximum crop yields and crop selling prices) without
requiring these values to be determined by the calibration process, thus reducing the
dimensionality of the uncertain parameter set.



Additionally, although our representation of soil nutrient dynamics is stylized and we do not
claim to realistically represent actual nutrient flows, we measure the SOM pool in units of
kilograms of nitrogen per hectare (kg N/ha). This again allowed us to ground several parameters
in empirically observed values (e.g., nitrogen-fixation of cover crops), reducing the number of
uncertain parameters. However, we note that some values, particularly the C:N ratios, remain
unrealistic in this model parameterization.

The derivation of several parameters requires some explanation:

Initial and maximum SOM: In reality, baseline amounts of organic matter in a non-
degraded soil are sufficient to provide nutrients for moderate levels of crop yield. To
parameterize the initial SOM, we used information from other parameters to give a rough
estimate of a reasonable value. Specifically, we assumed that the soil itself would initially
be able to provide 4,000 kg/ha crop yield (approximately 2/3 of the maximum yield) in
the absence of other inputs. Using the C:N ratio in the crop (50), this is equivalent to 80
kg N/ha of mineralized inorganic N that is produced solely through mineralization from
SOM. With a mineralization rate of 0.02, this requires an initial SOM level of 4,000
kg/ha. We then chose the maximum SOM level to be double the initial SOM level.
Wealth to nitrogen conversion: Using values from Newcombe (1987), we calculated that
a cattle might produce 6,165 kg of fresh dung or, equivalently, 5,364 kg of dry matter per
year. Assuming that 1.46% of the dry weight is nitrogen (also comparable to Lupwayi et
al. (2000)), this equates to 78.3 kg N/cattle/year. Assuming a price of 3,000 birr (the
Ethiopian currency) for a single animal, this is equivalent to 0.026 kg N/year/birr.

Land endowment: In reality, smallholder land holdings vary by a larger degree than we
represent in the model. However, we assume that each household — regardless of their
land endowment and wealth — has the same annual living costs. In reality, land-rich
households might have more household members, and consumption also generally
increases with wealth. For simplicity in the analysis, our households vary over a single
dimension (land endowment), so we do not incorporate such secondary effects and hence
parameterize the variability in land endowment from only 1 to 2 ha. These values
respectively correspond to the 47" and 75" quantiles of household landholdings in the
Ethiopia 2015 LSMS data.

Table Al.1;: Parameter values and sources.

Parameter Symbol Value Unit Source Uncer- Sensit- Description / notes
tain® ivity
analysis

Simulation settings

Number of Ny 200
households

Random seed s 0 - Varied over simulation runs.




Parameter Symbol Value Unit Source Uncer- Sensit- Description / notes
tain® ivity
| analysis
Households

Land L {1, 15, ha 4 Varied over households. See text in

endowment 2} section A1.3.3.

Initial wealth W, 36,165 birr v v Proxy for livestock.

Cash CR 6,001 birr 4 4 Annual cash requirement for

requirement consumption.

Market

Crop sell price Perop 2.17 birr/kg FAO™ Mean 2015 price for Maize in Addis
Ababa.

Livestock price Py 3,000 birr/head | csA8 Average 2015 price.

Yields
Crop C:N CN¢rop 50 gC/gN (Methere v Carbon to nitrogen ratio in harvested
Il etal. crop. Value loosely taken from the
1993) CENTURY model description
(Metherell et al. 1993).

Residue C:N CNyesique | 196 gC/gN 4 4 Carbon to nitrogen ratio in crop
residue. In (Elias et al. 1998) this is
approximately four times the ratio of
the harvested crop.

Maximum yield Yinax 6,590 kg/ha LSMS! v 95™ percentile maize yield over
Ethiopia in 2011, 2013, and 2015

Climate upper cupper 0.8 - (Methere v Climate condition above which crop

threshold Il et al. yields plateau

1993)

Climate lower clower 103 - v v Climate condition below which crop

threshold (low failure occurs with SOM is zero

SOM)

Climate lower Ciwer | 0 - Climate condition below which crop

threshold (high failure occurs with SOM is at its

SOM) maximum

Crop yield oy, 0.3 - v Standard deviation of the crop yield

random effect random effect, simulated as
~N(1,0.3)

Residue loss Lresiaue | 10 % (Assefa Percentage of crop residues not

factor etal. returned to the soil or fed to livestock

2013)
Residue mult 2 - (Bogale Residue production per unit of
multiplier etal. harvested crop.
2008,
Assefa et
al. 2013)
Soil

SOM Ksiow 2 %lyear (Schmidt 4 50-year turnover time of bulk SOM

mineralization etal.

rate 2011)

Applied organic kfast 10 Y%lyear 4 4 The percentage of applied organic

matter matter (manure and/or crop residues)

mineralization that mineralizes in the year of

rate application.

Initial SOM SOM, 4,000 kg N/ha - v See text in section A1.3.3

Maximum SOM | SOM,,... | 8,000 kg N/ha - v See text in section A1.3.3

Maximum [pax 25 % (Gilleret | v v Rate of leaching of mineralized

leaching rate al. 1997, organic matter when SOM is zero.

Di and
Cameron

2002)




Parameter Symbol Value Unit Source Uncer- Sensit- Description / notes
tain® ivity
analysis
Minimum [min 5 % (Di and v Rate of leaching of mineralized
leaching rate Cameron organic matter when SOM is at its
2002) maximum.
Livestock

Wealth:nitrogen | WN,,,, | 0.018 kg - 4 4 0.026 kgN/year/birr is the derived

conversion N/year/bi value for comparison (see text in

rr section A1.3.3)

Percent crop Cresidues | D2 % (Keftasa | v 4 Percentage of livestock food

grazing 1988, requirements that come from crop

Bediye et residues. The remainder comes from
al. 2001) a non-modeled external rangeland.

Consumption cf 2,280 kg DM/ (Amsalu v We assume all residues are dry

requirement TLU/ and matter

year 1 Addisu
2014)
Climate

Mean U 05 - v

Standard o, 0.2 - 4

deviation

Adaptation option:
insurance

Climate Inspe,. | 10 % Climate threshold (percentile of

percentile cumulative distribution function)
below which an insurance payout is
received.

Payout Inspayour | 1 - Insurance payout relative to the

magnitude expected yield. For example, if this is
1, the insurance payout will equal the
income from an average year’s yields
(assuming no nutrient limitations on
crop growth).

Cost factor Insgose | 1 - Fairness of insurance. A value of 1
indicates an actuarially fair policy,
where the annual cost is equivalent to
the expected annual benefit.

Adaptation option:
cover crop

Nitrogen CCyyix | 95 Kg N/ha | (Buchi et Maximum value with no water

fixation al. 2015, limitation.

Wittwer
etal.
2017,
Couédel
etal.
2018)

Cost factor CCepst 1 - Annual cost of cover cropping
relative to the cost of insurance.

T The values displayed for the uncertain parameters were calibrated using the pattern-oriented modeling process (section A1.3.5)
F http://www.fao.org/giews/food-prices/tool/public/

§ CSA = Ethiopian Central Statistical Agency. Source = annual retail price sheets.

| LSMS = Living Standards Measurement Study

9] DM = dry matter, TLU = tropical livestock unit




Al1.3.4 Sub-models

Al1.3.4.1 Soil nutrients

The model contains two main pools of soil nutrients: organic and mineralized. The states of these
pools are measured in kg N/ha. Each year, a portion of the organic pool of nutrients (SOM)
mineralizes according to a linear decay process. Organic nutrients applied to the soil (manure
and crop residues; N,qq404) als0 are partially mineralized in the year of application (with a linear
rate constant larger than that of the SOM), with the non-mineralized component added to the
bulk SOM. We do not differentiate between the addition of “organic matter” and “nitrogen” and
use a single variable to retain simplicity.

Nineratizea = Ksiow SOMy (AL.1)
Nrcrlz?geegalized = kfast Noadea (Al.2)
Nyoneratizea = Nmineratizea + Nisineratized (A13)
SOM¢y1 = (SOM; — Niivtraiizea) + (Naddea — Nesineratized (Al.4)

After mineralization, a percentage of the mineralized nutrients is leached from the system.
Higher levels of SOM contribute to lower leaching rates (Drinkwater et al. 1998). Specifically,
we assume a maximum leaching rate with no SOM (I'**) and a minimum leaching rate when
SOM is at its maximum (I5¥™), with a linear interpolation between these two points (see Table
Al.1 for parameter values).

Mineral N that remains after leaching is assumed to be fully available to the crop. If this is higher
than the crop’s N requirements, any excess mineral N is assumed to be lost from the system via
leaching (i.e., the mineral nutrient pool is reset each year).

This nutrient balance is partial and we do not model soil erosion (Cobo et al. 2010), yet the loss
pathways that we include represent the largest magnitude pathways in mixed cropping-livestock
systems (Tittonell et al. 2006). However, in its stylization, our representation of soil nutrient
dynamics contains a number of simplifying assumptions, namely: (1) no endogenous or dynamic
representation of C:N ratios, (2) a single soil layer, (3) a single pool of organic nutrients with a
single mineralization rate, (4) no explicit modeling of soil microbial biomass or other labile
SOM pools, (5) no climate dependence in nutrient mineralization or leaching, (6) no nutrient
dependence (e.g., N-limitations) in mineralization, (7) no differentiation between ammonium and
nitrate as forms of inorganic N, and (8) no atmospheric losses of N through denitrification.
Despite these assumptions, we believe that our representation provides a reasonable first-level
approximation of more complicated soil dynamics and requires far less parameterization.



Al1.3.4.2 Climate

Climate is represented through a single value, which is drawn each year from a normal
distribution (parameters in Table Al.1) that is bounded between 0 and 1. This value does not
represent a specific physical climate characteristic (e.g., rainfall), but a stylized notion of the
“climate condition”. Under baseline conditions, the simulated climate values interact with the
model solely through crop yields. Under the insurance scenario, payouts are received in years in
which the climate condition is below the insurance index value, which is defined as some
percentile of the cumulative distribution of the climate condition (i.e., a 10% index represents the
10" percentile of the cumulative distribution). With cover cropping, the climate condition also
affects cover crop nitrogen fixation. The climate value is qualitatively similar to the outputs of
process-based methods that calculate ratios of actual evapotranspiration to potential
evapotranspiration (e.g., applications of the FAO crop water requirements methodology (FAO
1984, Allen et al. 1998, Block et al. 2008) and the CENTURY model (Metherell et al. 1993)),
but requires far less parameterization.

Al1.3.4.3 Crop yields

Crop yields can be reduced from a maximum potential value (Y,,,4,) through water and/or
nutrient limitations (Tittonell and Giller 2013). First, we calculate a water factor, C,,4ter, With

0 < Cyater < 1. Itis assumed that (see Figure Al1.2): (1) if the climate value is greater than
CvPPer (0.8 in the parameterized model), then C,, 4:er = 1; (2) there is a critical climate value (=
0) at which C,, 4 = 0; (3) higher levels of SOM lead to higher drought tolerance and hence a
lower critical climate value; and (4) C,,4:er Scales linearly between the critical value and C%PPeT,
The maximum water-constrained yield (Y,,) is then assumed to be:

Yo = Cuater * Ymax (A1.5)
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Figure Al.2: Effect of climate on crop yields.



Second, we determine the maximum attainable nutrient-constrained crop yield (Yy) given the

available mineral N in the soil (N2 .. .):

total
Yo = Nmineralized
N

1 N mult (A1.6)
CNcrop CNresidue

This represents a partitioning of the Nt . . between the N in the harvested crop (adjusted
by CN,op) and the crop residues (adjusted by CN;.¢siqye and multiplied by mult).
The actual yield (Y°P9) is then calculated as

Y°PS = min(Yy, Yy) * € (AL1.7)

where e~N (1, 0,,%) is a household-level stochastic effect with o, given in Table A1.1.

In this stylized crop yield model, we omit or simplify several processes that are included in more
detailed process-based crop yield models, for example: (1) our one-dimensional representation of
the effects of climate proxies any non-linearities in relationships between climate and yield as
well as potential interactions between rainfall and temperature; (2) we do not model solar
irradiation and growth of leaf area; and (3) we do not model the partitioning of growth between
above- and below-ground biomass. Given the modular nature of our yield model, additional
reduction factors could be added (e.qg., see (Schreinemachers et al. 2007)) or more sophisticated
process-based calculations could replace the existing calculations of water and nutrient
limitations. However, this increased complication would require a greater amount of data and
calibration, as well as reduce transparency in how specific inputs and structures mechanistically
influence yields and the broader model dynamics.

Al1.3.4.4 Cover crop N2 fixation

As with vegetable crops, cover crops’ biomass generation, and thereby their soil organic matter
contributions, is also constrained by rainfall (Ewansiha and Singh 2006). We assume that the N
fixed by the cover crop follows the same water response function as vegetable crop yields (i.e.,
Figure Al.2). Thus, in a year with no rainfall, no N is fixed. We set the default upper bound on
N> fixation as 95 kg N/ha (Figure A1.3).
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Figure A1.3: Distribution of cover crop N fixation (kg N/ha) in temperate climates reported in
Badgley et al. (2007). The median value is 95 kg N/ha.

Al1.3.5 Pattern-oriented modeling (POM)

Al1.3.5.1 Description

We use latin hypercube sampling to generate 100,000 potential parameter sets, where each
parameter is drawn uniformly from the ranges in Table Al.2. For each potential parameterization
we run the model 10 times (to encompass climate variability) for a population of 100 households
(to encompass variability induced by the random yield effect) for a period of 100 years. We
choose only 10 model replications here due to computational reasons.

We assess whether each simulation generates a set of qualitative “patterns” (Table Al1.3). These
patterns collectively represent desired model behavior under baseline simulation conditions. To
evaluate a potential parameter set we: (1) measure which patterns are generated in each
simulation, (2) calculate the probability that each pattern is generated over the 10 replications,
and (3) sum these averages over all patterns.

Table Al1.2: Parameters included in the POM calibration

Parameter Symbol Minimum | Maximum | Notes

Households: initial wealth w, 5,000 50,000

Households: annual cash requirement CR 5,000 30,000 Median annual expenditure in 2015
LSMS is 17,261 birr

Yields: climate lower threshold (low SOM) clower 0 05

Yields: residue C:N CNyesigue | 25 200 Bounding the crop C:N ratio

Livestock: percent crop grazing Cresidues | 0.5 1 Livestock are often grazed primarily
on crop residue (e.g., (Keftasa 1988,
Bediye et al. 2001))

Livestock: wealth:nitrogen conversion W N, onv 0.01 0.05 Bounding the empirically-derived
value

Soil: applied organic matter mineralization keqste 0.05 0.95 Must be faster than the SOM

rate mineralization

Soil: maximum leaching rate Iy 0.05 0.95




Table Al1.3: Patterns used for the POM calibration

Pattern

Requirements

1 | Divergent household
wealth trajectories

(@) All land-rich households finish the simulation with positive wealth AND
(b) All land-poor households finish the simulation with no wealth AND
(c) 20%-80% of the middle households finish the simulation with positive wealth.

2 Households can
recover from shocks

There is at least one middle household that:
(a) Has no wealth at some point during the simulation AND
(b) Has positive wealth at the end of the simulation.

3 No saturation of

There are no households consistently at the maximum level of SOM throughout the

SOM last 10 years of the simulation.
4 | Some households At least 10% of households finish the simulation with a higher SOM than the initial
can build SOM value

Al1.3.5.2 Results

Of the 100,000 parameter sets, three generated on average 3.2 of the four patterns (Figure Al.4).
We retained one of these parameterizations for the analysis presented in this paper.
Experimentation with the other two parameterizations yielded qualitatively similar results that do
not affect the conclusions drawn in this paper.
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Figure Al.4: Scaled parameter values of the resultant POM parameterizations. The red line
represents the selected parameterization. Blue lines represent the other parameterizations that
reproduced the same number of patterns. Grey lines show parameterizations that were within
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APPENDIX 2 Convergence analysis

The goal of the convergence analysis was to estimate how many replications of the model are
required to generate model outputs that are not significantly influenced by stochasticity within
the model. We refer to this number of replications as r*. In our case, the quantity of interest is
P(CC > Ins)shock \We expect that this probability will vary considerably with both T, and
Tyssess- Hence, we choose r* = max(rr, 7 ),V (Tsnockr Tassess) OVET Tsnock €
{5,10,20} and T,sse5s € {1,3,5,7,9,11,13}.

Our approach for estimating each rr, - was as follows:

1. Run a large number of model replications (1000).

2. Assume the estimated P(CC > Ins)"c¥ over these replications (X;,00) is the “true”
value.

3. Foreachr €{1,...,1000}, calculate the absolute error (AE) from the true value. For
example, AEsq = | X1000 — Xso |, Where X, represents P(CC > Ins)S"°¢¥ calculated
over the first 50 replications.

4. Choose r* as the number of replications at which the absolute error in the estimated
probability falls below 5%, i.e., r* = argmax,, (AE, > 0.05).

The threshold of 5% was chosen as we do not require highly precise estimates of P(CC > Ins)
for our assessment. We acknowledge that our approach is relatively ad-hoc and not formally
statistically grounded. However, it captures the essence of what we desire: estimates of P(CC >
Ins) that are robust to within-model stochasticity. We considered using the approach presented
in Abreu and Ralha (2018), but the coefficient of variation (i.e., the standard deviation of

P(CC > Ins) divided by the mean) is unstable with estimates near zero. Additionally, we
considered the approach presented in Law (2008) (pg. 502), but because our model is not
computationally intensive it was feasible to run a large number of simulations and calculate

X,, vn and we adopted the approach described above.

The results indicate that * = 188 is sufficient (Figure A2.1). To be conservative, we run the
model at least 300 times for all experiments. For some figures we used a higher number of
replications to improve visual clarity.
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Figure A2.1: Absolute error in the estimate of P(CC > ins) as the number of model replications
is increased. Each black line represents a unique (Tspock, Tassess)- 1he red lines show the point at
which the absolute error falls below 0.05 for all (T s;0ck> Tassess)-
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APPENDIX 3 Sensitivity analysis methodology and additional results

A3.1 Parameter sampling
We conducted a global sensitivity analysis on the majority of the parameters of the model (see
Table Al.1 in the ODD+D description for the selected parameters). To generate perturbed
parameter sets we employed the following procedure:
1. Generate a random deviation a; for each of the P parameters (a = a4, ..., ap), allowing
the deviation to be 30% upwards or downwards: a ~ U(0.7,1.3)F
2. Perturb each parameter from its baseline value X; (X = X;, ..., Xp ) by this simulated
value, giving a perturbed parameter set: S, = aX
3. Repeat this procedure 10,000 times, giving S’ = S7, ..., $10000- Here, we used latin
hypercube sampling to increase the efficiency of the sampling of the parameter space.

A3.2 Model evaluation
For each set of perturbed parameters §;. calculate the Quantity of Interest (Qol), where the Qol
takes two forms:
(@) Qolsppcr represents P(CC > Ins)S™°ck in Experiment 1 (Table 1) with T,..ss = 5 and
Tshock = 10 and a 10% shock.
(b) Qol,,, represents P(CC > Ins)P°? in Experiment 2 (Table 1) with T,,,, = 50.

The model evaluation procedure results in a “dataset” of sorts, where the independent variables
are the parameters (S’, with P columns and 10,000 rows) and the dependent variable is the
quantity of interest (Qol,y, OF Qolgp,ci Of size 10,000).

A3.3 Gradient-boosted regression forest

The goal of the sensitivity analysis is to assess how changes in the parameters affect the Qol.
Hence, we are interested in exploring the function f in the relationship QoI = f(S"). This
function may be non-linear. We trained a gradient-boosted regression forest (GBRF) to yield a
non-parametric representation of f. A GBRF consists of a set of simple regression trees that are
fit in a stagewise manner, with each successive tree being fit to the residuals of the previous.
GBRFs originated in the machine learning community, and generally exhibit a high predictive
performance (Elith et al. 2008). We do not discuss this method in detail here and refer interested
readers to Elith et al. (2008).

A3.4 Assessing variable influence

We use partial dependence plots (PDPs) —a common visualization technique for non-parametric
models — to visualize the associations between changes in each parameter and the Qol, as
assessed by the GBRF. Each point (x, y) on a partial dependence plot for parameter p; represents
the average prediction made by the GBRF (y value) if every instance of p; is set to x, keeping all



other parameters (p_; ) at their original values. The slope of the PDP gives an indication of both
the magnitude and direction of influence of the parameter on the Qol. A PDP for a linear
regression model would show a straight line representing the regression coefficient (8). To
generate confidence bounds on our PDPs we bootstrap the “dataset” 100 times, each time re-
training the GBRF and re-estimating the PDP.

A3.5 Supplemental results
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Figure A3.1: Importance of different model parameters in the sensitivity analysis, as calculated
by the GBRF. The “variable importance” measure is calculated by scikit-learn in Python
(Pedregosa et al. 2011) and is a measure of the amount of variance that each variable explains.
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APPENDIX 4 Additional figures
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Figure A4.1: Effects of the strategies on various model characteristics relative to the baseline
scenario for each type of household. In all cases, the horizontal line at zero represents no change
relative to the baseline model conditions. “Change in P(coping rqd)” refers to change in the
probability that a household must sell their livestock at each time step. “Change in P(wealth>0)”
refers to change in the probability that a household has positive wealth (i.e., livestock) at each
time step.
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Figure A4.2: Comparison of insurance and cover cropping on P(CC > Ins)S"°¢k for the three
types of household, which differ solely in their land holdings. Land-poor households have 1 ha
of land, middle households have 1.5 ha, and land-rich households have 2 ha.
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Figure A4.3: Comparison of insurance and cover cropping on shock absorption as the magnitude
of the drought is varied, with Tg,.x = 10. The vertical threshold at 0.25 represents the
microinsurance climate index.
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Figure A4.4: Influence of strategy characteristics on the shock absorption comparison. The black
dots represent the baseline settings used in other experiments. In all cases, we simulated a 0.2
magnitude shock with T, = 10 and averaged results over all household types. Results were
qualitatively similar for each individual household type.
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Figure A4.5: Influence of strategy characteristics on the poverty reduction assessment for
different household types with T,,.,, = 20. Note that poverty reduction measures households that
have lost all their wealth; since the land-rich households (2 ha) very rarely lose their wealth even

under baseline conditions (Figure 5), the stark differences seen in this assessment (right-most
plots) for these households are not meaningful.
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APPENDIX 5 Synergies

The analysis in the main body of the article reveals a story of complementarity between
microinsurance and cover cropping. Here, we examine whether the strategies, when implemented
together, lead to synergistic effects. We conceptualize a synergy as a situation in which “the sum
is greater than the parts”. In this case, this represents:

Benefity,n > Benefitqc + Benefit s

where the “Benefit” is measured in the same way as shock absorption (Equation 1 in the main
manuscript).

The results (Figure A5.1) reveal that the modeled strategies exhibit synergies with respect to
shock absorption in the long-term. In the short term, however, the combined effect is less than
the sum of its parts. This is mainly explained by cover cropping’s short-term detriment to shock
absorption while soil organic matter (SOM) is being built. The long-term synergy is not
surprising, given the structure of the model; each strategy operates through distinct mechanisms:
cover cropping through the building of SOM and microinsurance through income stabilization.
Each of these mechanisms enables the wealth-SOM feedback loop, consequently contributing to
higher income. Due to this feedback, the combined effect of the strategies is heightened, and

therefore synergistic.
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Figure A5.1: Probability that both strategies together provide larger benefits than the sum of both

strategies separately. This represents the outcomes for a “middle” household and a 0.2 magnitude
drought.
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APPENDIX 6 Utility analysis

The focus in the main body of the paper centered primarily around the two measures of
resilience: shock absorption and poverty reduction. Our results showed that—predicated on the
structure of the model and scenarios—cover cropping reduces poverty by increasing income over
time, while microinsurance effectively buffers income in the wake of a drought. However, other
economic indicators may be relevant for households that are not as vulnerable to poverty (i.e.,
land-rich in our analysis). In particular, risk-averse households may be interested in reducing
income variability in addition to increasing mean income. Hence, microinsurance may provide
benefit to these types of household that our resilience analysis does not identify.

To formalize this benefit, we calculated an expected risk-averse utility on income over time
under each scenario. We used an exponential utility function of the form 1 — exp(— X/R),
where X represents income and R represents the household’s risk tolerance. Figure A6.1 shows
that the utility of more risk-averse households (i.e., with lower risk tolerance) is more strongly
benefited by insurance than cover cropping. Due to the delay in cover cropping’s benefits on
income, cover cropping leads to a short-term reduction in utility, which after 20-50 years
increases to eventually exceed that of microinsurance. At lower levels of risk aversion (i.e.,
higher risk tolerance), the shape of the utility effects more closely mirrors that of expected
income (Figure A4.1). Hence, by reducing income variability (specifically, the downside income
risk), microinsurance may be a more promising strategy for risk-averse households that are not in
poverty or whose crop yields are not highly nutrient limited.

When both strategies are implemented together, the long-run utility exceeds that of both
strategies in isolation, demonstrating a complementary effect on utility. However, due to the
short-term financial tradeoffs associated with cover cropping, the shorter-term utility of both
options together is lower than with microinsurance. Nevertheless, particularly for a risk-averse
household, at no point does the combined utility decrease below the baseline condition. This
demonstrates that, from a utility perspective, the welfare impacts of the short-term losses
associated with cover cropping may be offset by the risk reduction offered by microinsurance.

Risk tolerance = 50 Risk tolerance = 500 Risk tolerance = 5000

0 10 20 30 40 50 60 O 10 20 30 40 50 60 O 10 20 30 40 50 60

Year Year Year
— baseline —-- insurance == COVEr _Crop =eeee both burn-in

Figure A6.1: Expected utility over time for a land-rich household under three levels of risk
tolerance. Higher risk tolerance corresponds to lower risk aversion.



APPENDIX 7 Effect of microinsurance climate index

The microinsurance scheme is structured such that the insurance is “fair”. For instance, if the
insurance provides payouts in 5% of the years, the annual cost is 1/20™ of the payout. Similarly,
if the insurance provides payouts in 20% of the years, the annual cost is 1/5"" of the payout. Thus,
an insurance scheme with more frequent payouts entails higher premium costs. As a result, an
insurance scheme that provides more regular payouts provides a lower net benefit to the
household in a year in which the insurance is triggered. (Note that the strike rate affects the
rainfall value at which the insurance is triggered.)

This characteristic results in a tradeoff in our model with respect to the microinsurance climate
index (Figure A7.1). Here, “climate condition” represents the annual realization of climate. The
probability of a given climate condition occurring is influenced by the climate distribution (i.e.,
climatic context; here ~N (0.5, 0.2)), but the outcomes in Figure A7.1 under a given climate
condition depend only on the climate condition itself.

For example, under the most extreme plotted climate condition (0.05), an insurance payout is
received for all insurance indexes (strike rates). This payout is the same for all insurance indexes
(5% insured, 10% insured, etc.). However, the cost of the premium is highest in the 30% insured
case (i.e., 30% of the payout). This high premium means that, despite the payout being

received, the household receives a lower net benefit in this year. As a result, the probability with
which it must sell livestock is higher (0.55) than under an insurance scheme that provides less
regular payouts (e.g., 0.10 probability under the 5% insurance index).

However, the higher insurance indexes (e.g., 30% insured) also provide payouts under less
extreme drought conditions. For example, when the climate condition is 0.4, a payout is received
under the 30% insurance index but not under any of the other assessed indexes. As a result, the
probability with which livestock selling is required is lowest for the 30% insurance index under
this climate condition.

Together, this represents a tradeoff in which insurance that provides more regular payouts offers
protection under moderate climate conditions at the expense of vulnerability under more severe
climate conditions, whereas insurance that provides less regular payouts protects against the
severe climate conditions at the expense of vulnerability under more moderate conditions.
Depending on the distribution of the climate condition (here, ~N(0.5,0.2) truncated at 0 and 1),
the net effect of this tradeoff will change as the probability of more and less extreme climate
conditions shifts. In addition, farmer-level risk preferences may influence the aversion to
different kinds of loss. Thus, the robust design of index-based microinsurance schemes in case
study applications should consider the potential for this type of tradeoff.
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Figure A7.1: The probability that livestock selling as a coping measure is required as a function
of the annual climate condition in a simulation under regular climate variability (~N(u =
0.5,0 = 0.2)) and different insurance coverages. For example, a point (0.4,0.7) represents a
case in which during a year with a climate condition at 0.4 (affecting crop production — see
section A1.3.4.2 in the ODD+D) there is a 70% chance that the household’s annual income is
insufficient to satisfy their consumption and they must sell livestock resources. 5% insured
represents an index-based insurance in which a payment is received in 5% of years. This is for a
land-poor household only.
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