## Appendix 1 | ES and drivers' indicators.

We based the selection of ES and drivers on their relevance for the agricultural landscapes of the Entre Douro Minho (EDM) region. In appendix 1, we present the ES and drivers (Figure A1.1), their description and rationale (Table A1.1) and analyses conducted to evaluate correlation and collinearity within services and drivers (Table A1.2, A1.3, A1.4). We also present the results from the calculation of ES multifunctionality for the parishes of the EDM (Figure A1.2).

Table A1.1 – List of indicators of targeted ecosystem services and socio-ecological drivers. Variables are presented according to the category of ecosystem service or driver together with their respective acronyms and a description of each variable. Sources of data, units and respective spatial resolution and time period of reference are also presented.

| Category             |              | Variable   | Acronym   | Туре   | <b>Description / Rationale</b>                                                                                                                                                                                                          | Source | Unit  | Spatial    | Time   |
|----------------------|--------------|------------|-----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------------|--------|
|                      |              |            |           |        |                                                                                                                                                                                                                                         |        |       | resolution | period |
| Ecosystem<br>service | Provisioning | Food crops | FoodCrops | Supply | Total cultivated area of annual and<br>permanent crops, excluding feed crops.<br>Food production as a service provided by<br>agriculture. Standardized by parish area.<br>Original values ranging from 0 to 403,<br>average 54,6 ha/ha. | INE    | ha/ha | Parish     | 2009   |
|                      |              | Cattle     | Cattle    | Supply | Number of bovine cattle. Food production<br>as a service provided by agriculture.<br>Standardized by parish area. Original<br>values ranging from 0 to 6190, average<br>133,2/ha.                                                       | INE    | n/ha  | Parish     | 2009   |
|                      |              | Wine       | Wine      | Supply | Vineyard cultivated area. Wine production<br>is a service provided by agriculture.<br>Standardized by parish area. Original<br>values ranging from 0 to 220, average 21,4<br>ha/ha.                                                     | INE    | ha/ha | Parish     | 2009   |

|                                   | Regulation                            | Carbon<br>sequestration | Carbseq   | Supply            | Medium value of Potential carbon<br>sequestration modelled based on land use.<br>Carbon is sequestered in soils of forests<br>and areas with natural vegetation, and<br>emitted by croplands, pastures and parts of<br>wetlands. Original values ranging from -46<br>to 79, average 8,1 Mg C/ha.                                                    | Schulp et<br>al.<br>(2008)*                | Mg C/ha   | 1x1 km | 2000-<br>2010 |
|-----------------------------------|---------------------------------------|-------------------------|-----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------|--------|---------------|
|                                   |                                       | Erosion<br>prevention   | ErsPr     | Supply            | Medium value of protection of land cover<br>against erosion in areas prone to erosion.<br>Different types of vegetation are associated<br>with different levels of protection against<br>erosion. Original values ranging from 0 to<br>240, average 38,7 ton/ha.                                                                                    | Perez-<br>Soba et<br>al.<br>(2010)*        | ton/ha    | 1x1 km | 2000-<br>2010 |
|                                   |                                       | Pollination             | Pollin    | Supply            | Medium value of Modelled probability of<br>bees visiting crops from their available<br>habitat. Pollination is an important<br>ecosystem service to agriculture that is<br>provided by natural habitats in agricultural<br>landscapes (Power, 2010). Original values<br>ranging from 77,6 to 99,5, average 95.2%.                                   | Schulp et<br>al.<br>(2014)*                | %         | 1x1 km | 2000-<br>2010 |
|                                   | Cultural                              | Nature tourism          | NatTour   | Supply            | Medium value of Supply of assets for<br>tourism supported by ecosystems.<br>Agricultural landscapes are often linked<br>with tourism through provision of scenic<br>beauty and their respective recreation<br>potential (van Berkel and Verburg, 2014).<br>Original values ranging from 1166 to<br>7833, average 3284,8.                            | van<br>Berkel<br>and<br>Verburg<br>(2011)* | index 0-1 | 1x1 km | 1999-<br>2010 |
|                                   | Biodiversity                          | Farmland birds          | FarmBirds | Supply            | Medium value of Species richness of<br>farmland birds. Farmland bird richness is a<br>commonly used indicator of biodiversity in<br>agricultural land, being recognized as a<br>criterion to designate landscapes under<br>legal protection (Gregory et al., 2005,<br>Halada et al., 2011). Original values<br>ranging from 0 to 11,4, average 4,0. | Tucker et<br>al.<br>(2013)*                | n         | 1x1 km | 2000-<br>2010 |
| Ecosystem's<br>services<br>driver | Biophysical/<br>ecological/<br>Social | Number of farmers       | FarmerN   | Farming intensity | The number of farmers. Used as proxy for<br>both the presence and intensity of<br>agricultural management. Standardized by                                                                                                                                                                                                                          | INE                                        | n/ha      | Parish | 2009          |

|                           |           |                          | parish area. Original values ranging from 0 to 264, average 57,2/ha.                                                                                                                                                                                                                                                                                                                          |     |                              |        |      |
|---------------------------|-----------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------|--------|------|
| Farm size                 | Farmsize  | Farming<br>intensity     | Average size of farms is a proxy for the intensity of agricultural management and respective provision of services. Original values ranging from 0,5 to 349,4, average 5,8 ha.                                                                                                                                                                                                                | INE | ha                           | Parish | 2009 |
| Production<br>value       | ProdValue | Farming<br>intensity     | Sum of average monetary values of the agricultural activity of production units per parish area. May indicate intensity of agricultural management. Original values ranging from 3037 to 9766484, average 314820,3 10 <sup>3</sup> Euros/ ha.                                                                                                                                                 | INE | 10 <sup>3</sup><br>Euros/ ha | Parish | 2009 |
| Specialization<br>Index   | SpInd     | Farming<br>intensity     | Agricultural area under specialized<br>technical-economic orientation in relation<br>to the total utilized agricultural area.<br>Values varying from 0 to 1. May indicate<br>intensity of agricultural management.<br>Original values ranging from 0 to 1105,7,<br>average 7,4.                                                                                                               | INE | NA                           | Parish | 2009 |
| Land use<br>diversity     | SEI       | Landscape<br>composition | Landscape patterns expressed as the<br>Shannon Evenness Index. The Shannon<br>Evenness index accounts for the diversity<br>of land use types and the evenness of their<br>distribution. Values varying from 0 to 1.<br>Diversity of land uses may contribute to<br>local multifunctionality, and thus wider<br>delivery of services. Original values<br>ranging from 0.2 to 0.9, average 0,7. | DGT | NA                           | Parish | 2007 |
| Landscape<br>edge density | ED        | Landscape composition    | Density of edges in relation to the parish<br>area is relevant to wildlife maintenance as<br>they may constitute semi-natural areas.<br>Original values ranging from 79. 3 to<br>384.5, average 205,4 m/ha.                                                                                                                                                                                   | DGT | m/ha                         | Parish | 2007 |

\*Gather from http://www.provide-project.eu/



Figure A1.1 - Distribution of the z-score values obtained for individual ES indicators (A) and ES drivers (B) across the 1326 municipalities in the Entre Douro e Minho Agrarian Region. Dark blues represent higher delivery and light blues a lower delivery of the service.

Table A1.2 - Results from the Variance inflation factor (VIF) of ecosystem services (ES) and drivers.

| ES    | Carbseq | ErsPr | Pollin  | NatTour  | FarmBi | rds | FoodCrops | s Wine | Cattle |
|-------|---------|-------|---------|----------|--------|-----|-----------|--------|--------|
| VIF   | 1.23    | 1.2   | 3 1.11  | 1.05     | 1      | .12 | 1.23      | 3 1.26 | 1.04   |
| Drive | rs SEI  | ED    | FarmerN | Farmsize | SpInd  | Pro | odValue   |        |        |
| VIF   | 1.38    | 1.38  | 1.17    | 2.54     | 2.59   |     | 1.18      |        |        |

Table A1.3 - Results from the correlation analysis of pairs of ecosystem services with the Spearman correlation test. Significance at p < 0.05 denoted by \* and at p < 0.01 by \*\*.

|           | ErsPr  | Pollin | NatTour | FarmBirds | FoodCrops | Wine   | Cattle  |
|-----------|--------|--------|---------|-----------|-----------|--------|---------|
| Carbseq   | 0.18** | -0.01  | 0.00    | -0.27**   | 0.18**    | 0.22** | 0.23**  |
| ErsPr     |        | 0.25** | 0.06*   | 0.26**    | 0.30**    | 0.27** | 0.21**  |
| Pollin    |        |        | 0.15**  | 0.28**    | 0.32**    | 0.47** | -0.02   |
| NatTour   |        |        |         | 0.13**    | 0.07*     | 0.25** | -0.10** |
| FarmBirds |        |        |         |           | -0.04     | 0.07*  | -0.14** |
| FoodCrops |        |        |         |           |           | 0.57** | 0.22**  |
| Wine      |        |        |         |           |           |        | 0.09**  |

Table A1.4 - Results from the correlation analysis of pairs of drivers with the Spearman correlation test.

|          | ED     | FarmerN | Farmsize | SpInd   | ProdValue |
|----------|--------|---------|----------|---------|-----------|
| SEI      | 0.43** | 0.26**  | -0.11**  | -0.16** | -0.09**   |
| ED       |        | 0.21**  | -0.14**  | -0.14** | 0.25*     |
| FarmerN  |        |         | -0.21**  | -0.14** | 0.52**    |
| Farmsize |        |         |          | 0.68**  | 0.30      |
| SpInd    |        |         |          |         | 0.30**    |

Significance at p < 0.05 denoted by \* and at p < 0.01 by \*\*.



Figure A1.2 – Multifunctionality of parishes described by the transformation (H) of the Gini–Simpson's index (S) (H index) for each parish of the EDM. Dark blues represent higher delivery and light blues a lower delivery of H index.

## LITERATURE CITED

Gregory, R. D., A. V. Strien, P. Vorisek, A. W. G. Meyling, D. G. Noble, R. P. B. Foppen & D. W. Gibbons 2005. Developing indicators for European birds. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 269-288. doi:10.1098/rstb.2004.1602

Halada, L., D. Evans, C. Romão & J.-E. Petersen 2011. Which habitats of European importance depend on agricultural practices? Biodiversity and Conservation, 20, 2365-2378. https://doi.org/10.1007/s10531-011-9989-z

Perez-Soba, M., P. Verburg, E. Koomen, M. Hilferink, P. Benito, J. Lesschen & M. Banse 2010. Land use modelling-implementation; Preserving and enhancing the environmental benefits of land-user services. Geodan Next, Wageningen.

Power, A. G. 2010. Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2959-2971. doi:10.1098/rstb.2010.0143

Schulp, C. J. E., S. Lautenbach & P. H. Verburg 2014. Quantifying and mapping ecosystem services: Demand and supply of pollination in the European Union. Ecological Indicators, 36, 131-141. https://doi.org/10.1016/j.ecolind.2013.07.014

Schulp, C. J. E., G.-J. Nabuurs & P. H. Verburg 2008. Future carbon sequestration in Europe—Effects of land use change. Agriculture, Ecosystems & Environment, 127, 251-264. https://doi.org/10.1016/j.agee.2008.04.010

Tucker, G., B. Allen, M. Conway, I. Dickie, K. Hart, M. Rayment, C. Schulp & A. Van Teeffelen 2013. Policy options for an EU no net loss initiative. Report to the European Commission. Institute for European Environmental Policy, London.

Van Berkel, D. B. & P. H. Verburg 2011. Sensitising rural policy: Assessing spatial variation in rural development options for Europe. Land Use Policy, 28, 447-459.

https://doi.org/10.1016/j.landusepol.2010.09.002

Van Berkel, D. B. & P. H. Verburg 2014. Spatial quantification and valuation of cultural ecosystem services in an agricultural landscape. Ecological Indicators, 37, 163-174.

https://doi.org/10.1016/j.ecolind.2012.06.025