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Wetland diversity modeling 

We mapped all emergent wetlands > 5×5 m within our study area. This minimum mapping unit 

included virtually all wetland patches in the study area and was less than the size of the smallest 

breeding home range we measured for Black Rails (0.16 ha; S.R. Beissinger, unpublished data). 

Areas covered by hydrophytes (Typha spp., Scirpus spp., Juncus effusus, Leersia oryzoides, or 

various sedges) were considered wetland. We included hydrophytes that dried seasonally; if 

green vegetation was present along the wetland-upland transition zone, we buffered 5 m around 

it. Open water and rice were excluded. If imagery was ambiguous, we used Google Earth 

imagery from adjacent years to help distinguish if a wetland was present. Patches were 

considered separate wetlands if they were >100 m from another patch of wetland, had different 

water sources, or were different management units (e.g., separate ponds). 

We classified the water sources of the 623 wetlands on the properties of survey 

respondents (see Social sampling) using historical (1947–2015) aerial photographs of the 

landscape under different irrigation regimes to determine if natural springs or creeks existed 

before the addition of irrigation water. We also assessed all 222 wetlands on public lands and the 

remaining 16 rice fringe, 10 irrigation ditch, and 4 waterfowl impoundment wetlands on non-

respondent properties to give us a comprehensive sample of these groups. We were able to gain 

property access to conduct field surveys of 271 wetlands (59 of which were newly assessed 

wetlands opportunistically added), supplementing our aerial interpretation with visual site 

inspections and interviews with landowners about water sources. 

To determine the total number and area of wetlands supported by each water source, we 

estimated the number and total area of the remaining 826 (47% of all wetlands) privately owned 

fringe, slope, and fluvial wetlands that were supported by each water source. We first calculated 

the percent and areal percent of each of the three types of wetlands supported by each water 

source in our n = 934 known-source wetlands. We then multiplied these percentages by the total 

number and area of unknown-source wetlands in each of these categories, and then added them 

to the known-source wetlands in those categories. For example, for the number of spring-fed 

slope geomorphology wetlands (using only data from private lands): 

# spring -slope wetlands = # known spring slope +  # unknown slope ×
# known spring slope 

 # known slope 
  

Confidence intervals were calculated based on the original proportions and then multiplied by 

the total number or area of unknown-source wetlands.  

We fit Tobit regressions (Tobin 1958) in the R package censReg (v0.5.26) to estimate the 

expected percent wetness of wetlands during each period. We used Tobit regression censored at 

0 and 1 and with a random effect for site, which was suitable for percent wetness data because 

wetlands could experience additional drying below 0% percent wetness (i.e., changing firm mud 

to cracked dry ground), while large inflows of water could cause flooding beyond 100% of the 

polygon saturated. We analyzed a model set that included water source (a factor; natural-only, 

irrigation-only, or both-source), wetland area (ln hectares), and interactions between these and 
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each sampling period. For wetlands whose size varied annually (i.e., experienced changes in 

extent of hydrophyte cover) we used the maximum area (measured from aerial imagery) and 

corrected wetness estimates by multiplying the field-estimated percent wetness times the percent 

of the maximum area filled by the current area. We selected the best model via Akaike 

information criterion (AIC; Table A1.1). Impoundments (large, intensively managed waterfowl 

hunting wetlands found only in the Central Valley) were excluded from this analysis because 

they had complex management cycles of water drawdowns, planting, and re-flooding. 

Social diversity modeling 

Principal components analysis has been used to identify landowner types based on land 

management actions in Ireland and Switzerland (Howley 2013, Grêt-Regamey et al. 2019), and 

Kumer and Štrumbelj (2017) employed cluster analysis to identify different goals and values for 

small-scale private forest owners in Slovenia. We took the approach of Ferranto et al. (2013) and 

Sorice et al. (2014), who used factor analysis to identify landowner typologies in California and 

Texas rangeland based on ownership motivations, respectively. 

We used our wetland mapping to count the number of natural-fed wetlands, irrigation-fed 

wetlands, ponds, and irrigated pastures on respondents’ parcels in 2013. We fit generalized linear 

models in R  (v3.2.2) to test for differences in number of each of these water features. 

Distributions were skewed (Figure A1.2), so we tested Poisson, quasi-Poisson (base package 

stats), negative binomial (package MASS v7.3), hurdle negative binomial, and zero-inflated 

negative binomial models using (package pscl v1.5). Standard errors, observed vs. expected zero 

counts, and maximum likelihood were used holistically to assess fit, and we determined a 

negative binomial fit best. 

To assess response diversity we used survey-based methods that provided respondents 

different stimuli in hypothetical situations to which they are asked to state their preferences and 

hypothetical decision. Stated preferences and conjoint analysis are two popular forms of survey-

based methods with a well-established literature (Louviere et al. 2010, Johnston et al. 2017). 

These methods estimate a function where the probability of a specific hypothetical action or 

answer depends on one or several stimuli variables. When a stimulus is a specific dollar amount 

to be paid that is randomly varied among the sample of respondents according to a pre-specified 

vector of values, an associated willingness to pay measure can be estimated. In our study, we 

adapted these methods by using potential water allocation cutbacks during drought as the stimuli 

and different potential land-based actions to be taken by the landowners as the response. As 

some of the presented actions are not mutually exclusive, we were able to generate a probability 

model for each action separately. While the social dimension of our study is based on 

hypotheticals, it was the best available approach for understanding potential landowner actions 

when facing further water cutbacks. An alternative would have been to monitor land-use 

decisions in response to actual stimuli, but that would require a long time horizon, and we would 

not have control over the variables. Moreover, it is extremely challenging to monitor individual 

landowner actions within their properties at a landscape scale. 
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Our survey included a question asking landowners how they would respond to 

hypothetical water cutbacks of 20, 50, or 100% (each landowner was randomly asked about one 

of these cutback levels). We used logistic regressions (NLOGIT v5.0) to analyze landowner 

responses to hypothetical water cutbacks by modeling the probability of a landowner taking 

adaptive actions that would negatively impact wetlands (e.g., reducing irrigation) or a 

landowner’s livelihood (e.g., ceasing livestock rearing; see Table A1.2 for details). Response 

options to cutbacks that we presented in the survey were based on preliminary interviews. A 

write-in option was available but rarely used, indicating the provided choices captured the likely 

responses. Aside from typology, we included cutback amount, property size, and household 

income as variables. The final model is in Table A1.2. Because of the inclusion of these non-

random responses, we report results on the respondents rather than the population; the proportion 

of landowners in each typology was similar between respondents and full population estimates 

(3.5% mean absolute difference). 

Black Rail occupancy modeling 

We assessed the impact of water source diversity on the Black Rail metapopulation by fitting a 

multi-season occupancy model (MacKenzie et al. 2003) using Program PRESENCE v11.7 

(Appendix 1). Potential covariates for probabilities of initial occupancy (ψ), colonization (γ), and 

extinction (ε) we assessed were water source and three nuisance variables: area (natural log of 

hectares + 1), isolation (an autoregressive 7 km buffer radius measure obtained from Hall et al. 

(2018), and year (a set of dummy variables; not included on initial occupancy). Detection (p) 

only included year as a covariate. Continuous variables were standardized. 

 We implemented our occupancy modeling in two phases. First, to reduce the size of the 

model set we carried out a backwards model selection exercise for the three nuisance covariates. 

Water source was included in all models and AIC was used to assess model fit. The lowest AIC 

model included area as a covariate on ψ, γ, and ε, and year as a covariate on γ (Table A1.3). 

Unlike previous studies in this system (Risk et al. 2011), there was only weak support (>3 ΔAIC) 

for isolation influencing occupancy dynamics during this time period, possibly due to very low 

colonization rates during the drought. In the second phase we retained the nuisance variables 

from the best model and then ran a full model set of all possible water source combinations 

(Table A1.4). For both phases, covariates were included for initial occupancy if they were 

included for either colonization or extinction. 

Finally, we used AIC weights of the water source model set to calculate model-averaged 

estimates of occupancy in each year for an average wetland with each of the three water sources. 

Because area of wetlands significantly differed among water sources, we used the median area in 

our black rail sample for each category: 0.076 ha for natural-only, 0.168 ha for irrigation-only, 

and 0.284 for both-source. We used 95% confidence intervals calculated via the delta method to 

assess significant differences. 
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WNV modeling 

From June–October 2012–2014, we trapped mosquitoes at 63 wetlands (size range 0.03–6.7 ha) 

for 1,201 total site visits. We sampled 50 wetlands for one year and 13 wetlands in all three 

years. We visited each wetland weekly and set up four Center for Disease Control traps baited 

with dry ice, distributed along the wetland edge at ≥100 m intervals to capture spatial variation in 

mosquito densities; at some very small wetlands, shorter intervals needed to be used. The same 

trap locations were used at each visit. All mosquitoes caught were identified to species using 

morphological keys (Darsie and Ward 1981). For each wetland, we estimated the abundance of 

the main mosquito WNV vectors as the mean number of Culex mosquitoes caught per trap/night 

(from 4,710 trap/nights). 

To estimate WNV prevalence at each wetland, we first extracted RNA using RNeasy kits 

(Qiagen) followed by RT-PCR (Qiagen) on 2,551 pools of 1–50 Culex mosquitoes (Kauffman et 

al. 2003). We included at least one positive and negative control alongside each set of 40 

reactions and all WNV-positive pools were run twice to confirm presence of WNV. In the few 

cases where a pool tested positive and then negative, we conducted a third test to determine 

WNV status. We then used bias-reduced generalized linear models using package brglm in R 

(v3.13) with a binomial distribution and an offset for mosquito pool size to estimate WNV 

prevalence using the presence/absence of WNV in 2,539 pools (mean 14.6 mosquitoes/pool). 

The full model included site, date, date2, year, and interaction terms as predictors. The model 

with the lowest AIC (Table A1.5) was used to estimate WNV prevalence, the mean probability 

of a Culex testing positive for WNV at each wetland across all dates. Finally, we estimated WNV 

transmission risk at each wetland as the mean abundance of WNV-infected Culex mosquitoes 

(mean Culex abundance × mean Culex WNV prevalence). 

We used analysis of covariance to test for effects of water source on the abundance of all 

mosquitoes, abundance of Culex, WNV prevalence, and WNV transmission risk, while 

controlling for the effect of wetland size (Fig. A1.1). We used a square root transformation on 

wetland size to equalize leverage and on all metrics involving mosquito abundance to maintain 

adequate homogeneity of variance. 

References 

Darsie, R. F., and R. A. Ward. 1981. Identification and geographical distribution of the 

mosquitoes of North America, north of Mexico. Mosquito Systematics Supplement 1:1–

313. 

Ferranto, S., L. Huntsinger, C. Getz, M. Lahiff, W. Stewart, G. Nakamura, and M. Kelly. 2013. 

Management without borders? A survey of landowner practices and attitudes toward 

cross-boundary cooperation. Society & Natural Resources 26(9):1082–1100. 

Grêt-Regamey, A., S. H. Huber, and R. Huber. 2019. Actors’ diversity and the resilience of 

social-ecological systems to global change. Nature Sustainability 2(4):290–297. 



Appendix 1: Modeling methods and additional results 
 

5 
 

Hall, L. A., N. D. Van Schmidt, and S. R. Beissinger. 2018. Validating dispersal distances 

inferred from autoregressive occupancy models with genetic parentage assignments. 

Journal of Animal Ecology 87(3):691–702. 

Howley, P. 2013. Examining farm forest owners’ forest management in Ireland: The role of 

economic, lifestyle and multifunctional ownership objectives. Journal of Environmental 

Management 123:105–112. 

Johnston, R. J., K. J. Boyle, W. Adamowicz, J. Bennett, R. Brouwer, T. A. Cameron, W. M. 

Hanemann, N. Hanley, M. Ryan, R. Scarpa, R. Tourangeau, and C. A. Vossler. 2017. 

Contemporary guidance for stated preference studies. Journal of the Association of 

Environmental and Resource Economists 4(2):319–405. 

Kauffman, E. B., S. A. Jones, A. P. Dupuis, K. A. Ngo, K. A. Bernard, and L. D. Kramer. 2003. 

Virus detection protocols for west nile virus in vertebrate and mosquito specimens. 

Journal of Clinical Microbiology 41(8):3661–3667. 

Kumer, P., and E. Štrumbelj. 2017. Clustering-based typology and analysis of private small-scale 

forest owners in Slovenia. Forest Policy and Economics 80:116–124. 

Louviere, J. J., T. N. Flynn, and R. T. Carson. 2010. Discrete choice experiments are not conjoint 

analysis. Journal of Choice Modelling 3(3):57–72. 

MacKenzie, D. I., J. D. Nichols, J. E. Hines, M. G. Knutson, and A. B. Franklin. 2003. 

Estimating site occupancy, colonization, and local extinction when a species is detected 

imperfectly. Ecology 84(8):2200–2207. 

Risk, B. B., P. de Valpine, and S. R. Beissinger. 2011. A robust-design formulation of the 

incidence function model of metapopulation dynamics applied to two species of rails. 

Ecology 92(2):462–474. 

Sorice, M. G., U. P. Kreuter, B. P. Wilcox, and W. E. Fox. 2014. Changing landowners, 

changing ecosystem? Land-ownership motivations as drivers of land management 

practices. Journal of Environmental Management 133:144–152. 

Tobin, J. 1958. Estimation of relationships for limited dependent variables. Econometrica 

26(1):24–36. 

  



Appendix 1: Modeling methods and additional results 
 

6 
 

Table A1.1. AIC table for Tobit (censored 0–1) models of wetness of Sierra Nevada foothills 

wetlands, 2013–2016, with a random effect for site. Period is a factor representing 12 sampling 

time periods, source is a factor representing three water sources (natural-only, irrigation-only, 

both-source) and area was natural log of wetland size in hectares. 

Model AIC weight ∆AIC AIC k 

Period + source + source×period + area  0.766 0.00 294.95 45 

Period + source + source×period + area + area×period  0.226 2.44 297.39 58 

Period + source + source×period + area + area×period 

+ source×area  

0.005 10.26 305.21 60 

Period + source + source×period + area + source×area  0.004 10.47 305.42 47 

Period + source + source×period + area + area×period 

+ source×area + source×area×period  

0.000 25.63 320.58 86 

Period + source + source×period  0.000 52.98 347.93 44 

Period + source + area + area×period + source×area  0.000 61.65 356.60 32 

Period + source + area + source×area  0.000 66.92 361.88 34 

Period + area + area×period  0.000 74.11 369.06 30 

Period + source + area + area×period  0.000 90.50 385.45 19 

Period + source + area  0.000 93.50 388.45 21 

Period + area  0.000 101.49 396.44 17 

Period + source  0.000 139.21 434.16 18 

Period  0.000 164.36 459.31 16 
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Table A1.2. Logistic regression coefficients (SE in parentheses) for Sierra Nevada foothills 

landowners’ management actions in response to a hypothetical water availability cutback (either 

20, 50, or 100%; included as a continuous covariate) from all sources (n = 274). Asterisks (*, **, 

***) denote significance at the 10, 5, and 1% levels. 

Class Wetland-impacting actiona Landowner-impacting action b 

Intercept (investment-motivated)  -1.1503*** (0.3732) -0.7160** (0.3385) 

Profit-motivated 2.2133*** (0.5032) 2.0702*** (0.4937) 

Tradition-motivated 1.1467** (0.4924) 0.7343 (0.4615) 

Lifestyle-motivated 1.1178** (0.4763) 0.7979* (0.4474) 

Environment-motivated 0.2088 (0.5165) 0.7538 (0.4597) 

Recreation-motivated 0.1437 (0.4857) -0.1673 (0.4572) 

Water cutback (%) -0.1934 (0.2690) 0.2178 (0.2590) 

Household income ($ 2013) 0.7315*** (0.2781) 0.1301 (0.2662) 

Property size (acres) 0.6822* (0.3935) 0.6105* (0.3666) 

a Includes responses “Repair leaks in ditches, pipes, dams and/or ponds”, “Recycle and/or reuse 

tailwater, irrigation or pond runoff”, “Stop or use less water to irrigate pasture(s)” and “Reduce 

area of irrigated pasture”. 

 
b Includes responses “Stop or reduce growing crops or gardening”, “Sell livestock or reduce 

stocking rate”, “Find other grazing land”, “Sell some or all the land”, “Purchase water from 

outside (non-district) sources” and “Change to a different land use. 
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Table A1.3. Backwards stepwise AIC model selection table for a multi-season occupancy model for the Sierra Nevada foothills 

metapopulation of the California Black Rail (Laterallus jamaicensis coturniculus), 2012–2016. Starting with the full model (step 0), 

nuisance parameters (area, isolation, and year) were removed one at a time, and the lowest AIC was selected. The process was 

repeated until we found the lowest AIC (bold). Water source (natural, irrigated, or both; irrigated left out) was in all models. 

Step Model AIC weight ∆AIC AIC k 

3 Ψ(area, nat‡, both), γ(year, area, nat, both), ε(area, nat, both), p(.) 0.2199 1.32 1450.17 16 

3 Ψ(area, nat, both), γ(year, nat, both), ε(year, area, nat, both), p(.) 0.0643 3.78 1452.63 18 

3 Ψ(area, nat, both), γ(area, nat, both), ε(year, area, nat, both), p(.)† 0.0104 7.43 1456.28 16 

2 Ψ(area, nat, both), γ(year, area, nat, both), ε(year, area, nat, both), p(.) 0.4255 0.00 1448.85 19 

2 Ψ(area, iso§, nat, both), γ(year, area, iso, nat, both), ε(area, nat, both), p(.) 0.064 3.79 1452.64 18 

2 Ψ(area, iso, nat, both), γ(year, iso, nat, both), ε(year, area, nat, both), p(.) 0.0404 4.71 1453.56 20 

2 Ψ(area, iso, nat, both), γ(area, iso, nat, both), ε(year, area, nat, both), p(.)† 0.0033 9.73 1458.58 18 

2 Ψ(area, nat, both), γ(year, area, nat, both), ε(year, nat, both), p(.) 0.0000 29.91 1478.76 18 

1 Ψ(area, iso, nat, both), γ(year, area, iso, nat, both), ε(year, area, nat, both), p(.) 0.1171 2.58 1451.43 21 

1 Ψ(area, nat, both), γ(year, area, nat, both), ε(year, area, nat, both), p(year) 0.0355 4.97 1453.82 23 

1 Ψ(area, iso, nat, both), γ(year, area, iso, nat, both), ε(area, nat, both), p(year) 0.0077 8.03 1456.88 22 

1 Ψ(area, iso, nat, both), γ(year, iso, nat, both), ε(year, area, nat, both), p(year) 0.0026 10.18 1459.03 24 

1 Ψ(area, iso, nat, both), γ(area, iso, nat, both), ε(year, area, nat, both), p(year)† 0.0002 15.33 1464.18 22 

1 Ψ(area, iso, nat, both), γ(year, area, iso, nat, both), ε(year, nat, both), p(.) 0.0000 32.02 1480.87 20 

1 Ψ(area, iso, nat, both), γ(year, area, iso, nat, both), ε(year, nat, both), p(year) 0.0000 34.44 1483.29 24 

0 Ψ(area, iso, nat, both), γ(year, area, iso, nat, both), ε(year, area, nat, both), p(year) 0.0091 7.68 1456.53 25 

Null Ψ(.), γ(.), ε(.), p(.) 0.0000 111.10 1559.95 4 

† Models that did not include a year effect on γ could not estimate SE for natural because the beta estimate was infinitely negative 

‡ Natural 

§ Isolation
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Table A1.4. AIC table for multi-season occupancy models for the Sierra Nevada foothills 

metapopulation of the California Black Rail (Laterallus jamaicensis coturniculus), 2012–2016, 

to assess the impact of water source on occupancy. All models except for the “true null model” 

have area as a covariate for Ψ, γ, and ε, and year dummy variables as covariates for γ and ε.  

Model AIC weight ∆AIC AIC k 

Ψ(natural, both), γ(natural, both), ε(natural), p(.) 0.3017 0.00 1447.35 18 

Ψ(natural, both), γ(natural, both), ε(.), p(.) 0.2235 0.60 1447.95 17 

Ψ(natural, both), γ(natural, both), ε(natural, both), p(.) 0.1425 1.50 1448.85 19 

Ψ(natural, both), γ(natural, both), ε(both), p(.) 0.0895 2.43 1449.78 18 

Ψ(natural), γ(natural), ε(natural), p(.) 0.0667 3.02 1450.37 16 

Ψ(natural, both), γ(both), ε(natural), p(.) 0.0496 3.61 1450.96 17 

Ψ(natural), γ(natural), ε(.), p(.) 0.0479 3.68 1451.03 15 

Ψ(natural, both), γ(both), ε(natural, both), p(.) 0.0245 5.02 1452.37 18 

Ψ(natural, both), γ(natural), ε(natural, both), p(.) 0.0236 5.10 1452.45 18 

Ψ(natural, both), γ(natural), ε(both), p(.) 0.0156 5.93 1453.28 17 

Ψ(both), γ(both), ε(.), p(.) 0.0098 6.86 1454.21 15 

Ψ(both), γ(both), ε(both), p(.) 0.0039 8.72 1456.07 16 

Ψ(natural), γ(.), ε(natural), p(.) 0.0008 11.81 1459.16 15 

Ψ(natural, both), γ(.), ε(natural, both), p(.) 0.0003 13.84 1461.19 17 

Ψ(both), γ(.), ε(both), p(.) 0.0000 17.78 1465.13 15 

Ψ(.), γ(.), ε(.), p(.) 0.0000 17.84 1465.19 13 

True null model 0.0000 112.60 1559.95 4 
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Table A1.5. AIC table for bias-reduced general linear models (binomial distribution and offsets 

accounting for differences in number of mosquitoes per pool) used to estimate West Nile virus 

prevalence at wetlands (n = 63) in the Sierra Nevada foothills.  

Model AIC weight ∆AIC AIC k 

site + date + date2 + year 0.501 0.0 1561.30 67 

site + date + date2 0.394 0.5 1561.78 65 

site 0.075 3.8 1565.09 63 

site + date 0.030 5.7 1566.95 64 

site×date + date2 + year 0.000 76.9 1638.23 129 

site×date + site×date2 + year 0.000 183.1 1744.44 191 

site×date + site×date2 + site*year 0.000 207.4 1768.69 215 
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Figure A1.1. Relationships between wetland size and three elements of West Nile virus 

transmission risk in the Sierra Nevada foothills. (a) Mean number of all mosquitoes caught per 

trap/night increased with wetland size (abundance0.5 = 2.94 + 1.74 * size0.5, r2 = 0.27, p < 0.001). 

(b) Mean number of Culex mosquitoes caught per trap/night increased with wetland size 

(abundance0.5 = 2.31 + 0.81 × size0.5, r2 = 0.12, p = 0.005). (c) There was no relationship between 

mean West Nile virus prevalence in Culex and wetland size (p = 0.671).  
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Figure A1.2. Histograms (15 bins) of the number of (a) natural-fed wetlands and (b) irrigation-

fed wetlands on n = 351 landowner respondents’ properties. One outlier recreation-motivated 

landowner with 138 irrigation-fed wetlands was excluded from panel b. 

 


