Appendix 1

METHODS

Bird diversity

In addition to our major assessment (i.e., presented in the paper), we initially inspected the pattern in relative abundance of each species at an increasing level of urbanization (i.e., based on proportion of built-up areas). Several conventional concepts regarding the response of wildlife species to urban gradient is available (Blair 1996, Rodewald and Gehrt 2014, Fischer et al. 2015). Here, we followed such conceptual understanding to visualize urban affinity of each birds at three levels: (i) urban dependents with peaked relative abundance in highly built-up areas (i.e., areas containing impervious surface >80%); (ii) urban exploiters, which are abundant/common species with high relative abundance at a suburban/intermediate level of built-up areas (i.e., areas containing impervious surface between >30% and <80%) and in urban green areas; (iii) urban tolerant birds, which are uncommon/infrequent species across urban areas, and are abundant/common species with peaked relative abundance only in lightly urbanized areas (i.e., areas containing impervious surface <30%) and at urban green areas.

Variables	Description	Source
Percentage of	Value 0-100, Percentage of 'Impervious	Brown de Colstoun
impervious surface	surface' from 'Global Man-made	et al. 2017
	Impervious Surface (GMIS) and Global	
	Human Built-up and Settlement Extent	
	(HBASE) data products', spatial resolution	
	~30m.	
Habitat Shannon metric	Value of 'Diversity of EVI (Enhanced	Tuanmu and Jetz
	Vegetation Index)', from Global Habitat	2015
	Heterogeneity dataset, spatial resolution ~	
	30 arc-second.	
Distance to the nearest park	Distance (m) from grid cell centroids to the	OpenStreetMap
	nearest edge of park. Value is estimated	contributors 2018
	using ArcGIS tools.	
Distance to the nearest	Distance (m) from grid cell centroids to the	OpenStreetMap
waterbody	nearest edge of waterbody. Value is	contributors 2018
	estimated using ArcGIS tools.	
Percentage of	Value from 'Average maximum green	Broxton et al. 2014
vegetation	vegetation fraction, MODIS- maximum	
	green vegetation fraction, based on 12	
	years (2001-2012), spatial resolution	
	~1Km.	
Human population	Value of estimated number of people per	WorldPop 2017
	grid square, Spatial resolution	
	~0.000833333 decimal degrees (approx	
	100m at the equator).	~ 1 1 0 0 1 0
Poverty index ratio	Estimates of mean likelihood of living in	Steele et al. 2017
	poverty per grid square, as defined by	
	\$2.50 a day poverty line, spatial resolution	
	~0.00833333 decimal degrees (approx.	
TT11.1.'	1km at the equator).	04.1.4 1 2017
Household income	Estimates of mean household income in	Steele et al. 2017
	USD per grid square. spatial resolution	
	~0.00833333 decimal degrees (approx.	
	1km at the equator).	Danalada-1. D
Higher education percentage	Percentage of adults who have completed	Bangladesh Bureau
	university at Upazila (Smallest	of Statistics 2011, Minnegate
	administrative unit) level.	Minnesota Deputation Contor
	Dataset derived from '2011 Census of Population and Housing'	Population Center
	Population and Housing'.	2015

Table A1.1 Variables and sources

ADDIITONAL LITERATURE CITED

- Bangladesh Bureau of Statistics. 2011. Population and housing Census, Bangladesh. [online] URL: http://www.bbs.gov.bd/
- Blair, R. B. 1996. Land use and avian species diversity along an urban gradient. Ecological Applications 6: 506–519.
- Brown de Colstoun, E.C., C. Huang, P. Wang, J. C. Tilton, B. Tan, J. Phillips, S. Niemczura, P-Y. Ling and R. E. Wolfe. 2017. Global Man-made Impervious Surface (GMIS) Dataset from Landsat. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). doi: https://doi.org/10.7927/H4P55KKF
- Broxton, P.D., X. Zeng, W. Scheftic, and P. A. Troch. 2014. A MODIS-Based 1 km Maximum Green Vegetation Fraction Dataset, Journal of Applied Meteorology and Climatology. [online] URL: http://dx.doi.org/10.1175/JAMC-D-13-0356.1
- Fischer, J.D., S.C. Schneider, A. A. Ahlers, and J.R. Miller. 2015. Categorizing wildlife responses to urbanization and conservation implications of terminology. Conservation Biology 29(4):1246-1248.
- Minnesota Population Center. 2015. Integrated Public Use Microdata Series (IPUMS), International: Version 6.4 [dataset]. Minneapolis: University of Minnesota. Available from the Integrated Public Use Microdata Series project. [online] URL: http://doi.org/10.18128/D020.V6.4
- OpenStreetMap contributors. 2018. Dhaka, Bangladesh OSM polygons. Retrieved on 01.01.2018. [online] URL: https://planet.openstreetmap.org
- Rodewald, A. D., and S. D. Gehrt. 2014. Wildlife population dynamics in urban landscapes. In: Robert A. McCleery, Christopher E. Moorman, M. Nils Peterson (eds), Urban Wildlife Conservation, Theory and Practice, Chapter 8, pp:132-133. Springer, New York.
- Steele, J. E. et al. 2017. Mapping poverty using mobile phone and satellite data. J. R. Soc. Interface 14, 20160690. [online] URL:

http://rsif.royalsocietypublishing.org/content/14/127/20160690

- Tuanmu, M.N., and W. Jetz. 2015. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography. [online] URL: https://doi.org/10.1111/geb.12365
- WorldPop. 2017. Bangladesh 100m Population, Version 2. University of Southampton. DOI: 10.5258/SOTON/WP00533.