
Appendix 1

Computing the Adaptive Cycle

Consider a system V of interacting agents, each of which is described by a �nite time
series of states (x1, . . . , xT ). We consider each time series as �nite realization of a stationary
Markov process of order k. Assuming that every e�ective interaction among the agents leads
to a transfer of information between them, transfer entropy as de�ned by Thomas Schreiber
(Schreiber 2000) can be used to quantify interactions within the system. Precisely, let
(x1, . . . , xT ) and (y1, . . . , yT ) be the time series of agents X and Y , respectively. Let k and
l, respectively, denote their estimated Markov orders. In the following, this quantity will be
called history length. Setting a window size wt (max{k, l} + 1 ≤ wt ≤ T ), transfer entropy
at time point t (max{k, l}+ 1 ≤ t ≤ T ) can be estimated via
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with the probabilities/densities p̃ being estimated on basis of data in the time window, i.e.
(xt−wt+1, . . . , xt) and (yt−wt+1, . . . , yt). Note that, if T < 15, two additional data points
are interpolated between two original data points (xi, xi+1) each via a piecewise cubic spline
before the estimation, thereby increasing the stability of the results. In this case, this fact
has to be respected in the choice of the history length.

We use the Kraskov-Stögbauer-Grassberger estimator as being incorporated in the JIDT
toolkit (Lizier 2014). Note that, in the estimation procedure, a certain amount of random
Gaussian noise is added to the original data in order to guarantee reliability of the estimator.
In the following, we call this quantity noise level. Simultaneously to the estimation, we
conduct a signi�cance test being provided by the JIDT toolkit. Only results passing a
certain level of signi�cance are taken into account.

We repeat this procedure with all pairs of components at time t. Considering the system's
components as nodes, the transfer entropy T̃ t

Y→X as weight of edge eY→X at time t, we gain
a weighted, directed graph as inferred model of interaction at time t. Setting T̃ t =

∑
T̃ t
Y→X ,

we de�ne the system's potential at the given time as
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and the system's connectedness at the given time as
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Denote by A the graph's adjacency matrix, by Dout and Din its directed degree matrices.
Setting a standardization constant c, we de�ne

Lout = c ·D−
1
2

out (Dout −A) , and Lin = c · (Din −A)D
− 1

2
in .

as the graph's directed Laplacian matrices. Let Lin and Lout be the Laplacian matrices
of the system's information network. We de�ne the smallest non-trivial real part of the
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eigenvalues of Lout and Lin,

R = min {Rσ : σ ∈ Spec(Lout) ∪ Spec(Lin), σ 6= 0} ,

as the system's resilience.

Given time series of abundances of length T for each component, we can estimate a se-
quence of interaction networks for time points w1, w1+1, . . . , T . This allows us to determine
the development of the three systemic variables during this period.
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