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Emotionally augmented mental models, connectivity and beaver
reintroduction in Southwest England
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ABSTRACT. Understanding the psychology of human-wildlife interactions has grown beyond cognitive frameworks to include
appreciation of roles played by emotion in human responses to wildlife. From its beginnings as an essentially cognitively framed
proposition, mental modeling has been shown readily applicable to representing and interpreting stakeholder perspectives on combined
social and natural systems, but lacks an integrated approach to emotion. This is an important knowledge gap. To commence an
investigation into the relationship focused on the requirements of wildlife conservation, we carried out a case study of perspectives
toward a free-living Eurasian beaver (Castor fiber) reintroduction in Southwest England, ecologically significant as a generator of high-
value wetland habitat while interacting strongly with local human interests. Using fuzzy cognitive mapping techniques, we report
predictive relationships between model measurements and subjective emotional valence elicited in relation to stakeholder conceptual
content. Significant interactions were identified between three measures of concept connective influence within mental models and
associated emotional valence intensity: single model concept connective salience, aggregated model concept connective salience, and
aggregated model predictive inferences made by dynamic analysis. A possible explanation for these findings is outlined in which we
propose that criteria-based evaluations suggested by appraisal theory of emotion are sensitive to the strength and distribution of
connective influences within mental models. Apart from its theoretical significance, the evidence presented in this paper highlights the
importance of attending to conservation stakeholder emotional experiences, and may assist in new approaches to mitigation where
conservation objectives require human adjustment.
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INTRODUCTION

Emotion and wildlife
As the ecological impact of human activity has become
increasingly critical, so human-wildlife interactions and their
psychological basis in conservation have attracted increasing
research interest. Investigations exploring human dispositions
with respect to conservation have tended to concentrate on
cognitive variables and their influence on human-wildlife conflict
(Fulton et al. 1996, Manfredo and Dayer 2004, Teel et al. 2010,
Johansson et al. 2016), while the role of emotion has been
relatively neglected (Manfredo 2008, Jacobs 2012, Zainal Abidin
and Jacobs 2019). This is paradoxical because emotion defined
as “episodic, relatively short-term, biologically based patterns of
perception, experience, physiology, action and communication
that occur in response to specific physical and social challenges
and opportunities” (Keltner and Gross 1999:468) is clearly central
to day to day human experience; emotions signify value and
influence memory, motivation, decision making, and perception
pertinent to human-wildlife interactions (Jacobs and Vaske 2019).
Emotional responses are therefore a crucial feature of human-
wildlife coexistence, and research exploring emotion in social-
ecological systems is viewed as increasingly important (Glikman
et al. 2019, Jacobs and Vaske 2019).  

In this paper we set out to investigate and offer explanations for
possible regularities between human emotion and cognitive
perspectives on “how things work” represented by connected
concept arrays known as mental models typically underpinning
human understanding and reasoning, taking as a conservation
case example a large-scale wildlife reintroduction.

Mental models
The pioneer psychologist Kenneth Craik first proposed that
people model real-world processes as subjective concept networks
in order to infer predictions, make decisions, and guide actions,
in work dating from the mid-20th century (Craik 1967). More
recent interest building on Craik’s original ideas has stimulated
research into the structure and properties of mental models,
showing that human perspectives in environmental science can be
explored as two-dimensional cognitive maps applicable to natural
resource and wildlife conservation, especially useful in complex
and data-poor social-ecological systems (Biggs et al. 2011, Jones
et al. 2011, Lynam et al. 2012, Moon et al. 2019).  

A particularly fruitful elaboration of this approach contending
with sometimes imprecise knowledge contained in mental models
has made use of “fuzzy logic” to generate semi-quantitative fuzzy
cognitive maps, FCMs (Kosko 1986, Özesmi and Özesmi, 2004),
which can be used both to analyze reasoning processes and to
infer knowledge about the external world. FCMs comprise nodes
or concepts that can show varying levels of activity, and inter-
nodal connections with given directions, signs, and weights,
representing causal influences. In FCM format, mental models
can be analyzed and compared, and their dynamic behavior
simulated to show variation in concept activation and therefore
some measure of model output (Özesmi and Özesmi 2004, Jetter
and Kok 2014, Yoon and Jetter 2016).  

To date, a systematic explanation of how the cognitive conceptual
content of mental models interacts with emotion is conspicuously
absent. Despite a paucity of research, in an environmental study
of direct conservation relevance, Biggs et al. (2008:7) propose an
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explicit role for emotion in their descriptive working definition of
mental modeling: “(psychological) representations of objects,
their relationships and dynamics as well as the attributes or
characteristics of these and the person’s valence (cognitive and
emotional) to the objects, relationships, and dynamics.” From this
insight, we suggest that understanding how emotion and cognitive
factors interact within mental models in conservation requires
further elucidation.

Emotion and mental models
Represented in an environmental mental model, emotion can be
framed as part of a model’s conceptual content; so, for example,
“stakeholder emotional satisfaction,” a concept describing
emotion, may be shown as part of a conceptual network alongside
other cognitive concepts. An alternative approach might be to
consider an additional layer of subjective emotional feeling
mapped on to the cognitive conceptual content of the mental
model and corresponding to variations in facial expression,
autonomic and hormonal activity as part of the organism’s
psycho-social adjustment (Izard 2007). However represented,
failure to account for emotion in the structure of reasoning and
decision making is psycho-biologically incomplete (Damasio
1994).  

In relation to evolved capacity to generate and make use of mental
models, emotion serves as an adaptive survival mechanism by
linking to social and ecological stimuli; for example aspects of
emotional response may focus individual attention, elicit
memories, and regulate decision making (Niedenthal and Ric
2017a), and when shared with others extending to reinforced
social group coherence, coordination, and collective action
(Niedenthal and Ric 2017b).  

According to evidence supporting appraisal theory of emotion,
translation of environmental stimuli into emotional responses is
accomplished by evaluative mechanisms comprising commonly
cited appraisal criteria including qualities of novelty, desirability,
goal conduciveness, agency, and norm compatibility (Moors et
al. 2013). Criteria-based concept-stimuli evaluations vary
between individuals, denoting what matters, or perceived personal
significance and qualitative variation of emotional responses
(Ellsworth 2013).  

In mental models, connections between concepts represent beliefs
infer what is likely to happen, and therefore what matters
predictively, corresponding to aspects of appraisal criteria-based
assessments of personal significance. For example, in an
environmental context, a concept appraised by a human
stakeholder matters not only as an isolated stimulus but because
of its known and quantitative connective influence on ecological,
social, cultural, and economic outcomes perceived to be
important within a given domain by the subject.  

How stimulus (concept) activation relates to intensity of
associated emotional responses is unclear, but it has been
suggested that perception of stimulus change as opposed to
absolute value carries special significance, hence “the greater the
change, the stronger the subsequent emotion” (Frijda 1988:353).
In selecting what aspect of emotion to measure, a dimensional
evaluation of core emotional valence (like/pleasure–dislike/
displeasure) is a reasonable candidate, influential as a basic
psychobiological function in emotion theory (Russell 2003,

Barrett 2006) and amenable to psychometric evaluation in a
research interview (Broekens and Brinkman 2013).

Mental models and connectivity
In this paper the generic term “connectivity” is used to refer to
connective properties of mental models whether relating to the
influence of single concepts or the model as a whole, in which
connections between concepts represents beliefs, translated into
causal influences in FCMs. Standard measurements based on
connectivity have been described in environmental mental
modeling (Özesmi and Özesmi 2004), and widely used in network
analysis. Mental model and FCM metrics have subsequently been
applied in a wide variety of conservation-related fields including
hydrology (Bracken and Croke 2007), resource pathways in
ecology, and relationships in human social networks, where
numbers and types of connections can predict system stability
and properties such as emergence within system modeling
(Fletcher et al. 2011, Daigle et al. 2020).  

Yoon and Jetter (2016) describe commonly applied FCM model
parameters sensitive to the number, direction, and strength of
connective influences between concepts. In this paper the
following are considered: (i) degree centrality, concerning
individual concepts to determine how connected a concept is to
other concepts, (ii) whole model connective density, to determine
how connected or sparse FCMs are, and (iii) dynamic analysis of
FCMs in which connective influences between concepts are
played out in repeated iterations until the resulting concept states
arrive at a stable output activation profile, thus showing the
(future) response of the cognitive system.  

As overall connectivity in mental models represents causal belief
strengths linking concepts, measurements of concept degree
centrality, model density, and dynamic analysis of perceived
changes to concept activity offer some quantifiable means of
assessing how people perceive an ecosystem of interest,
conceptually important to stakeholders themselves, managers,
and research theorists (Özesmi and Özesmi 2004, Gray et al. 2013,
Turnbull et al. 2018).

Group (social) mental models
An important development of mental model theory concerns the
notion of shared mental models held within social groups,
relevant to team work and thought to form a basis for trust and
cooperation in effective group function (Jonker et al. 2010, Gray
et al. 2014). To infer shared features sets of individual mental
models can be aggregated, retaining the most frequently
mentioned concepts and connections by combining them to
represent shared knowledge structures (Özesmi and Özesmi
2004). Stakeholder groups with sectional interests identified in
relation to natural resources are known to develop distinctive
shared mental models (Aminpour et al. 2020), which function to
minimize within-group conflict (Evans et al. 2019) comparable to
accounts of group-based emotion aligning and regulating
individual responses in groups seeking to address shared priorities
(Kuppens and Yzerbyt 2014).

Hypotheses
Possible interactions between concept centrality, model density,
and dynamic concept activation metrics described by Yoon and
Jetter (2016) on the one hand, and attributions of personal
significance derived from appraisal theory of emotion on the
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other, suggest value in searching for predictive regularities in
linked sets of data. In this paper the proposition is addressed by
considering both individual and aggregated stakeholder mental
models elicited in relation to an important large-scale wildlife
conservation reintroduction project set up to monitor and manage
a free-living Eurasian beaver, Castor fiber population in
Southwest England. Beaver conservation is especially pertinent
because as a species, beavers have a transformative impact on their
environment, generating significant human-wildlife interactions
and making it more likely that a wide range of stakeholders will
develop both strongly connected and emotionally engaged mental
models.  

Hypothesis 1: Stakeholder mental model analysis will show
predictive correlations between measurements of emotional
valence and individual mental model (a) concept centrality and
(b) density.  

Hypothesis 2: Aggregated (shared) stakeholder group mental
models will show predictive correlations between measurements
of emotional valence and concept centrality.  

Hypothesis 3: Aggregated (shared) stakeholder group mental
models will show predictive correlations between measurements
of emotional valence and predicted concept activation (dynamic
analysis).

Case study: beaver reintroduction
The Eurasian beaver (Fig. 1) is an important European
conservation species (Campbell-Palmer et al. 2016), which
narrowly avoided extinction in the early 20th century as the
culmination of a long history of hunting and habitat loss,
including complete extirpation in Britain during the early modern
period (Halley and Rosell 2003, Coles 2006). Throughout former
European range, including recent projects in Scotland, protection
and where absent reintroductions have led to successful recovery
associated with improvements in ecosystem health and
biodiversity (Law et al. 2016, Puttock et al. 2017, 2018). In
England, a government decision formally approved a small
population of breeding beavers found to be living on the River
Otter in Southwest England and subject to the five-year River
Otter Beaver Trial (ROBT), which reported in early 2020 (Brazier
et al. 2020). In addition to ecological changes, the ROBT
undertook assessments of direct and indirect human factors and
outcomes, authoritatively defined elsewhere as “socio-economic
circumstances, community attitudes and values, motivations and
expectations, behaviours and behavioural change” (IUCN/SSC
2013:11), criteria that do not explicitly consider the influence of
emotional responses.  

Highly valued, high use locations typically found in lowland
English landscapes such as the Otter valley carry multiple
stakeholder interests, and make the ROBT an excellent
opportunity to examine individual and group stakeholder
emotional responses alongside conceptual perspectives.

METHOD

Geographic area
The study focuses on the ROBT reintroduction area, based on the
River Otter, of which the mainstem runs 32 km into the western
English Channel, with a catchment of 250 km² and total
watercourse including tributaries of 594 km. The catchment

includes two conservation “Areas of Outstanding Natural
Beauty,” an estuarine “Site of Special Scientific Interest,” and 46
km of accessible riverside paths. By completion of the ROBT in
2020, it was estimated that up to 18 beaver family groups were
resident within the project area (M. Elliott, Devon Wildlife Trust,
personal communication), creating patches of rapidly changing,
typical beaver wetland habitat (Fig. 2). A quarter of the riparian
margin is arable, the rest pasture plus localized forestry, orchards,
and small settlements (Brazier et al. 2020).

Fig. 1. Eurasian beaver (Castor fiber) on the River Otter
(ROBT site). One of the first free-living English populations of
beavers to be restored after a centuries-long absence.
Photograph by kind permission of Mr David R. White

Fig. 2. Developing beaver landscape showing new wetland
features; lower River Otter, Southwest England. Photograph by
the first author, with kind permission of Clinton Devon
Estates.

Stakeholder sampling
A total of 48 stakeholder participants were recruited on the basis
of (i) one or more criteria of residence, work, conservation,
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academic or leisure participation in the ROBT area, (ii) an
occupational or self-declared interest in the trial in the five-year
period up to expected completion in 2020, and (iii) self-defined
identification with key group labels derived from discussion with
the ROBT project manager and a reading of annual ROBT reports
later summarized by Brazier et al. (2020). These comprise general
public (GP), conservation and environmental scientist (CES),
landowners and manager (LM) stakeholder groups, and small
numbers of farmers, fishers, and regulators (Others) not
specifically considered in this paper.  

Mindful of the need “not to obtain a representative sample of a
population but to represent different knowledge areas” (Olazabal
et al. 2018:800), purposive sampling recruited approximately half
of participants via community social media advertising, while
most specialist occupational participants were sought out by
direct approach or snowballing.  

It was planned that sample size would be determined by concept
saturation (Özesmi and Özesmi 2004). Interviewing coupled to
progress in recruitment continued beyond the anticipated plateau
phase because of slow recruitment of specialist stakeholder
groups, however accumulation analysis showed that 89% concept
saturation was achieved by 25 of 48 interviews.

Stakeholder interview procedure
All interviews by the first author took place between October
2018 and May 2019, averaging 149 (range 70–270) minutes,
conducted in people’s homes or workplaces. In situ interviewing
in the presence of relevant environmental cues is considered
preferable (Jones et al. 2014) but judged impractical for mostly
evening meetings and winter weather conditions.  

Interviews commenced with a semi-structured explanation of
procedure, academic affiliation, ethical standards, collection of
individual identifier data, and finally sharing photographs of a
beaver, the river, and a map of the trial area. Participants were
given one mandatory concept subsequently retained as a concept-
category, “Beaver presence” and invited to write their own terms
considered mental model concepts onto Post-its displayed
however preferred on a 120x90 cm board, according to three a
priori framing categories determined by the first author as
reasonable ecosystem parameters: “beavers and a) wildlife &
vegetation, b) river & physical environment, c) people & human
activities.” Participants were instructed to consider effects over
the next five years, creating a reasonable time frame to enable
participants to express their understanding and expectations of
emergent or fluctuating and periodic events such as accentuated
peaks and troughs in rainfall.  

To minimize potential interviewer influence, interviewees were
asked to lead in generating a list of positive terms, e.g., “tolerance”
not “intolerance.” Participant stress meant that more process
support was required and a conversational method was adopted
instead, in which the first author noted participant terms shared
back for accuracy. Participants then wrote and displayed their
own terms as a network, following which they were asked to
consider each term in turn, in their preferred order, adding signed
direct (+) or inverse (-), and fuzzy-weighted (Very Strong, VS;
Strong, S; Moderate, M; and Weak, W) causal arrows to represent
perceived influences between concepts, until satisfied with the
overall outcome.  

Finally, participants scored emotion responses using the
AffectButton facial expression icon (Broekens 2014) to consider
“how you feel when thinking about (each concept in turn),”
identifying the expression best representing subjective emotional
response or feeling. AffectButton automatically rates scores for
emotional valence, termed “pleasure” on a dimension (-1, 1)
representing subjective maximal displeasure (frowning and
unhappy) through a neutral response to maximal pleasure
(smiling and happy) indicated by the coordinates of the selected
facial expression within the “affect space” of the visual icon.  

AffectButton is based on the linear non-verbal Self-Assessment-
Manikin scale (Bradley and Lang 1994), chosen for its
representation of core affect scales, reliability, and validity
including strong correlation with verbal emotion scales, and ease
of use (Broekens and Brinkman 2013). Scores associated with
each term and visible to the investigator were noted on the relevant
Post-it.  

Although AffectButton scores dimensions of arousal and
dominance with respect to the environment, only emotional
valence is considered further, justified by the fundamental nature
of emotional valence and additional analysis revealing minimal
differences between predictive effects seen for emotional valence
and the other two dimensions (A. Blewett, unpublished data).

Mental model elicitation and FCMs
Methods for elicitation of mental models (Axelrod 1976, Jones et
al. 2014) and conversion to FCMs as a graphical technique for
mental model representation (Gray et al. 2014) follow previous
environmental studies (Özesmi and Özesmi 2004, Obiedat and
Samarasinghe 2016, Olazabal et al. 2018). The procedure is
summarized as follows: (i) standardization and reduction of raw
interviewee terms, condensed into semantically equivalent FCM
concept-categories, (ii) conversion of FCMs into square
adjacency matrices populated with numerical connection values
attributed to fuzzy semantic terms: very strong, 0.8; strong, 0.6;
moderate, 0.4; weak 0.2, and (iii) in the case of combined models,
concatenation to multiple values in each equivalent cell averaged
to produce a mean weight (Abel et al. 1998, Cannon-Bowers and
Salas 2001, Gray et al. 2014), (iv) dynamic analysis to calculate
concept activation values.  

The raw sample of 48 models initially comprised 657 interviewee
terms (mean per model 13.3, range 8–24), each with a matched
emotional valence score. Initial data cleansing reduced the sample
of terms to 600 by (i) merging 16 pairs of duplicated terms and
1 set of triplicated terms into one each within their mental models,
and (ii) inverting 22 individual terms plus two of the merged
duplicated terms so as to express their meaning positively for
consistency. In both sets of cases, attached valence data was
discarded from further analysis.

Mental model aggregation
Aggregating stakeholder mental models to facilitate analysis of
stakeholder group FCMs was done by aligning the terms used by
each participant in rows headed by 53 concept-category labels
forming columns defined by semantic equivalence emerging on
inspection by the first author as accumulation proceeded. For
example, four raw participant tourism terms: “Tourism,” “Beaver
tourism,” “Hospitality/Hotel sector,” and “External tourism”
were merged into a single concept category “Nature tourism.” In
the case of the 16 pairs and 1 group of three replicated terms dealt
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with initially by merging, the most strongly weighted connection
was retained for the subsequent connection merging procedure
required prior to dynamic analysis of aggregated models.  

Model aggregation procedures are not standardized in the
literature; methods advocated include assembling all concepts
with retention of the strongest summated connections (Özesmi
and Özesmi 2004) or inclusion by weighting for expert credibility
(Obiedat and Samarasinghe 2013). In this study, model
aggregation was accomplished by retaining information from
concepts and connections mentioned most frequently within the
sample of mental models composing the whole sample and each
stakeholder group, to represent a face-value shared model in each
case.  

In practice, retaining concepts above the median quartile
threshold from each group concept list ranked by frequency
generated model sizes deemed ideal for interpretation (Özesmi
and Özesmi 2004). Model aggregation also requires thresholds
for connection inclusion. This was done based on (i) frequency
of a connection arising, and (ii) causal sign agreement (i.e., direct
or inverse). Stakeholder group connection thresholds were
selected to balance exclusion of less-shared information while
minimizing orphan concept loss as follows: (i) GP; at least three
same-signed connections, or four connections with no more than
one contrary signed connection, which was removed before
calculating the mean, (ii) CES; as GP, (iii) LM; at least two same-
signed connections, otherwise as GP. Once the threshold was
applied, any unconnected “orphan” concepts were excluded from
analysis.

FCM analysis
FCM analysis measures essential properties of mental models as
networks. Typically, measurements are arrived at by computer-
based calculations based on the number, location, and weights of
connecting relationships between concepts. Correlations between
connectivity and emotion were studied at the level of (i) the entire
sample of terms, n = 600, (ii) individual FCMs, n = 48, and (iii)
aggregated FCMs for general public (GP), landowners and
managers (LM), and conservation and environmental scientists
(CES) stakeholder groups.  

In this study, connectivity data shown in FCM matrices were
analyzed with free-to-use, publicly available FCMappers software
(Wildenberg et al. 2010). FCMappers calculates concept in-degree
and out-degree from the summed weighted values of all in-
connections and out-connections respectively, for each concept.
The sum of each concept’s absolute in-degree and out-degree
values, termed concept degree centrality and abbreviated to
“centrality” is a measure of each concept’s influence or
significance within the model (Eden et al. 1992, Özesmi and
Özesmi 2004, Yoon and Jetter 2016; Table 1).  

Model density D was calculated by dividing the actual number of
connections by the maximum number of connections possible
(the square of the number of concepts adjusted to account for a
no self-loop rule preventing concepts from connecting directly
back onto themselves in participant elicited raw mental models):

D =
N c

N n (N n− 1)
(1)

At+1 = f (AtW + At ) (2)

( f )a = 1
1 + e−λa

(3)

D
Nc

n nN N

Table 1. Mental model parameter definitions.
 
Model Parameter Definition

Concept degree
centrality

Sum of (absolute) in-degrees and out-degrees,
indicating overall influence of a concept within a
model

Concept in-degree Sum of inputting weighted concept connections
Concept out-degree Sum of outputting weighted concept connections
Density Ratio of actual connections to all possible

connections, where higher density may indicate
greater resilience and perceived management
opportunities

Emotion and connectivity
Identification of relationships between emotional valence and
metrics for concept centrality, density and deductively inferred
dynamic analysis, as three possible indicators of greater perceived
connectivity-linked personal significance, underpin the
hypotheses.  

In this study, AffectButton emotional valence scores in range
(-1,1) are converted to an absolute value (0,1), because the focus
is on intensity of emotional response, not its direction.  

Specific correlations were calculated for the following:  

(i) Emotional valence and centrality for the whole sample of
cleaned terms (n = 600); centrality values were normalized (0 to
1) in each model to account for variation in model sizes given that
all paired centrality-emotional valence data was analyzed as a
single data set,  

(ii) Mean emotional valence for concepts calculated within each
of the n = 48 models, and the corresponding n = 48 model densities
relying on an assumption that a net overall emotional response
can reasonably be inferred from each mental model,  

(iii) Mean emotional valence and centrality considered separately
for the aggregated Whole Sample group and each of the
aggregated GP, CES, and LM stakeholder group models.  

(iv) Mean emotional valence and stable activation values
determined by dynamic analysis for concepts in the aggregated
Whole Sample group model, and for each of the aggregated GP,
CES, and LM stakeholder group models.  

Dynamic analysis of individual and aggregated FCM concept
activation values was done using the dynamic function in publicly
available software FCMappers (Wildenberg et al. 2010). In
dynamic analysis, concepts are given values representing activity
or activation level permitted to change under the influence of
inputting weighted connections, hence dynamic activation values.
The resulting set of concept values undergoes the same procedure
and so onwards iteratively, until the whole set of concepts arrives
at stable final activation outcomes (Stylios and Groumpos 2004,
Kok 2009, Singh and Chudasama 2017).  

Mathematically, initial concept activation values form state vector
A (a1, a2, ..., an) where, for example, a1 is the activation value of
concept c1 from the set C of  a given model, is multiplied by the
cn x cn adjacency matrix W with cells populated by connection
weights in range (-1 to 1), including zero where there is no
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Table 2. Research sample stakeholder groups and demographics.
 

General Public (GP) Landowners & Managers
(LM)

Conservation &
Environmental Scientists

(CES)

Others

Number of Mental Models in
each category

21 7 9 11

F: M 13: 8 0: 7 4: 5 0: 11
Modal age group (range) 26–40

(26–61+)
41–60

(26–61+)
41–60

(18–61+)
41–60

(18–61+)

connective influence. Iterative progression from At to At+1 
mediated by a normalizing transformation function f is repeated
until A stabilizes, represented in summarized algebraic format as
outlined by Groumpos (2010): 

D =
N c

N n (N n− 1)
(1)

At+1 = f (AtW + At ) (2)

( f )a = 1
1 + e−λa

(3)

  

In FCMappers dynamic analysis, (i) all initial activation values
At are granted a baseline value of 1 representing “fully active” in
the context perceived by the interviewee to avoid altering outputs
sensitive to varying initial conditions (Knight et al. 2014),
including driver concept activation stability maintained by
researcher attributed self-loops of value “+1,” (ii) the previous
iteration of “memory” values At are added to W-factored values
of At prior to normalization, designed to replicate temporal
continuity in ecological and social systems, and (iii) positive
normalization (0 to 1) at each iteration is accomplished with the
sigmoid squashing function f (Equation 3), judged most
appropriate compared to alternatives that introduce discontinuities
unsuitable for r calculation, or hyperbolic tan function, which has
equivalent suitability for correlation purposes (Bueno and
Salmeron 2009), but is not readily available via accessible
software, 

D =
N c

N n (N n− 1)
(1)

At+1 = f (AtW + At ) (2)

( f )a = 1
1 + e−λa

(3)α
α

  

Variable α is the value to be normalized, e is Euler’s number, and
λ = 1 (W. Bachhofer, personal communication). The low λ value
selected for FCMappers determines a shallow curve
approximating a linear function for non-extreme values  

In the correlation analysis, any data pairs comprising concept
activation values and emotional valence values where the latter is
fixed for a driver concept were excluded from subsequent
calculations for Hypothesis 3, however sensitivity testing not
shown here determined that this made no meaningful difference
to r values.  

In calculating correlation values, effect sizes for Pearson’s r values
are applied as follows: r = 0.10, small effect; r = 0.30, medium
effect; r = 0.50, large effect (Cohen 1992).

RESULTS

Demographics
The total sample of n = 48 participants was majority male with
modal age 41–60, notably in landowning and management roles
plus farming, fishing, and regulatory roles in “Others.” Mostly

younger women participated more frequently in the GP and CES
groups (Table 2).

Emotion and connectivity
Hypotheses are addressed at the level of (i) individual concept
connectivity, (ii) an overall connectivity metric for individual
mental models, and (iii) aggregated mental model concept
connectivity.

Hypothesis 1
Analysis of the raw set of 600 concepts linked to emotional
valence scores showed a small but significant predictive
relationship between emotional valence and concept centrality (r
= 0.16, P < 0.01). For the sample of 48 FCM models there was
also a small effect, insignificant for this sample, between mean
model emotional valence and mental model density (r = 0.13, P
> 0.05), shown in Table 3.

Hypothesis 2
Analysis of the whole sample (WS) aggregated group model
representing a shared perspective reveals a strong and highly
significant predictive relationship between emotional valence and
aggregated concept centrality (0.60, P < 0.01). Analysis of
aggregated stakeholder shared group model data also revealed
large significant effects for the GP (r = 0.63, P < 0.05) and LM (r
= 0.56, P = 0.05) groups, and a small non-significant effect for
CES (r = 0.17, P > 0.05).

Hypothesis 3
Dynamic analysis results (Method, Equation 2) of aggregated
FCM data show consistent positive predictive relationships
between concept emotional valence and stabilized dynamic
concept activation values, with significant strong effects for WS
(r = 0.56, P < 0.05), GP (r = 0.52, P < 0.05), and CES (r = 0.60,
P < 0.05). Analysis of the smallest stakeholder group, LM,
revealed no significant relationship.  

Aggregated WS and stakeholder group data including concept
descriptors, centrality, and emotional valence are shown in Table
4. Conceptual content distributed between the aggregated
stakeholder models consists of six ecological variables including
the mandatory “Beaver presence,” and 17 human-centric variables
in some way deriving from these including material and cultural
ecosystem services, social-economic factors, beaver acceptance
and beaver-applicable wildlife/nature finance, policy, and
management.

DISCUSSION

Emotion predicts connectivity
The findings support presence of predictive relationships between
measures of emotional valence and a selection of FCM
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Table 3. Correlations; valence and model connectivity metrics. WS, whole sample; GP, General Public;
LM, Landowners and Managers; CES, Conservation and Environmental Scientists.
 

r 2 tailed P

Valence v. Centrality (600 concepts in 48 individual models) 0.16 < 0.01
Valence v. Centrality (Aggregated WS) 0.60 < 0.01
Valence v. Dynamic concept values (Aggregated WS) 0.56 < 0.05
Valence v. Centrality (Aggregated GP) 0.63 < 0.05
Valence v. Dynamic concept values (Aggregated GP) 0.52 < 0.05
Valence v. Centrality (Aggregated LM) 0.56 0.05
Valence v. Dynamic concept values (Aggregated LM) 0.31 Not Significant
Valence v. Centrality (Aggregated CES) 0.17 Not Significant
Valence v. Dynamic concept values (Aggregated CES) 0.60 < 0.05
Valence v. Density (n = 48 mental models) 0.13 Not Significant

parameters determined by various aspects of mental model
connectivity. For our samples, emotional valence shows a small
significant predictive effect in relation to individual model
concept centrality indicating concept influence within mental
models, and strongly positive predictive effects for both centrality
and dynamic analysis for most but not all aggregated stakeholder
groups. A small insignificant effect for model density possibly
reflects an inadequately powered study, limiting further
discussion.  

Centrality and dynamic analysis are both derived from model
connectivity, thus expected to correlate as structure necessarily
predicts function, however the two sets of findings convey
different types of information. Support for all three hypotheses
invites explanations drawing on connectivity representing beliefs
about causal influence, and emotion denoting personal or social
significance of concepts and their causal relationships.  

Centrality as a connectivity measurement is important because it
highlights which drivers are believed to “make things work” and
contribute to outputs of interest. For example, in beaver habitat
damming connects to flow and storage of water, nutrient cycling,
biodiversity, and human fulfilment; outputs valued or dis-valued
by stakeholders with varying priorities.

Emotional signaling
Emotions function as internal individual and interpersonal social
signals (Levine et al. 2018), in this case it is suggested responding
to perceived connectivity within mental models. Because
connectivity mediates dynamic outputs, emotional signaling is
likely to be adaptive as an indicator for where and whether
important social and ecological outputs increase or decrease
(Norberg and Cumming 2008, Turnbull et al. 2018). For example,
in the perceived River Otter beaver-system, change might
conceivably result from the influence of “Government policy/
finance for nature,” pressure exerted on politicians and decision
makers in relation to expanding “Beaver presence” in the post-
ROBT phase, or through wider public impact of emergent “Beaver
persecution,” all concepts shown in Table 4. This study’s findings
suggest that such developments will excite emotional responses
consistent with connective influence acting on or from the
concept. For example, “Beaver persecution” is a potentially
controversial topic that perhaps counterintuitively currently
features only weakly for both influence and emotional valence,
and only for the CES group.  

How mental model connectivity might generate stakeholder
emotion is considered in relation to appraisal theory of emotion
in Table 5, showing possible interactions between appraisal theory
criteria indicating “significance of the environment for well-
being” (Moors et al. 2013) and perceived connectiveness, with
reference to possible features of the ROBT.  

Appraisal theory of human emotion proposes various patterns
of dimensional criteria that either determine or recursively
interpret specific emotions (Scherer 2009). Appraisal criteria may
be fundamental and automatic, or involve complex cognitive
processing with greater social evolutionary and cultural
specificity (Scherer 2001). For example, the illustrative beaver-
specific judgments outlined represent interpretations that might
weigh differently according to stakeholder and cultural context,
and may be more strongly shaped by learning through experience
and education.  

The role of appraisal criteria might be further illustrated by our
finding that GP and LM group memberships align for both
connective salience and emotional valence intensity, respectively
for “Beaver acceptance - General public” and “Beaver acceptance
- Farmer, landowner, forestry” (see Table 4). In both cases,
signaling emotional response to peer opinion may serve a purpose
in affirming stakeholder affiliation, identity, and group security.

Aggregation and emotion
Increases in predictive correlation of emotion-connectivity
associated with aggregation is notable, although interpretation of
this finding has to be considered alongside consideration of what
shared mental models really represent. Gray et al. (2014)
distinguish social models in teams whose members have close
knowledge of each other’s mental models from social models
arising in looser associations characterized by broadly common
worldviews. Emotion for the latter might still signal important
badges of shared group identity. The groups studied here seem
likely to fall into the loose association category, with the possible
exception of the CES group, some but not all of whom have
professional links but nevertheless show weaker emotional
correlations with perceived model connectivity. This apparent
anomaly is unexplained but may reflect less need for peer
emotional reinforcement, possibly reflecting group heterogeneity
hence less prominent normative group identity. The aggregation
effect shown exemplifies properties of scale; data showing large
scale processes generally exhibit greater regularity in social,
economic, and ecological systems, and are less vulnerable to
chance disruption (Levin 1999).
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Table 4. Aggregated stakeholder models for GP, General Public; LM, Landowners and Managers; CES, Conservation and
Environmental Scientists; WS, Whole Sample: concepts and data parameters (EV†, mean absolute Emotional Valence; C‡, Concept
degree Centrality; DA§, Dynamic Analysis - concept value)
 
Aggregated Stakeholder
Groups; GP, LM, CES, WS -
Concept values

EV†

GP
C‡ 
GP

DA§

GP
EV†

LM
C‡

LM
DA§

LM
EV†

CES
C‡

CES
DA§

CES
EV†

WS
C‡ 
WS

DA§

WS

Beaver presence (given) 0.85 8.70 0.94 0.81 4.98 0.94 0.86 7.53 0.93 0.85 13.28 0.99
Riparian woodland -
vegetation health

0.70 1.42 0.84 0.73 1.68 0.80 0.66 0.50 0.78 0.72 1.78 0.85

Nature tourism 0.53 2.22 0.92 0.83 0.60 0.79 0.66 3.88 0.96
Beaver flooding/ impact on
productive land

0.41 1.07 0.76 0.42 1.32 0.66 0.45 2.68 0.85

Beaver acceptance - Farmer,
landowner, forestry

0.55 1.95 0.37 0.70 3.58 0.90 0.72 2.99 0.61 0.68 8.58 0.84

Holistic enrichment through
valuing nature

0.76 0.55 0.66

Sense of place/ specialness 0.86 2.73 0.95 0.81 3.45 0.96
Beaver acceptance - General
public

0.66 4.32 0.98 0.67 2.96 0.91 0.72 4.53 0.89 0.71 8.96 1.00

Biodiversity - General 0.81 5.32 0.98 0.85 4.27 0.96 0.98 2.22 0.86 0.86 10.59 1.00
Making space for wilder
nature

0.71 2.31 0.81 0.90 1.20 0.79 0.84 5.22 0.96

Beaver acceptance - Anglers 0.60 1.28 0.74 0.64 2.99 0.88
Science, education &
knowledge

0.57 2.47 0.87 0.93 0.80 0.83 0.77 5.01 0.94

Monitoring & mitigation 0.65 1.80 0.77
Wildlife NGO - Effective
leadership

0.72 1.45 0.66 0.53 0.70 0.66 0.42 2.93 0.66 0.60 6.44 0.94

Conflict - public and private
property/ amenity

0.49 1.25 0.80

Business generation 0.56 0.60 0.79 0.66 3.60 0.95
Flow rate/ Problem flooding in
lower reaches

0.41 1.08 0.38 0.52 0.70 0.47

Conflict & distress - Natural
resource stakeholder

0.40 0.53 0.78 0.58 1.63 0.86

Beaver damming and
impoundment of water

0.72 3.05 0.83 0.75 1.42 0.82 0.78 4.19 0.82

Government policy/finance for
nature

0.67 4.30 0.96 0.52 1.08 0.78 0.62 5.88 0.98

Water retention - Upper
catchment

0.53 1.42 0.77 0.57 2.77 0.90 0.61 4.17 0.89

Wetland - Ecosystem health &
services

0.53 1.24 0.80 0.85 2.78 0.83 0.90 1.79 0.78 0.75 4.92 0.98

Beaver persecution 0.35 1.80 0.51

Table 5. Appraisal criteria (Moors et al. 2013) and adaptive social-
ecological connectivity.
 
Appraisal criteria Illustrative example of linked connections

Novelty Emergence of influential concepts with strong driving
inputs, for example an officially sanctioned beaver
release

Desirability Valuing sustainable causal origins of sought-after
outputs

Conduciveness Alignment with personal objectives including cultural
and economic gains

Agency Recognizing the role of (for example) beavers in
maintaining ecosystem services

Norm-compatibility Peer and social esteem represented by linkage to
stakeholder acceptance concepts

Dynamic analysis and emotion
In the ROBT sample, emotion-connectivity correlations observed
when models are run to simulate the dynamic outcome of concept
interactions infer a “person’s valence (cognitive and emotional)
to the objects, relationships, and dynamics (of the model)” (Biggs
et al. 2008:7), stressing both emotional valence and dynamics. The
five-year time parameter for mental models in this study does not
imply that dynamic analysis confers a regular time dimension,
but does provide a frame within which change is envisaged with
a perspective on before and after, for example, modulation of
(unwanted) flooding downstream of beaver activity. A capacity
to judge dynamic concept interactivity is likely to be adaptive.
Dynamic analysis of concept activation shows how the mental
model logic delivers expected change. Humans do not generally
conduct complex calculations to anticipate outcomes, but it has
been proposed that internally generated “as if” outcomes and
emotional responses as suggested from mental models may act as
feedback mechanisms underlying decision making (Damasio
1994, Lerner et al. 2015).  
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Dynamic analysis has a further important theoretical application
in social-ecological scenario studies considering alternative
futures modeled by adding or changing experimental weighted
concepts to FCMs (Kok 2009, Jetter and Kok 2014). Exploring
adjustments to signed emotional valence associated with
variation in activation levels of critical outcomes has potential to
deliver insights into likely stakeholder responses to conservation
policy or land use.

Emotion-connectivity and conservation
Buijs and Lawrence (2013) argue that emotion needs to be
acknowledged as essential to understanding human engagement
with nature. The findings of this paper show an important aspect
of how this relationship might function. For conservationists
embarking on projects such as the ROBT, emotionally charged
controversy between stakeholders may indicate a requirement to
re-set the debate if  interests are to be reconciled, requiring clarity
about connections and outputs valued by different actors
(Blicharska and Angelstam 2010). Reflecting on high intensity
emotional valence may help focus on under-appreciated
connections made by stakeholders, and a more informed
approach to diagnosis and management of conflict and
conservation such as proposed by Madden and McQuinn (2014).

Mental modeling with selected stakeholders may also add to
understanding of the connective basis for conflict where
emotional significance signals appear to diverge and risk
undermining social feasibility, considered essential for successful
wildlife reintroductions or similar conservation actions (IUCN/
SSC 2013). We envisage that this could be done using pre-
identified lists of key concepts identified from preliminary
stakeholder interviews or expert workshops, making elicitation
of perceived connectivity and emotional hot spots within mental
models for affected individuals or community groups a more
straightforward practical public engagement procedure. Where
appropriate, designing psychological mitigation as tailored
information to influence perceived connective salience and
emotive responses offer a potential corollary to ecological
mitigation in holistic stakeholder-sensitive conservation.  

Stronger predictive relationships at aggregate scale suggest a
direction for conservationists to focus on social group and
community effects, including strategic interventions with large
scale cross community effects such as pro-nature economic policy.

Associated and future research questions
1. We measured concept salience by “Degree Centrality.”

Obiedat et al. (2011:1086) review alternative centrality
constructs; (a) “Betweenness Centrality,” “determined by
summing the proportion of shortest paths between node
(concept) pairs that go through that node,” and (b)
“Closeness Centrality,” which “measures how close a node
(concept) is to all other nodes in the graph,” based on work
by Freeman (1977, 1978). Intriguingly, an earlier
investigation showed a relationship between the emotional
quality of satisfaction from “real life” task accomplishment
and “Betweenness Centrality” (Leavitt 1951). To our
knowledge, possible relationships between emotion and
either formulation, or how any such relationships compare
with “Degree Centrality” remain unexplored. 

2. Thagard (2006) outlines a decision-making framework
relying on coherence within a network of positive or negative
value-laden constructs such as concepts, beliefs, and goals.
The network can be presented visually as a “Cognitive
Affective Map” construed as an inferential reasoning
mechanism (Thagard 2011). Thagard’s maps are not
directed graphs showing mental models of “how things
work,” but they do suggest ways in which emotions attached
to concepts might interact directly. Our method could be
adapted using Thagard’s insights to look for evidence of
emotionally determined relationships between neighboring
concepts, for example, whether concept closeness correlates
with emotional intensity independently of perceived
strength and direction of connections indicating causal
influence. 

3. Sensitivity analysis of the relationship between emotional
valence and connectivity expressed through dynamic
concept activation identified in our sample, done by real-
time dynamic scenario-testing and repeat emotional valence
testing for concepts would offer support for our findings.
Practical scenario applications might include examining the
emotional response to variations in perceived connectivity
linked to modeling economic policy designed to increase
farmland biodiversity or simpler practical conservation
measures such as warning-notices designed to introduce
conflict-aversive linkages into the mental models of visiting
dog walkers. 

4. Our study did show an emotional signal for overall model
density, but the relationship was weak and did not reach
conventional significance. There may be value in examining
potential emotional responses to dense clusters of mutually
connected concepts nested within mental models, termed
“subgraphs” (Harary et al. 1965). Future findings of
valance-discontinuity between subgraphs and less
connected concepts may shed light on attribution of
charismatic species status or wildlife hostility where high
levels of connectivity suggest a meeting of criteria such as
either extreme desirability and strong norm-compatibility,
shown in Table 5. Shared possession of internally connected
charismatic subgraphs might also help to explain the
phenomenon of species-specific conservation group-
identity.

CONCLUSIONS
Individual and group stakeholder mental models for a restored
English beaver population show correlations between emotion
and perceived concept connectivity and dynamics. Thus,
emotional valence may be signaling functional influence
attributed to concepts, as well as sensitivity to altered concept
states, as perceptions of change in ecosystems unfold. It is
proposed that criteria specified in appraisal theory of emotion
plausibly account for human sensitivity to connectivity within
their mental models. Because the linkages between emotional
responses and mental models are likely to have roots in ecological
and social adaptiveness and to be expressed in the outcomes of
decision making, there is a rationale for paying attention to the
role of human emotion in conservation practice. This study shows
how emotional responses to an important conservation species
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such as beaver, compounded by rapid change following
reintroduction into high-usage domesticated landscapes common
to developed countries such as England, can be considered an
important and inevitable aspect of stakeholder participation in a
large-scale conservation project, for good or ill. These findings
invite further investigations into likely mechanisms underlying
the complex relationship between emotion and mental modeling
of human-wildlife interactions, and suggests a rationale for
conservation planners and managers to recognize and work
directly with stakeholder emotional responses, as well as
recognizing differing perceptions of connectivity that may be
revealed by emotional conflict.

Responses to this article can be read online at: 
https://www.ecologyandsociety.org/issues/responses.
php/12823
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