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Collective action in the area-wide management of an invasive plant disease
Sara Garcia Figuera 1  , Bruce Babcock 2  , Mark Lubell 3   and Neil McRoberts 1 

ABSTRACT. Area-wide management (AWM) is a strategy for invasive plant pests and diseases in which management actions are
coordinated across property boundaries to target the entire pest or pathogen population in an area. Because some people may benefit
from the actions of others without bearing the costs, but group-level contributions are required to achieve effective control, AWM
suffers from free-riding, yet it has rarely been studied as a collective action problem. To foster collective action for the management of
huanglongbing (HLB), California citrus stakeholders have adopted two distinct institutional approaches: Psyllid Management Areas
(PMAs), in which coordinated treatments are voluntary, and Pest Control Districts (PCDs), in which coordinated treatments are
mandatory. Through a survey distributed to citrus stakeholders in Southern California and a regression analysis of participation levels
in AWM over nine seasons, we assess the impact that individual perceptions, institutional approaches, and group-level determinants
have had on collective action. Our results show that although citrus stakeholders are confident about the benefits of AWM, they are
aware of collective action problems and identified the lack of participation as the main barrier to AWM. Group size, grove size, and
heterogeneity in grove size were found to significantly impact collective action. In addition, our analysis shows that the two institutional
approaches that were developed for AWM have followed a different trajectory over time, leading to a discussion of the determinants
that may enable and sustain collective action for invasive species management.
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INTRODUCTION
In recent years, there has been a growing interest in collective
action problems associated with the management of invasive
species (Bagavathiannan et al. 2019, Graham et al. 2019, Garcia-
Figuera et al. 2021a) that threaten the sustainability of social-
ecological systems across the globe (Simberloff  et al. 2013, Bebber
et al. 2014, Driscoll et al. 2014, Freer-Smith and Webber 2017,
Faulkner et al. 2020). Pioneering studies suggested that invasive
species management has the characteristics of a weakest-link
public good, where the overall level of provision is conditioned
by the least effective provider (Perrings et al. 2002). Recent reviews
have reinforced the concept of invasive species management as a
public goods collective action problem that requires
contributions, i.e., adoption of management practices, by affected
actors and generates environments free of invasive species that
create mostly non-rivalrous benefits to users (Graham et al. 2019,
Niemiec et al. 2020). Conceptualizing invasive species
management as a collective action problem creates the potential
of applying collective action theories originally inferred from case
studies of common-pool resources (CPRs; Ostrom 1990, Baggio
et al. 2016) to this emerging challenge.  

Here we use collective action theory to guide analysis of
participation in the area-wide management of an invasive plant
disease, focusing on individual perceptions, institutional
approaches, and group-level outcomes. Area-wide management
(AWM), a strategy in which individual actors coordinate their
management actions across property boundaries to target the
entire pest or pathogen population within an area, is a common
recommendation for plant pests and diseases that have high
dispersal potential (Vreysen et al. 2007, Hendrichs et al. 2021).
Many ecological studies have recommended the implementation
of AWM for a broad range of plant pests and diseases (Anco et
al. 2019, Laranjeira et al. 2020), yet little attention has been paid

to the collective action problem associated with AWM (Kruger
2016, Mankad et al. 2017).  

AWM invokes many of the variables that the broader literature
on collective action hypothesizes as drivers of cooperation. These
include the number of individuals involved (Olson 1965); whether
benefits are rivalrous, i.e., CPRs, or non-rivalrous, i.e., public
goods (Ostrom 2003); the heterogeneity of individuals (Gavrilets
2015); or the option to have face-to-face communication (Smith
2010). With repeated interactions between individuals, the
availability of information about past actions; how individuals
are linked; and whether they can enter or exit participation
voluntarily can also impact collective action (Ostrom 2010). These
external structural variables have been proposed to interact with
an inner core of individual-level variables (reputation, trust, and
reciprocity) to affect the level of collective action and benefits
achieved (Ostrom 2010). In this study, we tested the impact of
some of these variables on the AWM of huanglongbing (HLB).  

HLB is an invasive disease of citrus trees that is threatening citrus
production worldwide (Wang 2019). The most common type of
HLB is associated with the bacterium “Candidatus Liberibacter
asiaticus,” which is spread by an insect vector, the Asian citrus
psyllid (ACP), Diaphorina citri (Bové 2006). The bacterium
reproduces in the vascular tissue of citrus trees causing fruit yield
and quality loss (Bassanezi et al. 2009). Infected citrus trees
eventually die because commercial varieties are not resistant
(Ramadugu et al. 2016) and there is no available cure. Therefore,
the only measures to prevent trees from getting infected with HLB
are to identify and remove infected trees, to replace them with
certified plant material, and to control the insect vector (Gottwald
2010). Many studies have shown that these three measures are
most effective if  they are applied on an area-wide scale (Bassanezi
et al. 2013, Singerman et al. 2017, Yuan et al. 2021), yet
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participation in AWM in HLB-affected regions has been irregular
(Singerman and Rogers 2020, Bassanezi et al. 2020).  

The collective action problem associated with area-wide
insecticide treatments against the insect vector of HLB poses a
particularly significant challenge. Effective vector control
requires time-coordinated insecticide sprays by all growers in a
sufficiently large area to avoid dispersal of the insect vector, but
because coordinated treatments benefit the whole group, any
grower may be tempted to rely on others’ treatments and avoid
the cost of spraying (Singerman and Useche 2019). If  a grower
fails to coordinate, that property can sustain the insect population
and spread HLB to the rest (Bassanezi et al. 2013). To face this
collective action problem, citrus growers in different regions of
the world affected by this disease have developed similar
institutional approaches that remarkably follow many of
Ostrom’s design principles for long-enduring CPR institutions,
especially in California (Garcia-Figuera et al. 2021a).

Case study: area-wide management of ACP in California
The current HLB epidemic in California offers an exceptional
case study to advance the application of collective action theory
to the management of invasive plant pests and diseases. California
is the main citrus-producing state in the U.S., with a $3.63 billion
citrus industry that is under threat from HLB (Babcock 2022).
The insect vector was first detected in San Diego in 2008 and it
quickly became established in Southern California (Bayles et al.
2017). The first HLB-positive tree was found in a residential
neighborhood in Los Angeles in 2012 (Kumagai et al. 2013). Since
then, more than 2500 HLB-positive citrus trees have been detected
and removed from residential properties (CPDPD 2021). No
HLB-positive trees have been detected in commercial citrus groves
to date. To prevent spread to commercial citrus, an AWM program
was implemented in Southern California (Imperial, Riverside,
San Bernardino, San Diego, Santa Barbara, and Ventura
Counties). The AWM program consists of two coordinated
insecticide treatments per year, one in the late summer (August–
September) and one in the winter (December–February), but the
exact treatment window depends on the county, and some
counties conduct additional treatments, particularly in the fall
(Grafton-Cardwell 2020). Growers bear the cost of treatments
using pesticides recommended by the University of California
(UC ANR 2021). Participation in AWM is considered crucial to
keep the insect vector population under control and avoid the
kind of damage to California citrus experienced by Florida’s
industry, where efforts to control the disease failed.  

Since HLB was first detected in Florida in 2005, citrus acreage
and yield have declined by 38% and 74%, respectively (Graham
et al. 2020). An AWM program was implemented, but it failed to
achieve adequate collective action (Singerman and Rogers 2020).
The Florida Department of Agriculture and Consumer Services
and University of Florida researchers defined AWM units for
growers to voluntarily coordinate insecticide treatments for the
insect vector (Rogers 2011), but most growers were not used to
coordinating activities with each other, participation in AWM was
not monitored, sanctions were not imposed on noncompliant
growers, and there was no state-level industry-led organization
coordinating efforts (Garcia-Figuera et al. 2021a). A recent review
of the AWM program in Florida recommended replacing this
voluntary program with a mandatory component, suggesting:

“the top-down regulation could be implemented from the state
to the fruit-procuring companies (i.e., packinghouses and
processors), requiring them to provide documentation that their
processed/packed fruit has been subject to coordinated sprays.
Fruit-procuring companies would, in turn, require such
documentation to growers as part of their specifications for
purchasing their fruit. In this way, growers would need to organize
themselves locally to fulfill such a requirement, perhaps through
their associations and be assessed charges (from a third party) for
the sprays on a per-acre basis” (Singerman and Rogers 2020:5).
To date there is no indication that this recommendation will be
followed by the Florida industry.  

California offers an alternative example of an AWM program for
HLB that combines voluntary and mandatory components as
part of a bottom-up, grower-led strategy to achieve collective
action. To overcome the collective action problem associated with
AWM and coordinate insecticide treatments, California citrus
growers have adopted two distinct institutional approaches:
Psyllid Management Areas (PMAs) and Pest Control Districts
(PCDs).  

PMAs are groups of approximately 20 neighboring growers who
voluntarily coordinate insecticide treatments for the insect vector
of HLB over a 2–3 week window. PMAs were established by the
grower-led state-wide program as relatively small zones that share
a landscape, similar environmental conditions, and most
importantly, a social network of growers (Grafton-Cardwell et al.
2015). Some PMAs have a voluntary leader who is responsible
for contacting the rest of the growers when it is time to spray,
following instructions from their grower liaisons. In other PMAs,
growers are contacted directly by grower liaisons who were hired
by the program to coordinate the network of PMAs in a region,
facilitate area-wide treatments, disseminate outreach and
education materials, and act as knowledge brokers between the
state-wide program, the regional task forces, and the growers.
Task forces are voluntary groups of growers, county authorities,
and other citrus stakeholders that operate at a county or larger
scale with the aim of coordinating efforts among PMAs. In
regions that rely on PMAs to coordinate treatments, task forces
meet every 1–3 months and recommend AWM treatments based
on the number of insects observed on yellow sticky traps
distributed throughout the state and checked every two weeks.
Scientists from the University of California, or other centers of
expertise, are often involved in advising task forces on these
decisions. The organizational hierarchy from individual growers
to PMAs, task forces, and the state-wide program exemplifies the
concept of nested enterprises, a feature of long-enduring CPR
institutions identified by Ostrom (Ostrom 1990).  

PCDs are special districts instated by local growers to have the
legal authority to control, eradicate, or respond to the effects of
pests and diseases affecting a specific crop (UCCE 2005). Citrus
PCDs currently exist in Imperial, Riverside, and San Diego
Counties. Some PCDs were set up to control other citrus pests
before HLB and its insect vector were detected. In other cases,
PCDs were newly created to manage these invasive species
(Appendix 1, Table A1.1). Within a county, PCDs are established
by majority vote of growers in the proposed district (a vote of ≥
51% by area in favor is required), who become subject to the rules
established by the PCD board of directors. Inside a PCD,
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treatments against a specific pest can be mandatory. If  a grower
does not comply, the California Food and Agricultural Code
allows the PCD to treat the non-compliant property and send a
bill to the owner. If  the bill is not paid within a certain time, the
County has the authority to sell that property, or part of it, to
recoup the cost of the treatment (FAC 1988). The board of
directors of each PCD is responsible for monitoring the insect
vector population with yellow sticky traps and letting the grower
liaison know when it is time to contact the growers for the area-
wide treatments. PCDs are typically funded by assessments that
growers pay proportional to their acreage inside the PCD
(Appendix 1, Table A1.1) Some PCDs (Coachella, Hemet, and
San Diego) incentivize coordination by providing a complete or
partial reimbursement of grower assessments if  they show proof
of compliance with the AWM treatment within the recommended
window.

Application of collective action theory
The main goal of this study was to use collective action theory to
better understand the individual and group-level determinants
that may impact participation in AWM. A motivation for carrying
out this analysis comes from the role played by University of
California scientists in providing scientific support to
stakeholders involved in decision making in the state-wide
program (McRoberts et al. 2019). Being able to place the tasks
that decision makers face in a robust framework that generalizes
the issues they are dealing with may provide them with a useful
perspective on whether the benefits of operating such a large and
complex program are high enough to justify the program’s
transaction costs.  

In terms of individual determinants, previous studies of collective
action have shown that when users share common knowledge of
relevant system attributes and are aware of how their actions
affect each other, they perceive lower costs of organizing (Ostrom
2009). In the context of invasive weed management, the belief
that weeds were a cross-boundary problem was found to be
significantly correlated with the willingness to engage in control
behaviors (Lubeck et al. 2019).  

Therefore, we used a survey to assess citrus stakeholders’ beliefs
in the benefits of AWM and their perceptions of the main barriers
to AWM because these could be important individual
determinants of participation in AWM. The state-wide program
has promoted AWM as the main strategy for the insect vector of
HLB for several years (Grafton-Cardwell 2020), so we assumed
that citrus stakeholders would be familiar with it, and wanted to
assess if  they believed it was beneficial. In particular, we wanted
to test if  citrus stakeholders’ intentions to stay informed and
communicate with grower liaisons were positively correlated with
their belief  in the benefits of AWM because this would suggest a
pathway to promote collective action. In addition, by asking
stakeholders about what they thought were the main barriers to
AWM, we aimed to gain insight into their perception of the
collective action problem.
H1: Citrus stakeholders who are more likely to stay informed and
communicate with grower liaisons have higher confidence in the
efficacy of AWM  

Trust and reciprocity have been found to impact collective action
in many different systems (Ostrom 2010). Trust in others’
contributions to the collective effort was found to significantly

affect collective action in groundwater management (Niles and
Hammond Wagner 2019) and collective pest management
(Stallman and James 2017); and community reciprocity was a
significant predictor of most behaviors related to collectively
controlling an invasive plant (Niemiec et al. 2016). Based on these
findings, we aimed to assess citrus stakeholders’ belief  that others
would contribute to AWM. Moreover, because collective action
studies have shown that face-to-face communication is essential
to develop trust and reciprocity (Ostrom 2010), and
communication has also been found to impact collective pest
management (Maclean et al. 2019, Sherman et al. 2019), we aimed
to assess the citrus stakeholders’ intentions to stay informed and
communicate with neighbors, with the hypothesis that it would
be positively correlated with trust in neighbors.
H2: Citrus stakeholders who are more likely to stay informed and
communicate with neighbors are more likely to believe that their
neighbors will participate in AWM  

In terms of group-level determinants of collective action, we used
an empirical record of group-level participation in coordinated
insecticide treatments from 93 AWM units in Southern California
over nine seasons to test the influence that collective action
variables have on AWM participation. The emergence of
institutions for collective action and their evolution has been at
the core of collective action theory since its inception (Ostrom
1990). In our case study, the two types of institutions that emerged
for AWM have different histories and characteristics that might
influence participation in AWM, but there is a key difference
between them that might have the biggest impact on collective
action, based on the available literature. Whereas PMAs are
voluntary and require a lower degree of commitment from citrus
stakeholders, PCDs are mandatory and require contributions on
a per-acre basis, so the two institutions differ in their degree of
local enforcement.
H3: PCDs have higher participation levels than PMAs (baseline),
all other factors being equal  

As the size of a group increases, the probability of achieving a
public good decreases. The larger the group size, the easier it is
for individuals to free ride on the efforts of others, which
discourages effective collection action. Furthermore, costs of
organizing collective action increase with group size, making it
more difficult to justify collective efforts (Olson 1965). In the
invasive species literature, several studies have discussed the
difficulty of coordinating large populations of land managers
(Graham et al. 2019).
H4: AWM units (either PCDs or PMAs) with fewer members have
higher participation levels  

The size of the resource system is one of the key variables that
impact the likelihood of collective action in social-ecological
systems (Ostrom 2009). Forest commons with small to moderate
sizes were found to be most conducive to self-organization,
because very large forest commons have higher costs of defining
boundaries, monitoring users, and gaining ecological knowledge
about the system, while very small territories did not generate
enough benefits (Chhatre and Agrawal 2008). In our system, the
larger the unit, the more effective coordinated treatments will be,
because the insect will have to fly longer distances to escape to
untreated groves (Rogers et al. 2010, Flores-Sánchez et al. 2017).
However, in larger AWM units the cost, effort, and time required
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to assess the insect vector population and to apply insecticides
will be potentially higher, and could lead to lower participation
levels.
H5: Larger AWM units (in terms of total citrus acreage) have
lower participation in AWM  

The collective action literature suggests that when users are
dependent on a resource for a substantial portion of their
livelihoods or attach high value to the sustainability of the
resource, they are more likely to self-organize (Ostrom 2009).
Although we did not have any group-level measurement of
dependency on citrus production, we assumed that it could be
related to the size of citrus operations because people who manage
larger operations may be more invested in citrus production
(Mankad et al. 2019), and they may have more resources to fund
treatments.
H6: AWM units with larger citrus groves have higher participation
in AWM  

Although there is some debate about the impact of heterogeneity
on collective action, particularly relative to other factors (Poteete
and Ostrom 2004), heterogeneity in assets, information, or payoffs
has been found to negatively impact collective action, mainly
because of the increased transaction costs of reaching an
agreement and the conflicts that could arise over the distribution
of benefits and costs to be borne (Ostrom 2010). Heterogeneity,
i.e., thinking that the neighbors’ farms or properties were different
from one’s own, was also found to negatively impact collective
action for pest management (Stallman and James 2017).
H7: AWM units with higher heterogeneity (in the size of citrus
groves) have lower participation in AWM  

Finally, the use of a longitudinal dataset of overall participation
in AWM at the group level allowed us to test if  there had been an
increase or decrease in participation over time. A priori, it was
hard to hypothesize a general pattern across all AWM units, but
we aimed to test if  participation in AWM had grown over time,
which could be viewed as a success of the state-wide program.
More importantly, we aimed to test if  there was an interaction
between the type of institution and the age of the program, which
would suggest that the evolution of participation has followed a
different trajectory over time in PCDs and PMAs.
H8: Participation in AWM has grown over time
H9: Participation in AWM has followed a different pattern over
time in PCDs and PMAs 

METHODS

Research design
In this study we used two datasets: a survey dataset that measures
individual stakeholder perceptions of AWM and a group-level
dataset of actual participation of groups of stakeholders
(organized in AWM units) in AWM treatments. The survey was
used to assess citrus stakeholders’ confidence in the benefits of
AWM, the main barriers to AWM, and their confidence that their
neighbors will participate. This information was intended to
provide individual-level context to the analysis of participation
in AWM, and to show how perceptions have evolved since the
program was implemented. The second data set was a record of
participation in AWM treatments in Southern California, where
the unit of analysis is the AWM unit (PMA or PCD), composed
of a group of stakeholders. This data set was used to estimate a
statistical model to test hypotheses about participation in AWM.

The dependent variable in the model was the level of participation
in AWM. Independent variables included the institutional
approach (PMA or PCD), group size, size of the resource system,
size of citrus groves, heterogeneity in grove size, season of
treatment, and age of program, as explained below.

Survey

Survey design
The questionnaire to assess citrus stakeholders’ perception of the
AWM program was designed by researchers as part of a broader
study to assess citrus stakeholders’ propensity to adopt
recommended HLB management practices in California (Garcia-
Figuera et al. 2021b). The questionnaire is provided in Appendix
2.  

The most relevant questions for the present study focused on
grower perceptions of AWM and collective action variables. To
assess stakeholders’ perception of their group efficacy (Niemiec
et al. 2016, Lubeck et al. 2019) or response efficacy (Mankad and
Loechel 2020), we asked for their perception of the likelihood that
coordinated treatments against the insect vector would slow the
spread of HLB more than uncoordinated treatments. The answers
to this question were a 5-point Likert scale of “very unlikely,”
“unlikely,” “maybe,” “likely,” or “very likely.” This question was
in line with a previous question asked in a similar survey in 2015
(Milne et al. 2018).  

To gain insight into stakeholders’ perception of the main barriers
to AWM, and to determine if  they perceived it as a collective
action problem, we asked participants to indicate what they
thought was the main barrier to area-wide management of the
insect vector in their area, choosing among “preference to spray
in one’s own timing,” “access to sprayers,” “cost,” “getting
everyone to participate,” or “worry about integrated pest
management (IPM) disruption.” These options were based on
interactions with citrus stakeholders and conversations with
grower liaisons, a previous survey by our group and collaborators
in 2015 (Milne et al. 2018), and a study with citrus growers in
Florida, which found that the main reason why growers did not
participate in the AWM program was that “neighbors do not
participate,” followed by “I prefer to spray on my own timing”
(Singerman et al. 2017).  

To measure stakeholders’ confidence that others around them
were contributing to the collective effort, we asked them how likely
they thought it was that their neighbors would apply insecticides
within recommended treatment windows, choosing among “very
unlikely,” “unlikely,” “maybe,” “likely,” and “very likely.” We
specifically asked this question after asking about the main barrier
to AWM to prevent bias in responses to the question about
barriers that could potentially arise once participants were asked
about their neighbors.  

To contextualize the three questions about AWM within the
broader HLB control program in California, we asked
participants about their self-reported intention to stay informed
and communicate with the grower liaisons; their self-reported
intention to communicate with neighbors (growers and
homeowners); and their perceived vulnerability to HLB (how
likely they thought it was that an HLB-positive tree would be
detected in their grove in the next year). These questions were also
assessed on a 5-point scale of “very unlikely,” “unlikely,” “maybe,”
“likely,” and “very likely.”  
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Controls for operator and operation demographics are based on
previous agricultural surveys, including surveys about HLB
(Stallman and James 2015, Singerman et al. 2017, Milne et al.
2018, Mankad et al. 2019). The research protocol was submitted
to the Institutional Review Board (IRB) at UC Davis [1436590-1]
and it was granted “Exempt” status because it entailed low risk
to participants

Survey distribution
The survey was distributed at three grower meetings that were
part of the Citrus Growers Educational Seminar Series, organized
by the Citrus Research Board (CRB) in collaboration with the
University of California Cooperative Extension (UCCE) in June
of 2019 in Palm Desert (southeast California), Santa Paula
(coastal California), and Exeter (San Joaquin Valley). These are
annual seminars organized by the CRB and UCCE, for which
attendees get Continuing Education units & Certified Crop
Adviser hours. The availability of these credits tends to result in
larger-than-usual attendance at grower workshops, reducing
selection bias that could arise from sampling growers with more
narrow interests. Selection bias was further limited by the fact that
the annual election of citrus industry representatives for the CRB
was scheduled on the day of the seminars in Palm Desert and
Exeter. Nevertheless, as with most agricultural surveys, there
likely remains some response bias toward more involved and
larger growers, which limits the generalizability of our findings
to the fringe of more disconnected, smaller growers.  

To maximize participation, growers completed surveys during a
designated time immediately after a presentation of best
management practices for HLB that did not focus on AWM and
did not mention collective action (Garcia-Figuera et al. 2021b).
The survey was introduced as voluntary and anonymous, in
compliance with IRB regulations. It was presented with the
TurningPoint add-in for Microsoft PowerPoint (Microsoft,
Redmond, WA, USA), and responses were collected using clicker
handsets from TurningPoint (Turning Technologies, Youngstown,
OH, USA) that had been given to each participant before the
seminar started. Participants were given about one minute to
answer each question. Once the polling time was closed for each
question, a summary of the responses (percentage of participants
that had chosen each response) was shown to the audience and
briefly discussed before moving to the next question.

Analysis of participation in AWM

Dependent variable: participation in AWM
A regression model was used to quantify the impact of the
institutional approach and group-level determinants on
participation in AWM. The unit of analysis was the AWM unit
(PMA or PCD). The dependent variable was the level of
participation in coordinated insecticide treatments, measured as
the percentage of the citrus acreage within each AWM unit treated
within the designated treatment window. As mentioned, the
grower liaisons and the state plant health agency have been
tracking participation in AWM since coordinated treatments for
ACP started to be recommended in Southern California in 2015
(Grafton-Cardwell et al. 2015). The task forces directing the
PMAs or the board of directors of the PCDs determine the most
appropriate window for treatment, and the grower liaisons collect
the Pesticide Use Reports (PURs) submitted to the County
Agricultural Commissioners (CACs) to determine the number of
acres that were treated within the recommended window.

Participation levels are then calculated as the percentage of the
total citrus acreage within each AWM unit that was treated within
the recommended window. These percentages are reported to the
state plant health agency to determine which AWM units qualify
for residential buffer treatments (CDFA 2020).  

This unique data set of participation levels covers a total of 93
active AWM units in Southern California: 16 operating as part
of a PCD and 78 operating as PMAs (Fig. 1). Although there are
some areas within some of the counties with PCDs that are
organizing AWM treatments voluntarily, participation in those
treatments is not currently recorded. Thus, Southern California
counties are either operating through PCDs or PMAs. Imperial
County has a PCD with 7 growing zones; Riverside County has
2 PCDs (Hemet and Coachella) with a total of 6 growing zones;
San Bernardino County has 19 active PMAs; San Diego County
has a PCD with 3 areas; Santa Barbara County has 9 active PMAs;
and Ventura County has 50 active PMAs. Participation levels
from these AWM units were available for nine seasons: the fall of
2016, the winter of 2016–2017, the fall of 2017, the winter of
2017–2018, the fall of 2018, the winter of 2018–2019, the fall of
2019, the winter of 2019–2020, and the fall of 2020 (Appendix 1,
Fig. A1.1). In total, the data set contains 840 observations
corresponding to participation levels in 93 AWM units over nine
seasons.

Independent variables
Independent variables that could impact participation in AWM
were selected from recent studies related to collective action and
invasive species management (Graham et al. 2019, Lubeck et al.
2019, Mankad and Loechel 2020), as well as information gathered
through years of interaction with the grower liaisons and the state-
wide program managers (McRoberts et al. 2019). Seven
independent variables were considered:  

1. Institutional approach: PMA (baseline) or PCD. 

2. Group Size of each PMA or PCD, measured as the number
of different pesticide use permits in each AWM unit, based
on the information recorded in the database of citrus
operations in California maintained by the CRB (Appendix
3). 

3. Size of the resource system, i.e., total citrus acreage under
each AWM unit, based on the information in the CRB citrus
database (Appendix 3). 

4. Size of citrus groves, measured as the average grove size in
each AWM unit, based on the information in the CRB citrus
database (Appendix 3). 

5. Heterogeneity in grove size, measured in terms of the
standard deviation of the size of citrus groves in each AWM
unit, based on the information in the CRB citrus database
(Appendix 3). 

6. Season of treatment: fall (baseline) or winter. 

7. Age of program, i.e., consecutive season (1-9), from 2016 to
2020. 

Hypotheses
As explained in the Introduction, collective action theory and
previous studies on the collective management of invasive species
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Fig. 1. Geographical location of Psyllid Management Areas (PMAs) and Pest Control
Districts (PCDs) for area-wide management of the Asian citrus psyllid (ACP) in
Southern California. The outline of PMAs is shown in blue and the outline of PCDs is
shown in purple. Each PMA and PCD has been filled with colors corresponding to the
average coordination levels in the AWM program for ACP from the fall of 2016 to the
fall of 2020. The red polygon that encompasses parts of Los Angeles, Orange, Riverside,
and San Bernardino counties corresponds to the huanglongbing (HLB) quarantine zone,
where HLB-positive trees have been detected and removed from residential properties.
Counties colored in pink are considered to be generally infested with ACP, whereas
counties colored in green are considered to be free of ACP (only localized detections
where the population has been eradicated).

guided our hypotheses about the impact of institutional
approaches and group-level determinants on participation in
AWM (summarized in Table 1). In addition to those variables, we
added one variable specific to our system. Because vector
populations tend to peak at the end of the summer or the
beginning of fall in California, entomologists have emphasized
the importance of fall treatments to reduce the insect vector
population (Grafton-Cardwell 2020). Therefore, we hypothesized
that fall treatments would have higher participation than winter
treatments, which are mostly preventive and aimed at targeting
adults that may have survived through the coldest months of the
year before the spring flush, i.e., young leaf growth
H10: Participation in AWM is higher in the fall than in the winter.

Analytical approach: zero-and-one-inflated beta regression model
Participation in the AWM program in California is measured as
the proportion of the citrus acreage within each AWM unit that
was treated within a 21-day window. Thus, it is a continuous
variable that falls within the closed interval [0,1]. The
participation dataset contains 11 observations at 0 (all PMAs),
668 observations in the interval (0,1) and 112 observations at 1

(60 PCDs and 101 PMAs). Given these characteristics, we chose
to use a zero-and-one-inflated beta (zoib) regression model
implemented through the R package “zoib” (Liu and Kong 2015).
More information about the analytical approach can be found on
Appendix 3.

RESULTS

Descriptive statistics of survey participants
A survey distributed at three citrus grower meetings aimed to
assess their individual perceptions of their group efficacy, the
main barriers to AWM, and their trust in others’ participation in
AWM. We collected responses from 98 individuals who indicated
that they had groves in the Southern California counties that are
routinely coordinating insecticide treatments for the insect vector
of HLB (Imperial, Riverside, San Bernardino, San Diego, Santa
Barbara, and Ventura), and have thus been grouped in AWM
units. This was a subset of a broader survey that involved 300
participants from citrus-growing areas in Southern California,
the Coast and the Central Valley (Garcia-Figuera et al. 2021b).
The socioeconomic characteristics of the participants that were
selected for this study are shown in Appendix 1, Table A1.2.  
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Table 1. Independent variables and hypotheses in the area-wide management participation regression model. PMA, Psyllid
Management Areas; PCD, Pest Control Districts.
 
Independent variable Type of variable Expected sign

Institutional approach Categorical: PMA (baseline)/PCD Positive
Group size Numeric (min 1, median 10, max 65) Negative
Size of the resource system Numeric (min 11 acres, median 404 acres, max 3652 acres) Negative
Size of citrus groves Numeric (min 0.6 acres, median 9 acres, max 30 acres) Positive
Heterogeneity in grove size Numeric (min 2 acres, median 9 acres, max 99 acres) Negative
Season of treatment Categorical: Fall (baseline)/Winter Negative
Age of program Numeric (1-9) ?

Although the survey was based on a non-random sample of
attendees at citrus stakeholder meetings, we believe that it was
reasonably representative of citrus production in Southern
California. Most participants were from Ventura County (53),
followed by Riverside (14), Santa Barbara and Ventura (7),
Riverside and San Diego (5), Santa Barbara (4), Imperial (2), and
other combinations (13). To give an idea of the size of the industry
in these counties, there are about 874 operations with bearing or
non-bearing citrus trees in Ventura County, 590 in Riverside, 152
in Santa Barbara, 1254 in San Diego, 20 in Imperial County, and
271 in San Bernardino (USDA-NASS 2019). Total citrus acreage
in 2018 was 18,447 acres in Ventura (Ventura CAC 2019), 17,333
in Riverside (Riverside CAC 2019), 1291 in Santa Barbara (Santa
Barbara CAC 2019), 11,701 in San Diego (San Diego CAC 2019),
9231 in Imperial (Imperial CAC 2019), and 2435 in San
Bernardino (San Bernardino CAC 2019).  

Most of the survey respondents from these counties were grove
owners (38), PCAs (18), or ranch managers (17). Although 18
self-identified as other, we did not detect any significant
differences in the distribution of responses to the relevant survey
questions among different types of stakeholders, so all of them
were considered as a single sample for analyses and are referred
to as “participants” or “respondents.” In terms of grove size, there
was an under-representation of small citrus groves in our sample
(23%) compared with state-wide percentages (50%); and an over-
representation of large groves (29% vs. 1%; USDA-NASS 2019).
In terms of age, the sample was representative, with 52% of
respondents between the ages of 35 and 64, compared with 55%
of growers between those ages in their counties of origin (USDA-
NASS 2019). Younger growers were slightly over-represented.
Organic citrus production was also over-represented in the survey,
as 8% of citrus operations and 3% of acreage in the state of
California are estimated to be certified organic (USDA-NASS
2017, 2019), yet 13% of participants indicated that they grew
citrus organically. Participants for whom citrus production
represented less than a quarter of their income comprised 41% of
the sample, compared with participants who depended on citrus
for their livelihood (23%).

Individual-level perceptions of collective action in area-wide
management
The majority of survey participants (87%) thought that it was
“likely” or “very likely” that coordinated insecticide treatments
for the insect vector would slow down the spread of the disease
more than uncoordinated treatments, revealing a strong
confidence in the benefits of collective action (Fig. 2). Participants

with different socioeconomic backgrounds did not provide
significantly different answers to this question, and confidence in
AWM was consistent across PMAs, PCDs, and counties. Because
participants were not asked specifically about the institutional
approach that they were using for AWM, but about the county/
ies where they grew citrus, counties that coordinate AWM
exclusively through PCDs (Imperial) were grouped under the
“PCD” category; counties that are coordinating AWM exclusively
through PMAs (San Bernardino, Santa Barbara, Ventura, and
combinations of these) were grouped under the “PMA” category,
and the rest were grouped under “Both.”  

When participants were asked to identify the main barrier to
AWM in their area, the majority thought that it was “getting
everyone to participate” (64%). Therefore, although most
participants believe that AWM is beneficial, many are worried
that others might not contribute, clear evidence that there is a
collective action problem. About a fifth thought that the main
barrier was “cost” (19%), and a few thought that it was “worry
about IPM disruption” (6%), “access to sprayers” (5%), or
“preference to spray in their own timing” (5%; Fig. 2). The
participants’ role in citrus production, their age, their citrus
acreage, or how much of their income came from citrus did not
change these perceptions of the main barriers to AWM. However,
respondents who grew citrus organically were significantly more
worried about possible disruptions to their IPM program caused
by repeated insecticide sprays than conventional producers, or
those who grew citrus under both systems. Interestingly, we did
not detect a significant difference between those who coordinated
AWM through PCDs, PMAs, or both in the main barrier
identified (P = 0.22 on the Kruskal-Wallis test).  

Subsequently, participants were asked how likely they thought it
was that their grower neighbors would apply insecticides within
recommended treatment windows, which is a way of assessing
their trust in neighbors. More than half  (54%) thought that it was
“likely” or “very likely”; about a fifth (21%) chose “maybe”; and
a quarter (24%) thought that it was “unlikely” or “very unlikely”
(Fig. 2). This reveals that many participants trust their grower
neighbors to coordinate, but there is a certain degree of what has
been called “strategic uncertainty,” or uncertainty about the
actions and beliefs of others. This was one of the main barriers
for AWM in Florida (Singerman and Useche 2019). Participants’
trust in neighbors did not significantly vary with their role in citrus
production, their age, their management system, or their income
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Fig. 2. Perception of area-wide management by citrus
stakeholders in Southern California. The bars represent the
percentage of participants who chose each response and
indicated that they had citrus groves in counties that coordinate
AWM treatments exclusively through Pest Control Districts
(PCDs; n = 2), both PCDs or Psyllid Management Areas
(PMAs; n = 30), or exclusively PMAs (n = 66). Responses have
been color-coded according to the legends on the right of each
plot. HLB, huanglongbing; ACP, Asian citrus psyllid; IPM,
integrated pest management.

dependency on citrus. Nevertheless, a significantly higher
proportion of small growers (with less than five acres of citrus)
thought that it was “unlikely” or “very unlikely” that their
neighbors would coordinate. Despite differences in AWM
participation across Southern California, there was no evidence
of divergent trust in neighbors among counties (P = 0.19) or
institutional approaches (P = 0.68).  

Among participants who thought that the main barrier to AWM
was “getting everyone to participate,” a third (33%) thought that
it was “likely” or “very likely” that their neighbors would apply
insecticides within designated treatment windows, while more
than a quarter (14%) chose “maybe.” Therefore, some participants
seem to be concerned about people other than their grower
neighbors. In other citrus-growing regions affected by HLB,
residential neighbors with backyard citrus trees have been a major
concern for citrus growers (Johnson and Bassanezi 2016, Sétamou
2020).  

As expected, collective action was positively impacted by
communication. Participants who were more likely to stay
informed and communicate with the grower liaisons were also
more likely to believe in the efficacy of AWM (ρ = 0.21, P = 0.045;
Fig. A1.2). Therefore, engagement with the state-wide program
may promote confidence in the efficacy of AWM, suggesting an

avenue for outreach. Although we did not detect a significant
positive correlation between the self-reported propensity to
communicate with neighbors and trust in the neighbors’ ability
to coordinate (ρ = 0.18, P = 0.077; Fig. A1.3), this might be
because the question about communication referred to both
grower neighbors and homeowner neighbors. Overall,
participants who indicated that they were more likely to
communicate with their neighbors tended to think that their
neighbors would coordinate insecticide treatments within
recommended windows, suggesting that communication might be
important to develop trust in others’ contributions to achieve
collective efforts. The participants’ perceived vulnerability to
HLB and their confidence in the benefits of AWM were not
correlated, nor were their vulnerability and confidence in
neighbors.  

Finally, to provide historic context to the survey, we compared it
with an equivalent one that was conducted in 2015, when the
AWM program was getting started in California (Milne et al.
2018). At that time, participants were asked to rate the
effectiveness of area-wide control of ACP. Some participants
from Southern California thought it provided “excellent control”
(17%), most thought that it provided “moderate control” (65%),
and some (18%) considered it to be of “little effect” or “not
effective” (Milne et al. 2018). Compared with our results, where
87% of participants think that AWM is beneficial, confidence in
AWM seems to have increased over time. In 2015, the majority of
respondents from Southern California indicated that
“participation” was among their biggest concerns about AWM
(54%), followed by “cost” (39%), “number of sprays” (26%),
“pesticide resistance” (19%), “IPM program” (22%), “options for
organic” (17%), and “access to sprayers” (11%; Milne et al. 2018).
Therefore, the two main concerns that were identified in 2015,
participation and cost, were still perceived to be the main barriers
in 2019, with participation being the major concern by a majority
in both surveys.

Group-level determinants of collective action in area-wide
management
Individual beliefs and attitudes measured through surveys can be
expected to influence decisions to participate (or not) in AWM,
but it is the aggregate, group-level outcome that matters in relation
to the objective of vector management. A zoib regression model
was used to quantify the impact of several group-level variables
on actual participation in AWM. The model with credibility
intervals that did not include 0 for any of the independent
variables and generated the lowest deviance information criterion
included the institutional approach (PMA/PCD), the group size,
the size of the resource system, the size of the citrus groves in the
unit, the heterogeneity in grove size, the season of treatment (fall/
winter), the age of the program (1–9), an interaction term between
the institutional approach and the age of the program, and an
interaction term between the size of the citrus groves and the
heterogeneity in grove size (Table 2). Other fitted models are
shown on Tables A1.3–A1.5 in Appendix 1.  

In the selected zoib model, the signs of the coefficients of the
independent variables were mostly as hypothesized (Table 1). Our
first hypothesis was that mandatory PCDs would have higher
participation than voluntary PMAs. The coefficient of the
institutional approach was negative (Table 2), which may seem
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Table 2. Posterior mean, 95% credible interval and potential scale reduction factors (psrf) for the parameters in the selected zoib
regression model.
 
Model component Parameter Posterior mean 2.5%

quantile
97.5% quantile Point estimate

of psrf
Upper CI of

psrf

logit(mean) Institutional approach (PMA/PCD) -1.093 -1.653 -0.571 1.00 1.03
Group size -0.011 -0.016 -0.005 1.02 1.09
Size of the resource system 0.000 0.000 0.001 1.00 1.02
Size of citrus groves 0.104 0.064 0.141 1.00 1.01
Heterogeneity in grove size 0.083 0.048 0.121 0.99 0.99
Season of treatment (fall/winter) -0.169 -0.298 -0.046 1.01 1.01
Age of program -0.074 -0.100 -0.048 1.00 1.00
Institutional approach x Age of program 0.174 0.100 0.255 1.01 1.07
Size of citrus groves x Heterogeneity in grove size -0.006 -0.008 -0.004 1.00 1.02
Intercept 0.426 0.108 0.792 0.99 1.00

log(dispersion) Institutional approach (PMA/PCD) -0.808 -1.305 -0.378 1.01 1.01
Group size 0.034 0.024 0.043 1.01 1.06
Size of the resource system 0.000 0.000 0.001 1.00 1.04
Size of citrus groves 0.063 0.025 0.100 1.02 1.09
Heterogeneity in grove size -0.053 -0.083 -0.018 1.03 1.14
Intercept 0.879 0.624 1.134 1.00 1.00

logit(Pr(y=0)) Institutional approach (PMA/PCD) -67.449 -188.903 -4.659 1.01 1.06
Group size -0.580 -0.934 -0.302 1.00 1.00
Intercept -1.426 -2.380 -0.506 1.00 1.02

logit(Pr(y=1)) Group size -0.319 -0.377 -0.266 1.00 1.03
Heterogeneity in grove size 0.034 0.002 0.065 1.00 1.01
Intercept 0.541 0.103 1.035 1.00 1.01

Observations 840
Deviance information criterion 1679849
psrf 1.1

contradictory. However, we detected a significant interaction
between the institutional approach and the age of the program,
which means that the effect of the type of institution on
participation depends on time, and cannot be interpreted in
isolation (Brambor et al. 2006). The positive sign of the
interaction term suggested that participation had been growing
over time in PCDs, while it had been declining over time in PMAs.
To illustrate the institutional differences, Figure 3 displays
predicted levels of participation over time and in different seasons
based on the type of institution, while fixing all other variables
at their mean value. The predicted values clearly show an upward
trajectory of participation in PCDs with a downward trajectory
over time in PMAs. Even though PCDs started with lower
participation levels, participation has been growing over time in
this institution, while it has been declining in PMAs (Fig. 3).  

The season when the AWM treatments are conducted also affects
participation (Fig. 3). As hypothesized, winter treatments were
found to have 0.84 times the odds of having higher participation
than fall treatments (Table 2). Therefore, all other variables being
equal, winter treatments tended to have slightly lower
participation than fall treatments. This may have implications for
vector and disease control because insecticide treatments during
the winter dormant period, before the spring flush, were crucial
for the management of the insect population in Florida (Qureshi
and Stansly 2010) and Texas (Sétamou 2020).  

In line with the collective action literature, the model estimated
that group size, i.e., the number of pesticide use permits in the
AWM unit, had a negative effect on the mean of the beta
distribution, the dispersion parameter of the beta distribution,
the probability of having none of the citrus acreage

Fig. 3. Participation levels in area-wide management predicted
by the zoib model depending on the institutional approach
Psyllid Management Areas/Pest Control Districts(PMA/PCD),
the season of treatment (fall/winter), and the age of the
program. The dots show the mean of the predicted values in
blue (PMAs) or in purple (PCDs), and the shaded areas
correspond to the 95% CI of the mean. Predicted values for fall
treatments are linked by solid lines and predicted values for
winter treatments are linked by dashed lines.
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treated within the window, and the probability of having all of
the citrus acreage treated within the window. To illustrate how
these effects would impact participation in AWM, the model was
used to predict participation for a fall treatment during season
number 9 based on the group size, while fixing all other variables
at their mean value. Under these conditions, the model predicted
that participation in a mandatory PCD would drop from 86%
with 10 members to 82% with 30 members, and in a voluntary
PMA it would drop from 79% with 10 members to 74% with 30
members. Interestingly, the model also suggested that the
optimum number of members to maximize participation in a
PMA would be around 5 for an average PMA size, with average
grove sizes and average heterogeneity in grove size (Fig. 4). The
current median number of members in a PMA in Southern
California is 10, well above this suggested optimum.

Fig. 4. Participation levels in area-wide management predicted
by the zoib model depending on the number of pesticide use
permits. The mean of the predicted values for season number 9
is shown in blue (Psyllid Management Areas; PMAs) or in
purple (Pest Control Districts; PCDs). Predicted values for the
fall treatments are linked by solid lines and predicted values for
the winter treatments are linked by dashed lines.The black dots
correspond to the observed participation values and their
corresponding number of permits during the last season (the
fall of 2020).

The size of the resource system, i.e., the total citrus acreage treated
in the AWM unit, was not a limiting factor for participation in
AWM. As shown in Table 2, the coefficient of the size of the
resource system was estimated to be zero, so once the size of the
group and other variables were considered, the size of the resource
system by itself  did not impact the level of participation in AWM.

As hypothesized, the model showed that the average size of citrus
groves and the heterogeneity in grove size had an impact on
participation (Table 2). More importantly, these factors
interacted, so the effect of heterogeneity on participation
depended on the size of citrus groves, and vice versa. As shown
in Fig. 5, when the groves were mostly small (with an average size

of 5 acres), the presence of a few large groves could have a
beneficial effect on participation, but if  the groves were mostly
large (with an average size of 30 acres), participation could decline
in the presence of a few small groves. This suggests that large
growers might be acting as opinion leaders in areas predominated
by smaller groves, helping promote collective action; while in areas
predominated by large groves, a few small operations that might
be owned by hobbyists or less engaged growers could lead to a
decline in participation. This could be interpreted as evidence of
a weakest-link collective action problem.

Fig. 5. Participation levels in area-wide management predicted
by the zoib model depending on the average size of the citrus
groves and the heterogeneity in grove size. The mean of the
predicted values for season number 9 is shown in blue (Psyllid
Management Areas; PMAs) or in purple (Pest Control
Districts; PCDs). Predicted values for the fall treatments are
linked by solid lines and predicted values for the winter
treatments are linked by dashed lines. The panels show different
average sizes of the citrus groves in a management unit. The
plots corresponding to other values of the age of the program
are shown in Figs. A1.4–A1.11 in Appendix 1.

DISCUSSION
Citrus stakeholders in Southern California are aware of the
collective action problem associated with HLB management. Our
survey showed that there was a high level of confidence in the
benefits of coordinated insecticide treatments for HLB
management, but also a widespread opinion that getting everyone
to participate is the main barrier to successful AWM, and some
worry that neighbors may not contribute to the collective effort.
The high level of agreement about the benefits of AWM may
predispose citrus stakeholders to achieve collective action, as
collective responses were found to be enhanced when stakeholders
acknowledged the cross-boundary nature of invasive species
management and were aware of the benefits associated with
collective action (Graham et al. 2019). In the context of collective
weed control, awareness of cross-boundary interrelationships or
confidence that collective efforts can achieve desired outcomes
were also found to influence engagement (Lubeck et al. 2019).  
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Although only a quarter of the survey participants believed that
it was “unlikely” or “very unlikely” that their neighbors would
coordinate, this level of mistrust could jeopardize collective action
if  efforts are not made to promote engagement with the state-wide
HLB control program and to encourage communication between
neighbors. In a previous study about the management of an
invasive tree in Hawaii, people felt discouraged about controlling
it because they perceived a lack of participation or coordination
among neighboring landowners (Niemiec et al. 2016). Similarly,
among crop farmers in Missouri, the perceived trustworthiness
of their neighbors did not affect their willingness to participate
in cooperative pest control (Stallman and James 2015), but
farmers whose farms were dissimilar from their neighbors’ were
significantly more willing to cooperate if  they trusted their
neighbors, suggesting that trust is important in countering the
potential negative effects of heterogeneity on coordination
(Stallman and James 2017). Although we did not detect a
significant correlation between communication with neighbors
and trust in neighbors, there was a positive trend, in line with
previous studies that showed that face-to-face communication is
essential to develop trust and reciprocity in collective efforts for
pest and disease management (Maclean et al. 2019, Sherman et
al. 2019).  

Mistrust in neighboring growers was an important factor behind
the failure of the AWM program for HLB in Florida. An
experimental voluntary contribution game conducted with
Florida citrus growers in 2016 showed that the most limiting
factors for participation in AWM were the threshold required for
collective action to have a successful outcome, the beliefs about
others not coordinating, and risk aversion (Singerman and
Useche 2019). When the threshold for coordination in the game
was high, growers chose to coordinate less as the group size
increased. However, once they were shown an empirical study that
proved that participation in AWM was beneficial, 30% of the
growers chose to coordinate more (Singerman and Useche 2019).
The authors concluded that future studies that clarified what
participation thresholds would be required for successful HLB
management could increase the success of collective efforts
(Singerman and Useche 2019), but those studies remain to be
conducted.  

Compared with Florida, California offers an alternative example
of an AWM program for the insect vector of HLB that combines
voluntary and mandatory institutions to achieve collective action.
Although there are precedents of successful AWM programs for
other plant pests and diseases in the state (Haviland et al. 2021,
Simmons et al. 2021), the level of mobilization that HLB has
imposed on citrus growers is extraordinary, and justified by the
devastating consequences of the HLB epidemic in Florida and
other citrus-growing areas (Bassanezi et al. 2020, Graham et al.
2020). Soon after the insect vector was detected in California,
citrus growers partnered with the state plant health agency to
establish a state-wide program for HLB. They organized
themselves in PMAs, or took advantage of existing PCDs,
expanded them, or even created new PCDs to coordinate
insecticide treatments and suppress the insect population, in an
attempt to limit the spread of the disease. A key difference between
PMAs and PCDs is that treatments are voluntary in PMAs while
they are mandatory in PCDs, and this difference appears to have
had meaningful impacts on participation. Although PCDs had

lower participation levels in the beginning of the AWM program,
perhaps because in some counties they were created precisely to
avoid free-riding, our analysis shows that PCDs have been
growing in participation over time, while participation has been
declining in PMAs, all other variables being constant. This raises
the question of whether a voluntary institutional approach will
be able to sustain collective action for HLB management in
California in the long term.  

The other group-level determinants considered in our regression
analysis may help answer this question. In line with collective
action theory, the size of the group was found to be a limiting
factor for AWM. This agrees with case studies of CPRs in which
the number of social-ecological system users was one of the
factors that determined self-organized collective action (Ostrom
2009), and it was also one of the most commonly cited factors for
collective action in invasive species management (Graham et al.
2019). Because there are higher transaction costs associated with
organizing larger groups and the probability of free-riding is
higher (Graham et al. 2019), we expected participation in AWM
to go down as the number of people who needed to coordinate
treatments increased, and it did. This was one of the reasons why
PMAs were designed on the basis of social criteria, so that they
would comprise relatively small groups of growers that were part
of the same social network, where one grower could drive around
and reach the rest of the group within one day (Grafton-Cardwell
et al. 2015). In Florida, AWM units were designed to comprise a
sufficiently large area to suppress the insect population and
prevent the spread of the disease (Rogers 2011), and similar
epidemiological criteria were followed in Mexico (SENASICA
2012). From a collective action perspective, the total size of the
resource system was found to have no effect on participation once
the institutional approach, the group size, the size of citrus groves
and other variables were considered.  

We detected a positive effect of heterogeneity in grove size when
the majority of citrus groves in the AWM unit were small, and a
negative effect when the majority of citrus groves were large.
Therefore, the collective action problem associated with AWM
might be more difficult to overcome when there is a large mass of
large commercial growers and a few small growers who might not
have the resources or interest in coordinating insecticide
treatments. This analytical result is in line with years of
discussions within the state-wide HLB program about the risk of
small growers being the weakest link in the collective action
problem. Properties with 25 citrus trees or more are considered
to be commercial citrus groves in California, but many of them
are residential properties whose owners may not be willing to
spend resources to care for their citrus trees. These owners rarely
participate in citrus grower meetings, and it has been difficult to
motivate them to participate in AWM. In our survey sample, small
growers (less than five acres of citrus) were less likely to trust their
neighbors than big growers, probably suggesting a higher
prevalence of weakest links in communities predominated by
smaller groves. Considering that around 34% of the citrus groves
in Southern California that are routinely conducting AWM
treatments have less than five acres (USDA-NASS 2019),
heterogeneity may not have had a negative impact to date, but it
could become relevant in parts of California predominated by big
groves intermixed with a few small operations, such as the Central
Valley.  
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The lower participation detected for winter treatments compared
to fall treatments could be a target for outreach from the state-
wide program because it may be related to the generally lower
adoption of preventive treatments compared with suppressive
treatments, which has been observed in other plant disease
systems (Hillis et al. 2017). Apart from the variables captured in
the regression model, the lack of sufficient equipment to conduct
all insecticide treatments within the 21-day window has also been
a limiting factor for participation in parts of Southern California.
In addition, unfavorable weather events (strong winds, mud slides,
wildfires) have had a negative impact on participation and may
explain some of the 0 values recorded for some PMAs. Finally,
the allocation of water to apply systemic insecticide treatments
through the irrigation system has also been a limiting factor,
particularly in San Bernardino County.  

As ACP and HLB continue to spread in Southern California, it
is likely that an HLB-positive tree will be detected in a commercial
grove in the near future. Participation in AWM will then become
more crucial to keep the insect populations under control and
limit disease spread. Although our results suggest that citrus
stakeholders are aware of the benefits of coordinated insecticide
sprays, more research will be needed to determine the specific
benefits and costs of area-wide management; to estimate the
participation threshold required for effective control under
different ecological and social conditions; to evaluate the impact
that this information may have on the growers’ intentions to
coordinate efforts; and to determine how individual intentions
will translate into group-level outcomes. Previous studies have
shown that fostering community-building activities and learning
opportunities that build trust among participants, highlighting
participants’ positive experiences and employing multiple forms
of incentives can help sustain collective action (Graham et al.
2019). This could be particularly beneficial for the type of “co-
managed” collective action adopted in California, where private
landowners entered in a cooperative arrangement with the state
plant health agency to promote AWM. The growing interest in
addressing invasive species management as a collective action
problem will likely lead to additional studies in other social-
ecological systems that will enhance our understanding of the
factors and strategies that might sustain collective action in
AWM.

CONCLUSION
In this study, we provide evidence of how individual perceptions
and group-level variables may impact collective action in the area-
wide management of an invasive plant disease. We contribute to
the emergent application of collective action theory to invasive
species management by showing that confidence in the benefits
of the collective effort, trust in neighbors’ contributions, the size
of the group, the size of the properties, and the heterogeneity in
property size may be key factors to consider when designing an
area-wide management program for an invasive plant pest or
disease. In addition, we show that voluntary vs. mandatory
institutional approaches may lead to distinct collective outcomes
over time. Further studies in different social-ecological systems
that clarify the benefits of collective action and combine surveys
with quantitative analyses of collective outcomes will likely
improve our understanding of the social dimensions of biological
invasions, helping societies to better face the threat of invasive
species.

Responses to this article can be read online at: 
https://www.ecologyandsociety.org/issues/responses.
php/13217
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Appendix 1: Supplementary figures and tables 

 

Table A1.1: Institutions coordinating area-wide management of ACP in Southern California.   

County Institution History Citrus 

acreag

e 

Assessme

nt rate 

(2018) 

Coordinate

d 

treatments 

Number of 

manageme

nt units 

Using 

PMAs? 

Participation 

in AWM 

Challenges Other 

activities 

Imperial Imperial 

County 

Citrus 

Pest 

Control 

District  

Formed in 

1972 for 

California 

red scale 

(Aonidiell

a 

aurantii) 

control†. 

Expanded 

in 2013 to 

the whole 

county for 

ACP and 

HLB 

control‡ 

7,200 $15 / acre Fall (Aug-

Oct, 

Winter 

(Dec-Jan), 

Spring 

(Feb-Apr) 

7 (6 after 

2020) 

No, PCD 

growing 

zones 

High ACP from 

across the 

Mexican 

border 

Outreach, 

trap 

monitoring, 

coordinatio

n with 

Mexican 

authorities 

Riverside Citrus 

Pest 

Control 

District 

No. 2 

(Coachell

a Valley) 

Formed in 

1946 for 

California 

red scale 

control§ 

8,000 $150 / 

acre 

Fall (Sep-

Oct), 

Winter 

(Dec-Jan) 

4 No, four 

zones 

High, 

reimbursing 

for treatments 

Reinfestatio

n from 

residential 

areas 

Tree 

removal, 

biocontrol 

Citrus 

Pest 

Control 

Formed in 

2017 for 

ACP and 

2,134 $100/acre Fall (Sep), 

Winter 

(Dec-Jan) 

2 No, two 

zones 

Very high, 

three growers. 

Reinfestatio

n from 

Funding 

some 

activities in 
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District 

No. 3 

(Hemet) 

HLB 

control 

Reimbursing 

for treatments 

residential 

areas 

residential 

areas 

Rest of 

the 

county  

No entity 

directing 

the sprays 

1,500 None Fall, 

Winter  

  Low, not 

tracked 

Absentee 

owners, 

small 

growers 

UC 

Riverside 

promoting 

participatio

n 

San 

Bernardin

o 

San 

Bernardin

o 

ACP/HL

B Task 

Force 

Formed in 

2014| 

3,000 None Fall (Oct-

Nov), 

Winter 

(Nov-

Dec), 

Spring 

(May-Jul) 

19 Yes Variable Small 

growers, 

scarcity of 

PCOs, 

urban 

interface, 

water 

supply, bad 

actors 

Grower 

liaison in 

contact with 

homeowner

s, reporting 

abandoned 

trees 

San 

Diego 

San 

Diego 

County 

Citrus 

Pest 

Control 

District 

Formed in 

2017 for 

ACP and 

HLB 

control# 

4,500 $180 / 

acre 

Fall (Aug-

Sep), 

Winter 

(Jan),  

Spring 

(May-Jun) 

3 No, three 

areas 

(Borrego 

Springs, 

San 

Pasqual, 

Pauma/Pal

a Valley) 

Variable when 

it was 

voluntary. 

Now higher 

because of 

assessment 

reimbursemen

ts 

Problems 

with 

organic 

treatments, 

small 

growers 

County 

authorities 

monitor 

abandoned 

trees and 

try to 

remove 

them 

Santa 

Barbara 

Advisory 

committe

e 

Formed in 

2015 for 

ACP and 

HLB 

control¶ 

4,425 None Fall (Sep), 

Winter 

(Jan) 

12 (11 after 

2019) 

No, 

treating by 

cities 

High Weather, 

small 

properties 
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Ventura Ventura 

ACP/HL

B Task 

Force 

Formed in 

2010 for 

ACP and 

HLB 

control†† 

25,000 None Fall (Jul-

Sep + Sep-

Nov), 

Winter 

(Jan-Mar), 

Spring 

(Apr-Jun) 

50 Yes High Spraying 

equipment 

shortage, 

continuous 

harvest, 

weather, 

movement 

of fruit 

Outreach 

campaign in 

residential 

areas, 

reporting 

system for 

abandoned 

trees 

† Margo Sanchez, pers. comm. 

‡ Mark McBroom, pers. comm. 

§ Baker, B. P. 1988. Pest Control in the Public Interest: Crop Protection in California. UCLA Journal of Environmental Law and Policy 8(1):31–71 

| Bob Atkins, pers. comm. 

¶ Cressida Silvers, pers. comm. 

# SDCCPCD. 2021. About Us. https://sdccpcd.specialdistrict.org/about-us. 

†† John Krist, pers. comm.
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Fig. A1.1: Histogram of participation levels in area-wide management in Psyllid Management 

Areas (blue) and Pest Control Districts (purple) over nine seasons. 
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Table A1.2: Socio-economic characteristics of the survey respondents who indicated that they 

had citrus groves in Southern California (n =98). 

Survey item Responses 

Role in citrus production  

Grove Owner 38 

Ranch Manager 17 

PCA 18 

PCO 2 

Other 18 

NA 5 

Farm size  

< 5 acres 23 

5 – 25 acres 18 

26 – 100 acres 11 

101 – 500 acres 13 

> 500 acres 28 

NA 5 

Age  

<35 years 12 

35 - 50 years 14 

51 – 65 years 37 

> 65 years 35 

Management system  

Conventional 59 

Organic 13 

Both 23 

NA 3 
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Income from citrus  

< 25% 40 

26 - 50% 13 

51 - 75% 16 

76 - 100% 23 

NA 6 

Note: Pest Control Adviser (PCA), Pest Control Operator (PCO), no answer (NA) 
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Fig. A1.2: Relationship between the self-reported propensity to stay informed and communicate 

with the grower liaison and the belief that coordinated insecticide treatments for ACP will slow 

down HLB spread more than uncoordinated treatments (AWM efficacy). Responses to the 

survey questions were transformed to numeric so that very unlikely = 1, unlikely = 2, maybe = 3, 

likely = 4, very likely = 5. The size of the points represents the number of participants who chose 

that combination of responses. 
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Fig. A1.3: Relationship between the self-reported propensity to communicate with neighbors and 

the belief that neighbors will apply insecticides for ACP within the recommended treatment 

window (trust in neighbors). Responses to the survey questions were transformed to numeric so 

that very unlikely = 1, unlikely = 2, maybe = 3, likely = 4, very likely = 5. The size of the points 

represents the number of participants who chose that combination of responses
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Table A1.3: Posterior mean and 95% credible interval for the parameters in the zoib regression models evaluated that were more 

complex than the selected model (SD28). 

   SD22 SD22 SD22 SD23 SD23 SD23 SD24 SD24 SD24 SD19 SD19 SD19 SD28 SD28 SD28 

  
  mean 2.5% 

97.5

% 
mean 2.5% 

97.5

% 
mean 2.5% 

97.5

% 
mean 2.5% 

97.5

% 
mean 2.5% 

97.5

% 

logit 

(mean) 
Institutional approach† -1.08 -1.67 -0.52 -1.08 -1.61 -0.53 -1.06 -1.63 -0.50 -0.68 -1.21 -0.13 -1.09 -1.65 

-

0.57 

 Group size -0.01 -0.02 0.00 -0.01 -0.02 0.00 -0.01 -0.02 0.00 -0.01 -0.02 -0.01 -0.01 -0.02 0.00 

 

Size of resource 

system 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Grove size 0.10 0.06 0.14 0.10 0.07 0.14 0.10 0.06 0.15 0.08 0.04 0.12 0.10 0.06 0.14 

 Heterogeneity 0.08 0.05 0.12 0.09 0.05 0.12 0.09 0.05 0.12 0.12 0.08 0.15 0.08 0.05 0.12 

 
Season‡ -0.18 -0.32 -0.04 -0.17 -0.30 -0.04 -0.17 -0.29 -0.03 -0.16 -0.29 -0.03 -0.17 -0.30 

-

0.05 

 
Age -0.07 -0.10 -0.04 -0.07 -0.10 -0.05 -0.07 -0.10 -0.05 -0.07 -0.10 -0.05 -0.07 -0.10 

-

0.05 

 Institution† x Age 0.17 0.10 0.25 0.17 0.09 0.25 0.17 0.09 0.25 0.18 0.09 0.26 0.17 0.10 0.25 

 

Grove size x 

Heterogeneity 
-0.01 -0.01 0.00 -0.01 -0.01 0.00 -0.01 -0.01 0.00 -0.01 -0.01 0.00 -0.01 -0.01 0.00 

  Intercept 0.43 0.06 0.78 0.40 0.07 0.73 0.42 0.07 0.77 0.46 0.12 0.81 0.43 0.11 0.79 

log(disper

sion) 
Institutional approach† -0.81 -1.32 -0.30 -0.81 -1.32 -0.33 -0.80 -1.30 -0.31       -0.81 -1.30 

-

0.38 

 Group size 0.03 0.02 0.04 0.03 0.02 0.04 0.03 0.02 0.04 0.03 0.03 0.04 0.03 0.02 0.04 

 

Size of resource 

system 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    
0.00 0.00 0.00 

 Grove size 0.06 0.02 0.11 0.06 0.02 0.11 0.06 0.01 0.10     0.06 0.02 0.10 

 
Heterogeneity -0.05 -0.09 -0.01 -0.05 -0.09 -0.02 -0.05 -0.09 -0.01 

    
-0.05 -0.08 

-

0.02 
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 Season‡ -0.07 -0.27 0.13                 

 Age 0.00 -0.03 0.04                 

  Intercept 0.90 0.56 1.27 0.88 0.60 1.15 0.89 0.60 1.17 1.07 0.91 1.23 0.88 0.62 1.13 

logit(P(1)) 

Institutional approach† -92.64 

-

221.7

1 

-6.68 -34.93 

-

85.7

2 

-3.62 -46.39 

-

119.3

7 

-3.70 

      

-67.45 
-

188.90 

-

4.66 

 
Group size -0.69 -1.21 -0.29 -0.61 -1.01 -0.31 -0.59 -1.07 -0.28 -0.49 -0.87 -0.22 -0.58 -0.93 

-

0.30 

 

Size of resource 

system 
0.00 0.00 0.00 

                

 Grove size -0.02 -0.15 0.10                 

 Heterogeneity 0.04 -0.12 0.19         -0.01 -0.13 0.10     

 Season‡ 0.51 -0.86 1.85                 

 Age -0.13 -0.40 0.13                 

  
Intercept -1.06 -3.25 0.93 -1.37 -2.35 -0.43 -1.41 -2.45 -0.37 -2.13 -3.42 -0.96 -1.43 -2.38 

-

0.51 

logit(P(0)) Institutional approach† -0.22 -0.91 0.49                 

 
Group size -0.31 -0.39 -0.24 -0.30 -0.37 -0.24 -0.32 -0.39 -0.26 -0.28 -0.34 -0.23 -0.32 -0.38 

-

0.27 

 

Size of resource 

system 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

        

 Grove size 0.08 0.04 0.13 0.08 0.04 0.13 0.05 0.02 0.08 0.07 0.05 0.10     

 Heterogeneity -0.05 -0.11 0.00 -0.05 -0.10 0.00         0.03 0.00 0.06 

 Season‡ -0.36 -0.82 0.08                 

 Age -0.08 -0.17 0.00                 

  Intercept 0.50 -0.27 1.30 -0.13 -0.74 0.46 -0.20 -0.77 0.36 -0.34 -0.91 0.22 0.54 0.10 1.04 

 DIC 1679813 1679811 1679814 1679852 1679849 



11 

 

 Multivariate psrf 1.39    1.05    1.20    1.01    1.10    

Note: deviance information criterion (DIC), potential scale reduction factor (prsf) 

† Institutional approach was modeled as a factor, considering PMA as the baseline 

‡ Season of treatment was modeled as a factor, considering Fall as the baseline 

 

 

Table A1.4: Posterior mean and 95% credible interval for the parameters in the zoib regression models evaluated that were less 

complex than the selected model (SD28). 

   SD27 
SD2

7 

SD2

7 

SD2

9 

SD2

9 

SD2

9 

SD3

0 

SD3

0 

SD3

0 

SD3

1 

SD3

1 

SD3

1 

SD1

3 

SD1

3 

SD1

3 

SD2

1 

SD2

1 

SD2

1 

SD

0 

SD

0 
SD0 

    mean 2.5% 
97.5

% 
mean 2.5% 

97.5

% 
mean 2.5% 

97.5

% 
mean 

2.5

% 

97.5

% 
mean 2.5% 

97.5

% 
mean 2.5% 

97.5

% 

me

an 

2.5

% 

97.5

% 

logit 

(mean) 

Institutional 

approach† 
-1.08 -1.64 -0.51 -1.34 -1.89 -0.83 -0.24 -0.68 0.20 -0.54 

-

0.97 

-

0.13 
-0.67 -1.17 -0.13 -0.58 -1.13 -0.03     

 Group size -0.01 -0.02 0.00 -0.02 -0.02 -0.01 -0.01 -0.02 0.00 -0.02 
-

0.02 

-

0.01 
-0.01 -0.02 -0.01 -0.02 -0.03 -0.01     

 
Size of resource 

system 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00     

 Grove size 0.10 0.07 0.14 0.03 0.00 0.06 0.10 0.06 0.14 0.03 0.00 0.05 0.08 0.04 0.12 0.09 0.05 0.12     

 Heterogeneity 0.08 0.04 0.12 0.02 -0.01 0.05 0.08 0.05 0.12 0.02 
-

0.01 
0.05 0.12 0.08 0.15 0.13 0.09 0.16     

 Season‡ -0.17 -0.29 -0.04 -0.15 -0.28 -0.02 -0.17 -0.30 -0.04 -0.15 
-

0.28 

-

0.03 
-0.16 -0.29 -0.03 -0.16 -0.30 -0.02     

 Age -0.07 -0.10 -0.05 -0.07 -0.10 -0.05 -0.06 -0.08 -0.03 -0.06 
-

0.08 

-

0.03 
-0.07 -0.10 -0.05 -0.07 -0.10 -0.04     

 

Institution† x 

Age 

0.17 0.09 0.25 0.16 0.08 0.24         0.18 0.09 0.26 0.17 0.08 0.26     

 

Grove size x 

Heterogeneity 

-0.01 -0.01 0.00     -0.01 -0.01 0.00     -0.01 -0.01 0.00 -0.01 -0.01 0.00     
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  Intercept 0.41 0.07 0.76 1.05 0.79 1.30 0.34 -0.01 0.69 0.96 0.71 1.23 0.47 0.12 0.81 0.51 0.17 0.86 
1.0

6 

0.9

8 
1.15 

log 

(dispersi

on) 

Institutional 

approach† 
-0.82 -1.32 -0.33 -0.88 -1.38 -0.40 -0.89 -1.38 -0.41 -0.95 

-

1.44 

-

0.44 
            

 Group size 0.03 0.02 0.04 0.03 0.02 0.04 0.03 0.02 0.04 0.03 0.02 0.04 0.03 0.03 0.04         

 
Size of resource 

system 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00             

 Grove size 0.06 0.02 0.11 0.06 0.02 0.10 0.07 0.03 0.11 0.07 0.03 0.11             

 Heterogeneity -0.05 -0.09 -0.02 -0.06 -0.10 -0.02 -0.06 -0.09 -0.02 -0.06 
-

0.10 

-

0.03 
            

 Season‡                             

 Age                             

 Intercept 0.88 0.60 1.16 0.87 0.60 1.16 0.87 0.59 1.14 0.87 0.59 1.14 1.07 0.91 1.23 1.53 1.42 1.63 
1.2

4 

1.1

4 
1.34 

logit 

(P(1)) 

Institutional 

approach† 
                                          

 Group size -0.47 -0.83 -0.23 -0.48 -0.89 -0.23 -0.47 -0.84 -0.22 -0.51 
-

0.91 

-

0.24 
-0.49 -0.85 -0.22         

 
Size of resource 

system 
                            

 Grove size                             

 Heterogeneity                             

 Season‡                             

 Age                             

  Intercept -2.22 -3.12 -1.36 -2.17 -3.10 -1.31 -2.21 -3.12 -1.35 -2.14 
-

3.06 

-

1.27 
-2.17 -3.10 -1.30 -4.37 -5.00 -3.79 

-

4.3

7 

-

5.0

3 

-

3.79 

logit 

(P(0)) 

Institutional 

approach† 
                            

 Group size -0.32 -0.38 -0.27 -0.32 -0.38 -0.26 -0.32 -0.38 -0.26 -0.32 
-

0.38 

-

0.26 
-0.31 -0.37 -0.26         

 
Size of resource 

system 
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 Grove size                             

 Heterogeneity 0.03 0.00 0.07 0.03 0.00 0.07 0.03 0.00 0.07 0.03 0.00 0.07             

 Season‡                             

 Age                             

  Intercept 0.53 0.06 1.01 0.53 0.05 1.00 0.53 0.05 1.02 0.53 0.05 1.03 0.89 0.55 1.25 -1.43 -1.61 -1.25 

-

1.4

3 

-

1.6

0 

-

1.26 

 DIC 1679860   1679885   1679877   1679900   1679883   1680225   1680402   

Multivariate psrf 1.04    1.02    1.05    1.05    1.02    1.05    1    

Note: deviance information criterion (DIC), potential scale reduction factor (prsf) 

† Institutional approach was modeled as a factor, considering PMA as the baseline 

‡ Season of treatment was modeled as a factor, considering Fall as the baseline 
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Table A1.5: Posterior mean and 95% credible interval for the parameters in the selected zoib regression model (SD28) with the size of 

the resource system, and the model without this independent variable (SD32). 

   SD28 SD28 SD28 SD32 SD32 SD32 

    mean 2.5% 97.5% mean 2.5% 97.5% 

logit(mean) Institutional approach† -1.09 -1.65 -0.57 -0.65 -1.17 -0.13 

 Group size -0.01 -0.02 0.00 -0.01 -0.01 0.00 

 Size of resource system 0.00 0.00 0.00     

 Grove size 0.10 0.06 0.14 0.13 0.09 0.16 

 Heterogeneity 0.08 0.05 0.12 0.10 0.07 0.13 

 Season‡ -0.17 -0.30 -0.05 -0.17 -0.31 -0.04 

 Age -0.07 -0.10 -0.05 -0.07 -0.10 -0.05 

 Institution† x Age 0.17 0.10 0.25 0.17 0.09 0.26 

 Grove size x Heterogeneity -0.01 -0.01 0.00 -0.01 -0.01 -0.01 

  Intercept 0.43 0.11 0.79 0.26 -0.06 0.58 

log(dispersion) Institutional approach† -0.81 -1.30 -0.38 -0.42 -0.82 0.01 

 Group size 0.03 0.02 0.04 0.04 0.03 0.05 

 Size of resource system 0.00 0.00 0.00     

 Grove size 0.06 0.02 0.10 0.07 0.03 0.11 

 Heterogeneity -0.05 -0.08 -0.02 -0.05 -0.08 -0.02 

 Season‡         

 Age         
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  Intercept 0.88 0.62 1.13 0.88 0.62 1.15 

logit(P(1)) Institutional approach† -67.45 -188.90 -4.66 -53.65 -126.63 -3.99 

 Group size -0.58 -0.93 -0.30 -0.58 -0.94 -0.30 

 Size of resource system         

 Grove size         

 Heterogeneity         

 Season‡         

 Age         

  Intercept -1.43 -2.38 -0.51 -1.42 -2.39 -0.47 

logit(P(0)) Institutional approach†         

 Group size -0.32 -0.38 -0.27 -0.32 -0.37 -0.27 

 Size of resource system         

 Grove size         

 Heterogeneity 0.03 0.00 0.06 0.03 0.00 0.07 

 Season‡         

 Age         

  Intercept 0.54 0.10 1.04 0.54 0.06 1.04 

 DIC 1679849    1679861    

 Multivariate psrf 1.10    1.33    

Note: deviance information criterion (DIC), potential scale reduction factor (prsf) 

† Institutional approach was modeled as a factor, considering PMA as the baseline 

‡ Season of treatment was modeled as a factor, considering Fall as the baseline
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Fig. A1.4: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 1 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in an AWM unit. 
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Fig. A1.5: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 2 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in an AWM unit. 
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Fig. A1.6: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 3 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in an AWM unit. 
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Fig. A1.7: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 4 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in an AWM unit. 
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Fig. A1.8: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 5 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in an AWM unit. 
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Fig. A1.9: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 6 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in an AWM unit. 
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Fig. A1.10: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 7 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in an AWM unit. 
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Fig. A1.11: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 8 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in an AWM unit. 
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Appendix 2: Survey questionnaire 

 

1. What is your main role in citrus production? 

a. Grove owner 

b. Ranch manager 

c. Pest Control Adviser (PCA) 

d. Pest Control Operator (PCO) 

e. Other 

  

2. How many acres of citrus do you grow or manage? 

a. <5 acres 

b. 5-25 

c. 26-100 

d. 101-500 

e. >500 

  

3. What age group are you in? 

a. <35 years 

b. 35-50 

c. 51-65 

d. >65 years 

  

4. Where are your groves located? (click all that apply) 

a. Fresno 

b. Imperial 

c. Kern 

d. Madera 

e. Riverside 
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f. San Bernardino 

g. San Diego 

h. Santa Barbara 

i. Tulare 

j. Ventura 

  

5. How do you grow citrus? 

a. Conventionally 

b. Organically 

c. Both 

  

6. What percentage of your income comes from citrus? 

a. 0-25% 

b. 26-50% 

c. 51-75% 

d. 76-100% 

  

7. How likely do you think it is that an HLB-positive tree will be detected in your grove in the 

next year? 

a. Very unlikely 

b. Unlikely 

c. Maybe 

d. Likely 

e. Very likely 

  

8. How likely is it that you will stay informed about HLB and actively communicate with your 

grower liaison? 

a. Very unlikely 

b. Unlikely 
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c. Maybe 

d. Likely 

e. Very likely 

f. I don’t know who my liaison is 

  

9. How likely is it that you will be actively communicating with your neighbors (growers and 

homeowners)? 

a. Very unlikely 

b. Unlikely 

c. Maybe 

d. Likely 

e. Very likely 

 

11. How likely do you think it is that coordinated insecticide treatments for ACP will slow down 

HLB spread more than uncoordinated treatments? 

a. Very unlikely 

b. Unlikely 

c. Maybe 

d. Likely 

e. Very likely 

 

12.What do you think is the main barrier to area-wide management of ACP in your area? (read 

the whole list before you choose) 

a. Preference to spray in one’s own timing 

b. Access to sprayers 

c. Cost 

d. Getting everyone to participate 

e. Disruption of IPM 
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13. How likely do you think it is that your neighbors will apply insecticides for ACP within 

recommended treatment windows? 

a. Very unlikely 

b. Unlikely 

c. Maybe 

d. Likely 

e. Very likely 
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Text A2.2: Data analysis 

All statistical analyses were done in the R programming environment version 4.0.3 (R 

Foundation for Statistical Computing 2020) with a Windows 10 Pro version 1909, 64-bit 

operating system (Microsoft, Redmond, WA, U. S. A.). Data manipulation and descriptive 

statistics were conducted using the R package “dplyr” (Wickham et al. 2021) and base R. Plots 

were generated with the R package “ggplot2” (Wickham 2016).  

Analysis of survey data 

Correlations between ordered categorical variables from the survey were tested using 

Spearman’s rank correlation test. 

Analysis of participation in AWM 

Four of the independent variables in the regression model (group size, size of the resource 

system, size of citrus groves, heterogeneity in grove size) were based on information recorded in 

the database of citrus operations in California maintained by the Citrus Research Board (CRB), 

hereafter referred to as the citrus layer. We obtained access to the June 2020 version of the citrus 

layer (Rick Dunn, personal communication) and the outlines of each AWM unit in the state of 

California (Rick Dunn and Robert Johnson, pers. com.). The software ArcGIS Pro (ESRI, 

Redlands, CA, U. S. A.) was used to overlay the citrus layer and the institutional layer in order to 

calculate the group size, size of the resource system, size of citrus groves and heterogeneity in 

grove size in each AWM unit using the “Dissolve” tool. Correlations between numeric 

independent variables in the regression model were tested using Pearson’s correlation test.  

● Group size: It was calculated as the number of different PURs within each AWM unit on 

the CRB citrus layer, which was compared with the number of PURs routinely collected 

by the grower liaisons and found to be highly correlated (ρ=0.72, P=2E-15).  

● Size of the resource system: It was calculated by aggregating all of the citrus properties in 

each PMA/PCD and calculating the sum of the grove acres. The calculated total citrus 

acreage under each management unit was highly correlated with data provided by the 

grower liaisons (ρ=0.97, P<2.2E-16) and with the citrus acreage recorded in the 

California Statewide Crop Mapping database (ρ=0.98, P<2.2E-16) (Department of Water 

Resources 2020). 

● Size of citrus groves:  It was calculated with the “Dissolve” tool from the software 

ArcGIS Pro by aggregating all of the citrus properties in each PMA/PCD and calculating 

the mean of the grove acres. 

● Heterogeneity in grove size:  It was calculated with the “Dissolve” tool from the software 

ArcGIS Pro by aggregating all of the citrus properties in each PMA/PCD and calculating 

the standard deviation of the grove acres. 

Some preliminary statistical analyses were conducted to guide the hypotheses tested with the 

zoib regression model.  



6 

 

● Institutional approach (PMA/PCD): there was significantly higher participation in AWM 

in PCDs than PMAs in every season (P≤0.043 on t-tests), except the Fall of 2016 

(P=0.99). 

● Group size: there was a significant negative correlation between the number of pesticide 

use permits and participation in AWM (ρ=-0.28, P<2.2E-16).  

● Size of citrus groves: there was a significant positive correlation between the average size 

of citrus groves and participation in AWM (ρ=0.27, P≤2.2E-16).  

Zero-and-one-inflated beta regression models were constructed using the R package “zoib” (Liu 

and Kong 2015). A zoib model assumes that the dependent variable y (the percentage of citrus 

acreage in each PMA/PCD treated within the recommended window) follows a piecewise 

distribution such that 

 

where pi represents the probability Pr(yi=0), qi represents the conditional probability 

Pr(yi=1|yi≠0), and α1i and α2i represent the shape parameters of the beta distribution for yi∈(0,1). 

These distributions are combined to derive the unconditional estimate of the response E(yi): 

 

The zoib regression model estimates the logit [i.e., the log(odds)] of the expected value of the 

beta distribution, the logit of P(0) and P(1) and the log of the dispersion of the beta distribution 

as linear functions of fixed and/or random effects. The coefficients of the effects on the mean of 

the beta regression can be interpreted as the expected change in the logit of participation with a 

one unit change in the corresponding variable. The coefficients of the effects on P(0) and P(1) 

are interpreted as the change in the logit of either having Participation=0 or Participation=1 with 

a one unit change in the corresponding variable. The coefficients of the effects on the dispersion 

of the beta distribution indicate the change in the log of the dispersion with a one-unit change in 

the corresponding variable (van Woerden et al. 2019). Based on a Bayesian framework, the 

coefficients are estimated through a Markov Chain Monte Carlo (MCMC) approach (Liu and 

Kong 2015). Two independent MCMC chains were run per model, each with 5000 iterations, 

including 200 iterations for burn-in, and thinned by a factor of 2. We assumed a Normal prior 

distribution N(0, 0.001) for each regression coefficient.  

MCMC convergence was visually checked with trace plots and autocorrelation plots. The 

potential scale reduction factor (psrf) was calculated for each model parameter and the threshold 

psrf≤1.1 was used to determine that convergence had been reached (Gelman et al. 2021). In cases 

where psrf>1.1, we repeated the MCMC process with three chains, 10000 iterations per chain, 

1000 for burn-in and thinned by a factor of 50. Posterior inferences for each parameter are 

reported as the mean and 95% credible interval (CI). Model selection was based on the deviance 

information criterion (DIC) (Liu and Kong 2015). Starting with the most complex model 

including the seven independent variables mentioned in the previous section, we examined the 

results and iteratively removed variables for which the CI of the posterior estimates was bounded 
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by a negative and a positive value, and therefore comprised zero. Among competing models that 

fulfilled the previous condition, we chose the one with the lowest DIC (Table A4.1, Table A4.2). 

Finally, the participation levels predicted by the zoib regression model were calculated using the 

pred.zoib function in the R package “zoib” (Liu and Kong 2015). Predictions were based on a 

new dataset where the independent variable under evaluation was allowed to vary within the 

range observed in the original dataset and the rest of the independent variables were fixed at their 

mean value, except in the case of interaction terms, where both variables were allowed to vary 

within the observed range. 

All the R code used in this study will be posted in a repository at the following URL after 

publication: https://github.com/nmcr01?tab=repositories.   
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Fig. A2.1: Histogram of participation levels in area-wide management  in Psyllid Management 

Areas (blue) and Pest Control Districts (purple) over nine seasons. 



9 

 

 

Fig. A2.2: Relationship between the self-reported propensity to stay informed and communicate 

with the grower liaison and the belief that coordinated insecticide treatments for ACP will slow 

down HLB spread more than uncoordinated treatments (AWM efficacy). Responses to the 

survey questions were transformed to numeric so that very unlikely = 1, unlikely = 2, maybe = 3, 

likely = 4, very likely = 5. The size of the points represents the number of participants who chose 

that combination of responses. 
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Fig. A2.3: Relationship between the self-reported propensity to communicate with neighbors and 

the belief that neighbors will apply insecticides for ACP within the recommended treatment 

window (trust in neighbors). Responses to the survey questions were transformed to numeric so 

that very unlikely = 1, unlikely = 2, maybe = 3, likely = 4, very likely = 5. The size of the points 

represents the number of participants who chose that combination of responses.
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Fig. A2.4: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 1 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in a management unit. 
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Fig. A2.5: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 2 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in a management unit. 
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Fig. A2.6: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 3 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in a management unit. 
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Fig. A2.7: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 4 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in a management unit. 
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Fig. A2.8: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 5 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in a management unit. 
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Fig. A2.9: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 6 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in a management unit. 
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Fig. A2.10: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 7 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in a management unit. 
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Fig. A2.11: Participation levels in AWM predicted by the zoib model depending on the average 

size of the citrus groves and their heterogeneity. The mean of the predicted values for season 

number 8 is shown in blue (PMAs) or in purple (PCDs). Predicted values for the fall treatments 

are linked by solid lines and predicted values for the winter treatments are linked by dashed 

lines. The panels show different average sizes of the citrus groves in a management unit. 
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Table A2.1: Institutions coordinating area-wide management of ACP in Southern California.   
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1 (Margo Sanchez, pers. comm.), 2 (Mark McBroom, pers. comm.), 3(Baker 1988), 4(Bob Atkins, pers. comm.), 5(Cressida Silvers, pers. 

comm.),6(SDCCPCD 2021), 7(John Krist, pers. comm.) 
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Table A2.2: Socio-economic characteristics of the survey respondents who indicated that they 

had citrus groves in Southern California (n =98). 

Survey item Responses 

Role in citrus production  

Grove Owner 38 

Ranch Manager 17 

PCA 18 

PCO 2 

Other 18 

NA 5 

Farm size  

< 5 acres 23 

5 – 25 acres 18 

26 – 100 acres 11 

101 – 500 acres 13 

> 500 acres 28 

NA 5 

Age  

<35 years 12 

35 - 50 years 14 

51 – 65 years 37 

> 65 years 35 

Management system  

Conventional 59 

Organic 13 

Both 23 

NA 3 
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Income from citrus  

< 25% 40 

26 - 50% 13 

51 - 75% 16 

76 - 100% 23 

NA 6 

Note: Pest Control Adviser (PCA), Pest Control Operator (PCO), no answer (NA)
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Table A2.3: Posterior mean and 95% credible interval for the parameters in the zoib regression models evaluated that were more 

complex than the selected model (SD28). 
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Note: deviance information criterion (DIC), potential scale reduction factor (prsf) 

† Institutional approach was modeled as a factor, considering PMA as the baseline 

‡ Season of treatment was modeled as a factor, considering Fall as the baseline 
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Table A2.4: Posterior mean and 95% credible interval for the parameters in the zoib regression models evaluated that were less 

complex than the selected model (SD28). 
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Note: deviance information criterion (DIC), potential scale reduction factor (prsf) 

† Institutional approach was modeled as a factor, considering PMA as the baseline 

‡ Season of treatment was modeled as a factor, considering Fall as the baseline 
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Table A2.5: Posterior mean and 95% credible interval for the parameters in the selected zoib regression model (SD28) with the size of 

the resource system, and the model without this independent variable (SD32). 

   SD28 SD28 SD28 SD32 SD32 SD32 

    mean 2.5% 97.5% mean 2.5% 97.5% 

logit(mean) Institutional approach† -1.09 -1.65 -0.57 -0.65 -1.17 -0.13 

 Group size -0.01 -0.02 0.00 -0.01 -0.01 0.00 

 Size of resource system 0.00 0.00 0.00     

 Grove size 0.10 0.06 0.14 0.13 0.09 0.16 

 Heterogeneity 0.08 0.05 0.12 0.10 0.07 0.13 

 Season‡ -0.17 -0.30 -0.05 -0.17 -0.31 -0.04 

 Age -0.07 -0.10 -0.05 -0.07 -0.10 -0.05 

 Institution† x Age 0.17 0.10 0.25 0.17 0.09 0.26 

 Grove size x Heterogeneity -0.01 -0.01 0.00 -0.01 -0.01 -0.01 

  Intercept 0.43 0.11 0.79 0.26 -0.06 0.58 

log(dispersion) Institutional approach† -0.81 -1.30 -0.38 -0.42 -0.82 0.01 

 Group size 0.03 0.02 0.04 0.04 0.03 0.05 

 Size of resource system 0.00 0.00 0.00     

 Grove size 0.06 0.02 0.10 0.07 0.03 0.11 

 Heterogeneity -0.05 -0.08 -0.02 -0.05 -0.08 -0.02 

 Season‡         
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 Age         

  Intercept 0.88 0.62 1.13 0.88 0.62 1.15 

logit(P(1)) Institutional approach† -67.45 -188.90 -4.66 -53.65 -126.63 -3.99 

 Group size -0.58 -0.93 -0.30 -0.58 -0.94 -0.30 

 Size of resource system         

 Grove size         

 Heterogeneity         

 Season‡         

 Age         

  Intercept -1.43 -2.38 -0.51 -1.42 -2.39 -0.47 

logit(P(0)) Institutional approach†         

 Group size -0.32 -0.38 -0.27 -0.32 -0.37 -0.27 

 Size of resource system         

 Grove size         

 Heterogeneity 0.03 0.00 0.06 0.03 0.00 0.07 

 Season‡         

 Age         

  Intercept 0.54 0.10 1.04 0.54 0.06 1.04 

 DIC 1679849    1679861    

 Multivariate psrf 1.10    1.33    
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Note: deviance information criterion (DIC), potential scale reduction factor (prsf) 

† Institutional approach was modeled as a factor, considering PMA as the baseline 

‡ Season of treatment was modeled as a factor, considering Fall as the baseline 
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Appendix 3: Data analysis 

 

All statistical analyses were done in the R programming environment version 4.0.3 (R 

Foundation for Statistical Computing 2020) with a Windows 10 Pro version 1909, 64-bit 

operating system (Microsoft, Redmond, WA, U. S. A.). Data manipulation and descriptive 

statistics were conducted using the R package “dplyr” (Wickham et al. 2021) and base R. Plots 

were generated with the R package “ggplot2” (Wickham 2016).  

 

Analysis of survey data 

Correlations between ordered categorical variables from the survey were tested using 

Spearman’s rank correlation test. 

 

Analysis of participation in AWM 

Four of the independent variables in the regression model (group size, size of the resource 

system, size of citrus groves, heterogeneity in grove size) were based on information recorded in 

the database of citrus operations in California maintained by the Citrus Research Board (CRB), 

hereafter referred to as the citrus layer. We obtained access to the June 2020 version of the citrus 

layer (Rick Dunn, personal communication) and the outlines of each AWM unit in the state of 

California (Rick Dunn and Robert Johnson, pers. com.). The software ArcGIS Pro (ESRI, 

Redlands, CA, U. S. A.) was used to overlay the citrus layer and the institutional layer in order to 

calculate the group size, size of the resource system, size of citrus groves and heterogeneity in 

grove size in each AWM unit using the “Dissolve” tool. Correlations between numeric 

independent variables in the regression model were tested using Pearson’s correlation test.  

● Group size: It was calculated as the number of different PURs within each AWM unit on 

the CRB citrus layer, which was compared with the number of PURs routinely collected 

by the grower liaisons and found to be highly correlated (ρ=0.72, P=2E-15).  

● Size of the resource system: It was calculated by aggregating all of the citrus properties in 

each PMA/PCD and calculating the sum of the grove acres. The calculated total citrus 

acreage under each management unit was highly correlated with data provided by the 

grower liaisons (ρ=0.97, P<2.2E-16) and with the citrus acreage recorded in the 

California Statewide Crop Mapping database (ρ=0.98, P<2.2E-16) (Department of Water 

Resources 2020). 

● Size of citrus groves:  It was calculated with the “Dissolve” tool from the software 

ArcGIS Pro by aggregating all of the citrus properties in each PMA/PCD and calculating 

the mean of the grove acres. 
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● Heterogeneity in grove size:  It was calculated with the “Dissolve” tool from the software 

ArcGIS Pro by aggregating all of the citrus properties in each PMA/PCD and calculating 

the standard deviation of the grove acres. 

Some preliminary statistical analyses were conducted to guide the hypotheses tested with the 

zoib regression model.  

● Institutional approach (PMA/PCD): there was significantly higher participation in AWM 

in PCDs than PMAs in every season (P≤0.043 on t-tests), except the Fall of 2016 

(P=0.99). 

● Group size: there was a significant negative correlation between the number of pesticide 

use permits and participation in AWM (ρ=-0.28, P<2.2E-16).  

● Size of citrus groves: there was a significant positive correlation between the average size 

of citrus groves and participation in AWM (ρ=0.27, P≤2.2E-16).  

Zero-and-one-inflated beta regression models were constructed using the R package “zoib” (Liu 

and Kong 2015). A zoib model assumes that the dependent variable y (the percentage of citrus 

acreage in each PMA/PCD treated within the recommended window) follows a piecewise 

distribution such that 

 

where pi represents the probability Pr(yi=0), qi represents the conditional probability 

Pr(yi=1|yi≠0), and α1i and α2i represent the shape parameters of the beta distribution for yi∈(0,1). 

These distributions are combined to derive the unconditional estimate of the response E(yi): 

 

The zoib regression model estimates the logit [i.e., the log(odds)] of the expected value of the 

beta distribution, the logit of P(0) and P(1) and the log of the dispersion of the beta distribution 

as linear functions of fixed and/or random effects. The coefficients of the effects on the mean of 

the beta regression can be interpreted as the expected change in the logit of participation with a 

one unit change in the corresponding variable. The coefficients of the effects on P(0) and P(1) 

are interpreted as the change in the logit of either having Participation=0 or Participation=1 with 

a one unit change in the corresponding variable. The coefficients of the effects on the dispersion 

of the beta distribution indicate the change in the log of the dispersion with a one-unit change in 

the corresponding variable (van Woerden et al. 2019). Based on a Bayesian framework, the 

coefficients are estimated through a Markov Chain Monte Carlo (MCMC) approach (Liu and 

Kong 2015). Two independent MCMC chains were run per model, each with 5000 iterations, 

including 200 iterations for burn-in, and thinned by a factor of 2. We assumed a Normal prior 

distribution N(0, 0.001) for each regression coefficient.  

MCMC convergence was visually checked with trace plots and autocorrelation plots. The 

potential scale reduction factor (psrf) was calculated for each model parameter and the threshold 
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psrf≤1.1 was used to determine that convergence had been reached (Gelman et al. 2021). In cases 

where psrf>1.1, we repeated the MCMC process with three chains, 10000 iterations per chain, 

1000 for burn-in and thinned by a factor of 50. Posterior inferences for each parameter are 

reported as the mean and 95% credible interval (CI). Model selection was based on the deviance 

information criterion (DIC) (Liu and Kong 2015). Starting with the most complex model 

including the seven independent variables mentioned in the previous section, we examined the 

results and iteratively removed variables for which the CI of the posterior estimates was bounded 

by a negative and a positive value, and therefore comprised zero. Among competing models that 

fulfilled the previous condition, we chose the one with the lowest DIC (Table A4.1, Table A4.2). 

Finally, the participation levels predicted by the zoib regression model were calculated using the 

pred.zoib function in the R package “zoib” (Liu and Kong 2015). Predictions were based on a 

new dataset where the independent variable under evaluation was allowed to vary within the 

range observed in the original dataset and the rest of the independent variables were fixed at their 

mean value, except in the case of interaction terms, where both variables were allowed to vary 

within the observed range. 

All data sets and R code used in this study will be posted in a repository at the following URL 

after publication of this manuscript: https://github.com/nmcr01?tab=repositories. 
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