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ABSTRACT. Across the United States, wildfire severity and frequency are increasing, placing many properties at risk of harm or
destruction. We quantify and compare how different forest management strategies designed to increase forest resilience and health
reduce the number of properties at risk from wildfire, focusing on the Lake Tahoe Basin of California and Nevada. We combine
landscape change simulations (including climate change, wildfire, and management effects) with scenarios of current and plausible fuel
treatment activities and parcel-scale fire risk analysis. Results suggest that more aggressive fuel treatment activities that treat more area
on the landscape, whether through mechanical and hand thinning or prescribed fire, dramatically lower the fire probability in the region
and lead to a corresponding lower risk of property loss. We estimate that relative to recent practices of focusing management in the
wildland–urban interface, more active forest management can reduce property loss risk by 45%–76%, or approximately 2600–4900
properties. The majority of this risk reduction is for single family residences, which constitute most structures in the region. Further,
we find that the highest risk reduction is obtained through strategies that treat a substantially greater area than is currently treated in
the region and allows for selective wildfires to burn for resource objectives outside of the wildland–urban interface. These results
highlight the importance of more active forest management as an effective tool in reducing the wildfire risk to capital assets in the region.

Key Words: forest management; Lake Tahoe; prescribed fire; property risk; wildfire

INTRODUCTION
Across the western United States, wildfire severity and frequency
are increasing (Dennison et al. 2014, Abatzoglou and Williams
2016, Parks and Abatzoglou 2020). California has experienced
some of the worst fires in its history over the past few years, with
the Camp Fire in 2018 destroying roughly 19,000 structures and
killing 85 people: the deadliest fire in California history (CAL
FIRE 2018). Development, fire suppression policy, and climate
change have all been shown to increase fire risk to property and
infrastructure (Westerling and Bryant 2008, Syphard et al. 2019).
The risk extends well beyond California given that one-third of
all homes in the United States are built in or near wildland
vegetation, commonly termed the wildland–urban interface
(WUI; Schoennagel et al. 2017, Radeloff  et al. 2018). These homes
are some of the most at risk to wildfires, with 69% of buildings
destroyed by wildfire across the United States having been located
in the WUI, and 75% in California (Kramer et al. 2018). Despite
these risks, development in the WUI is growing (Radeloff  et al.
2018), increasing future wildfire risk to property.  

Although wildfires are natural, beneficial, and even necessary for
many ecosystems (Perry et al. 2011, McLauchlan et al. 2020), the
public and policy makers call on resource managers to mitigate
fire risk. Over the past century, fire suppression was the primary
strategy to lower fire risks, but the cumulative recent effect of this
strategy has been an increase in destructive crown fires (Fulé et
al. 2004, Ohlson et al. 2006, Steel et al. 2015) and suppression
costs exceeding several billion dollars in recent years (NIFC 2020,
CAL FIRE 2021).  

Recently, active forest management, including thinning and
prescribed burning to reduce forest fuel loads, has emerged as a
promising management tool to mitigate this risk in a more
ecologically sound manner (Stephens and Ruth 2005, North et

al. 2021). Forest thinning and prescribed burns reduce the severity
and frequency of fires (Pollet and Omi 2002, Ritchie et al. 2007,
Safford et al. 2009, Prichard et al. 2010, Wu et al. 2013, Stevens
et al. 2016), but some studies have also found that these benefits
may be short lived, lasting around five years (Price and Bradstock
2012). In the focal area of our study, the Lake Tahoe Basin,
Safford et al. (2009) showed that fuel treatments dramatically
reduced the severity of wildfires, with crown fires generally
turning to surface fires within 50 meters of treated areas. Despite
obvious benefits, the costs of ongoing active forest management
can be high and are often higher in areas that overlap with
property and human infrastructure (Loomis et al. 2019). In
addition, federal and state agencies historically have not been
provided with sufficient resources to treat current fuel loads
(North et al. 2015).  

Beyond localized fuel loads, the severity of wildfires and the risk
they pose to property has been shown to be highly connected to
landscape ownership and governance. Starrs et al. (2018) show
how federal land ownership and firefighting responsibility were
both associated with higher fire probability in the Sierra Nevada.
Other studies indicate that human presence increases the
frequency of ignition and loss of human infrastructure and
property (Syphard et al. 2008) and that certain patterns of
development can increase property risk to wildfires (Syphard et
al. 2013). These retrospective analyses describe how management
and landscape makeup influenced fire regimes and risk in the past,
but little has been done to model future wildfire risk to property
and the effects of mitigation efforts (see Westerling and Bryant
2008 as an exception).  

In this study, we estimate the property at risk from simulated
wildfires under various forest management scenarios in the Lake
Tahoe Basin (LTB) in California and Nevada. Stakeholders in the
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LTB wanted to evaluate the potential effects of forest
management under future climates on a range of social and
ecological indicators, and this analysis is a component of this
broader effort. Our focus is on forest management, particularly
fuel treatments, and a predictive, landscape approach to the
number and intensity of fires, as well as fire risk to properties
under these models. Through this analysis, we provide insight into
the tradeoffs associated with forest management and property
value and give local land use planners and forest managers
critically needed information on projected risks of fire to property.

METHODS

Study area
The study area for this analysis is the 88,000-hectare Lake Tahoe
Basin in California and Nevada (Fig. 1), over 70% of which is
composed of National Forest System Lands managed as part of
the Lake Tahoe Basin Management Unit (LTBMU). California
and Nevada state authorities manage an additional 8100 hectares,
and just over 11,000 hectares are managed by tribal authorities
or are private property. The LTBMU has a very large area
characterized as wildland–urban interface, with almost half  of
the Basin’s land area adjacent to general forest and wilderness.
The area has a relatively high number of homes in the wildland–
urban interface and is located in a region that is at risk of high
tree mortality and high-intensity wildfire (Restaino et al. 2019),
making considerations of fire risk and management paramount
to residents in the LTBMU.

Fig. 1. Lake Tahoe Basin study area, California and Nevada.

Fire regimes in the Basin have changed significantly over time.
Prior to European colonization, fire regimes were largely
determined by natural climate conditions and prescribed burning
practices of the native Washoe Tribe in the region (Taylor and
Beaty 2005). Safford and Stevens (2017) describe the pre-
settlement natural range of variation for wildfires as frequent (11–
16 years) burning at low to moderate severity. Post-settlement fire
regimes have shifted to infrequent but higher severity fires
(Stephens et al. 2018). This is the result of extensive logging of
the region during the Comstock mining era of the mid/late 1800s,
followed by over 100 years of fire suppression (Safford et al. 2009).
Removing fire, both natural and managed, from the landscape
has also increased stand densities across the region and reduced
stand heterogeneity (Safford and Stevens 2017). Fire hazard,
defined as the potential for wildfires to cause harm to people and
property, has increased in the region as population growth pushes
development in high hazard landscapes. The combination of high
hazard and the potential for larger, more intense wildfire events
presents a major risk to capital assets in the region.  

Despite this increasing risk, large, destructive wildfires have been
rare in the Basin. The 2007 Angora fire in the southwest portion
of the Basin is the most notable exception. The Angora fire burned
1250 hectares and destroyed 254 homes, making it one of the most
destructive wildfires at the time in the United States. Most other
wildfires in the Basin have been small in size and have not caused
large amounts of property damage. However, higher fuel loads
from a century-long history of fire suppression in the region and
the expansion of residential development in the wildland–urban
interface have increased the likelihood of potential damages to
structural assets in the region (Moody et al. 2009, Stephens and
Sugihara 2018). This increasing risk was highlighted in 2021 when
two large fires, the Caldor fire and the Tamarack fire, burned in
areas just adjacent to the southern LTBMU border. The Caldor
fire was nearly 90,000 hectares and destroyed 782 structures. The
Tamarack fire was 27,800 hectares and destroyed 23 structures.

Estimating wildfire risk
This analysis integrates two distinct datasets to identify properties
at risk of wildfire in the Lake Tahoe Basin under various forest
management regimes. First, fire probabilities were derived from
the results of the LANDIS-II forest disturbance and change
model (Scheller et al. 2007) using the SCRPPLE extension
(Scheller et al. 2019). The LANDIS-II model projects landscape
change, and incorporates climate projections, management
activities, and natural disturbances. For this application,
LANDIS-II was calibrated to recent conditions and disturbance
regimes in the Lake Tahoe Basin at a resolution of one hectare.
A full model description and applications to the study area are
documented in Loudermilk et al. (2014), Kretchun et al. (2016),
Scheller et al. (2018, 2019). Detailed results from this LANDIS-
II modeling exercise are described in two other studies in this
special issue (Maxwell et al. 2022a and 2022b).  

Fire dynamics were modeled using the Social-Climate Related
Pyrogenic Processes (SCRPPLE) extension in LANDIS-II
(Scheller et al. 2019). SCRPPLE models the ignition, spread, and
intensity of fire activity in a landscape. Within the LTB, a
probabilistic ignition surface was derived for the landscape from
contemporary ignition information (Short et al. 2016). Each year,
a varying number of ignitions are modeled on the landscape based
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on this probabilistic ignition surface. This was done for each of
ten replicates to allow for some probabilistic variation in where
fires begin on the landscape. Once a modeled ignition occurs, fire
spread in the model is driven by two factors: weather and fuel
loadings. Modeled weather conditions were based on climate
projections taken from the CanESM2 model results of the relative
concentration pathway (RCP) 4.5 scenario. Modeled fuel loadings
are determined by the management scenarios described below.
The location of the treatments is varied probabilistically in the
model in each replicate across the landscape. Modeled fire spread
is also spatial in that high-intensity fires in one cell can spread
into adjacent cells. Modeled annual area burned was calibrated
and validated against contemporary fire events in the CalFire
FRAP dataset (observed annual mean = 117 ha, s.d. = 309 ha,
max = 1250 ha; modeled multiple replicate mean = 188 ha, s.d. =
223 ha, max = 1055 ha).  

The principal measure of fire intensity in SCRPPLE is flame
length. Flame lengths correspond to fire intensity metrics
commonly used by forest managers (Scheller et al. 2019). Flames
can threaten structures through two pathways: radiant exposure
from large flames close to a structure or direct flame contact
(Caton et al. 2017). Through both pathways, flames must be
relatively close to a structure to present an ignition risk (Cohen
2000, Stocks et al. 2004). In the model, low, moderate, and high-
intensity fires correspond to flame lengths of less than 4 ft, 4–8
ft, and greater than 8 ft, respectively. Fire intensity in LANDIS-
II is a function of fuel loadings, wind speed, and ladder fuels in
each grid cell. These fuel loadings are determined by forest growth
dynamics, climate, and most importantly for this analysis,
management decisions. In the model, more intensive forest
management, whether by hand and mechanical treatments or
prescribed burning, will reduce the fuel load in the treated cells
and thus reduce modeled fire intensity and spread. In reality, this
is not always the case, because some fires burn at high intensity
on account of extreme weather conditions, regardless of fuel
reduction history (Ager et al. 2010, Lyderson et al. 2014, 2017).  

Using the spatially explicit wildfire occurrence and intensity data,
a probabilistic, parcel-level risk metric was developed for each
management scenario described below based on 10 within-
scenario replicates. As noted above, replicates represent stochastic
variation in the location of the fuel treatments across the
landscape and in the ignition location of wildfires. Our risk metric
is then constructed as the probability of a fire occurrence in that
parcel over a 30-year time horizon, a relevant period of time for
management decisions. Risk metrics are specified for multiple
different fire intensities. We report findings for the probability of
a high-intensity fire (flame lengths > 8 ft) occurring in a parcel as
well as a moderate (4–8 ft flame lengths) or high-intensity fire
occurring in the parcel. The risk metric is defined in Equation 1.

Pr (Wildfire)i , k=∑
r

FireOccurance r ,i , k
TotalReplicates

¿
(1)

  

Where i indicates parcel, k indicates fire intensity (none, low,
moderate, high), and r indicates the replicate. FireOccurrence is
an indicator variable that is equal to one if  a fire of intensity k 
occurred on parcel i in replicate r over the 30-year analysis period.
For example, if  LANDIS-II results show that parcel i experienced

a moderate-intensity fire in three replicates and a high-intensity
fire in one replicate, then the risk of a moderate- or high-intensity
wildfire would be 40% (4/10). We do not make adjustments if
multiple fires occur over the 30-year time frame in the same pixel.
We define a property as “at risk” based on a threshold risk
percentage. Results are reported for 25%, 50%, and 75%
thresholds. As an example, a home is at risk using the 50%
threshold if  five or more of the replicates for the parcel containing
that property predict a wildfire of a specified intensity.  

LANDIS SCRPPLE was designed to represent moderate flame
lengths that are associated with isolated crown fires with low
canopy-level spread (passive crowning) and high flame lengths
associated with spreading crown fires (active crowning). Crown
fires, low fuel moisture, and high winds are all associated with
ember production, which is a leading factor in predicting property
loss (Manzello and Foote 2014, Caton et al. 2017, Syphard and
Keeley 2019). High flame lengths also render wildfires difficult
for firefighters to directly combat, which in turn signifies greater
likelihood of property loss (Syphard and Keeley 2019). One
limitation of the metric used in this analysis is that the model does
not account for ember transport. If  wind-driven fires carry embers
across parcel boundaries, our current approach would
underestimate the potential property risk.

Property location
Structure locations were identified using Zillow’s Transaction and
Assessment Dataset (ZTRAX), which compiles county assessor
office records for most counties in the United States. There are
five counties in the Lake Tahoe Basin Management Unit: El
Dorado and Placer counties in California and Carson City,
Douglas, and Washoe counties in Nevada. In total there are
approximately 36,547 properties in the LTBMU, after removing
properties that had no geographic coordinates in the database.
Properties that were registered as vacant land were also removed
under the assumption that there were no structures at risk of
wildfire on these properties. Of the remaining properties, 92%
were residential or multi-family dwellings, 3% were commercial
or industrial properties, and the rest were registered under an
alternate designation. Figure 2 shows the density per square
kilometer of registered properties across the Lake Tahoe Basin.
To validate the location information in ZTRAX, we selected a
random sample of one hundred properties from the dataset and
visually compared (using Google Earth Pro) the property address
to the geographic coordinates provided. For the purposes of this
modeling exercise, there was sufficient agreement. In the instances
where there were discrepancies, they were generally smaller than
the modeling units in the LANDIS-II model (one hectare). These
small deviations between the physical address and the geographic
coordinates used for modeling are unlikely to affect the results
presented below.

Management scenarios
To understand the relationship between forest management and
the wildfire risk to homes in the region, five forest management
scenarios were co-developed with local stakeholders (summarized
in Fig. 3). Scenario 1 (S1) assumes no active forest management
activities except for wildfire suppression. Scenario 2 (S2)
represents a WUI-focused strategy that includes hand and
mechanical treatments in the WUI, with a particular emphasis
on the defense zone and hand thinning. This WUI-focused
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scenario, which treats approximately 1300 hectares (or 2% of the
landscape), is most similar to recent management practice in the
region and can be considered a business-as-usual scenario. The
minimum stand retreatment time in S2 is 20 years. Scenario 3 (S3)
increases the scale and pace of vegetation thinning treatments,
including mechanical and hand thinning treatments in the WUI
and the general forest, with some hand treatments occurring in
the wilderness as well. Scenario 3 treats approximately 2000
hectares per year (7% of the landscape), with an 11-year
retreatment time. Scenarios 4 (S4) and 5 (S5) represent two options
for increasing the use of prescribed and managed fire on the
landscape. Scenario 4 treats a similar area using hand and
mechanical treatments as the WUI-focused scenario (S2) but adds
approximately 730 hectares per year of prescribed fire and allows
for some managed wildfires from natural ignitions in wildness
areas. The total treatment area per year is approximately 4% of
the landscape with a 20-year retreatment time. Scenario 5 (S5) is
an expanded fire-focused strategy combining modest WUI
thinning (similar to S2) with much greater use of prescribed
burning (2700 hectares per year) and some managed natural
ignitions for resource objectives. The total treatment area per year
for S5 is approximately 11% of the landscape with a 20-year
retreatment time. Currently, prescribed fire treatments are quite
low in the Basin, but are being considered as a lower cost
alternative or complement to hand and mechanical treatments.

Fig. 2. Property density in the Lake Tahoe Basin. Densities are
reported as the number of properties per square kilometer in
each census tract.

Fig. 3. Forest management scenarios used for evaluation.
Scenarios differ primarily by the number of acres treated and
the use of hand/mechanical treatments or prescribed fire
treatments.

RESULTS
We present the results in two parts. First, we report results on the
projected fraction of the landscape encountering fires of various
intensities. Second, we report results on how the number of
properties at risk vary across scenarios and risk thresholds. We
also conduct a back-of-the-envelope cost–benefit calculation to
compare the costs of fuel treatments to the benefits to property
of wildfire reductions.

Fire occurrence and intensity
The occurrence and intensity of wildfire vary considerably across
the five management scenarios (Fig. 4). Each plot shows the
percentage of the entire LTB landscape that experiences a specific
intensity of fire (reported by row) and probability threshold
(reported by column) over the 30-year analysis time period. For
example, the top left panel of Figure 4 shows that approximately
7–12% of the landscape has a greater than 25% chance of
experiencing a high-intensity fire over 30 years in Scenarios 1, 2,
and 4. In Scenario 3, approximately 3% of the landscape has a
greater than 25% chance of experiencing a high-intensity fire. In
Scenario 5, < 1% of the landscape has a greater than 25% chance
of experiencing a high-intensity fire. This shows a clear negative
relationship between the treated area and the fraction of the
landscape predicted to experience a high-intensity fire.  

This general trend is observable for most of the assumed fire
intensities and probability thresholds. However, there is a larger
reduction in high-intensity fires (top row of Fig. 4) than moderate-
intensity fires for the more aggressive treatment scenarios. For
example, using a 50% fire probability (the middle column), high-
intensity fires in Scenario 2 cover approximately 2% of the
landscape, whereas in Scenarios 3 and 5, the probability of high-
intensity fires all but disappear from the landscape. This finding
suggests that fuel treatments are having the desired effect in the
model of reducing high-intensity fires, and to some extent
moderate-intensity fires, from the LTB landscape.
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Fig. 4. Fraction of the landscape experiencing wildfire by
scenario. The y-axis shows the percent of the entire Lake Tahoe
Basin where a wildfire occurs. Columns show different
probability thresholds for each parcel. Rows break down results
by the wildfire intensity category.

At-risk property
After intersecting the spatial fire probabilities with the known
location of existing properties in the Basin, results show that the
reduction in high- and moderate-intensity wildfires have the
intended effect of reducing the number of properties that were
exposed to a wildfire over the next three decades (Fig. 5). Results
are presented for both a variety of fire intensity outcomes (rows)
and risk thresholds (columns).  

In Scenario 2, which represents our business-as-usual scenario,
approximately 2012 properties were at risk of a high-intensity
wildfire using a 50% probability threshold. The expanded
treatment scenarios (S3 and S5) substantially reduced, relative to
S2, the number of properties at risk of a high-intensity wildfire
(n = 76 and 4, respectively) based on the 50% probability
threshold. This represents a 96–99% reduction in the number of
properties at risk of a high-intensity fire under the more aggressive
forest management scenarios modeled. In other words, the
management scenarios that treated between 2000 and 3200
hectares annually nearly eliminate the risk of property exposure
to high-intensity wildfire. There appears to be some diminishing
returns to the extra area treated in Scenario 5, which reduces the
number of properties at risk by several percentage points, relative
to S4, despite increasing the treated area by approximately 60%.  

Although the exposure results to high-intensity fires are valuable,
it is perhaps even more useful to understand the effects of
management on exposure to any potentially damaging wildfire,
which includes both moderate and high-intensity fires. Using this
metric and a 50% probability threshold, Scenario 2 results suggest
that 10,982 properties are at risk of either moderate- or high-
intensity fire. Similar to our results for high-intensity fires,
scenarios with larger treatment areas reduce fire risk of moderate-
or high-intensity fires, although the treatments do not fully

eliminate fire risk from the landscape. The thinning-focused
expanded treatment scenario (S3) reduces the number of at-risk
properties from 10,982 to 6055 (45% reduction). The fire-focused
scenario (S5) that treats the greatest area reduces property
exposure to 2622 properties (a 76% reduction relative to S2).
Although these results assume a 50% probability threshold, the
trends were similar using a 25% and 75% probability threshold.

Fig. 5. Properties at risk by scenario. The y-axis shows the
number of properties in the Lake Tahoe Basin that are exposed
to a wildfire at a given intensity and probability threshold.

The expanded treatment fire-focused scenario (S5) created the
largest reduction in the exposure of properties to both moderate-
and high-intensity fires although the area treated was similar to
the thinning approach. The difference between approaches was
partially because the fire-focused approach also allows some
restraint in suppression response to wildfires outside the WUI for
resource objectives. Although this management strategy does not
entirely eliminate wildfire risk to properties, it dramatically
reduces exposure.

Cost–benefit analysis
Expanded forest management options, such as the fuel reduction
treatments modeled in this study, are costly and can be guided in
part by the benefits that these actions confer in terms of reducing
wildfire risk. Using the results from our analysis, a back-of-the-
envelope calculation was conducted to estimate whether the
financial investment in expanded thinning and prescribed burning
treatments can be justified based solely on reducing property risk.
To illustrate this, we made several assumptions regarding home
values and the susceptibility of homes to loss when they encounter
a flame (referred to hereafter as the destruction rate). We used
Zillow Home Value Forecast to estimate the average value of a
home in 2020 for El Dorado and Placer counties in California,
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which was approximately $507,000. This is a relatively crude
estimate of value for several reasons. First, property values are
likely to vary in non-random ways that may be correlated with
wildfire risk. Using an average estimate may therefore overvalue
or undervalue depending on the nature of this variation. Second,
real home prices are likely to increase over time and this makes
our estimate a likely underestimate of the real value at risk.
Estimating the value at risk requires an assumption about what
fraction of homes that encounter a wildfire will actually be
destroyed. This is a difficult number to predict with confidence,
so we show three possible outcomes: 10%, 50%, and 90%
destroyed. There is some empirical evidence supporting the lower
rates (Kramer et al. 2019). Other studies have suggested much
higher damages from encounters with moderate- or high-intensity
fires (Scott et al. 2013, Knapp et al. in review). For the calculation
presented here, we used property at risk estimates from the 50%
probability threshold of encountering a medium- or high-
intensity fire. That is, the number of properties that the model
predicts will be in a model pixel that has a modeled moderate- or
high-intensity wildfire in at least 50% of the replicates.  

Table 1 shows the results of this back-of-the-envelope calculation
of property value at risk across the five scenarios and three
destruction rate assumptions. In the business-as-usual scenario
(S2), where 10,982 properties have a 50% or greater risk of
encountering a moderate- or high-intensity fire, the total value at
risk is approximately $5.568 billion. If  10% of these properties
are actually destroyed, this would be a loss of $557 million. As
the destruction rate increases to 90%, the value would also
increase to over $5 billion. The expanded treatment scenarios (S3–
S5) decrease the property value at risk in proportion to the size
of the treated area on the landscape. For example, the two
scenarios that increase treatments the most, S3 and S5, decrease
the value at risk to $307–$2763 million and $133–$1196 million,
respectively, depending on assumed destruction rate. S3, which
treats only a slightly greater area than S2, the business-as-usual
scenario, results in similar property values at risk. There is not a
substantial difference based on treatment type, whether hand/
mechanical thinning or prescribed fire treatments.

Table 1. Property value at risk in US$million over the 30-year
analysis time period. Results are presented across the five forest
management scenarios (S1–S5) and three home destruction rate
assumptions (10%, 50%, 90%).
 
Fraction of homes
destroyed

S1 S2 S3 S4 S5

10% $671 $557 $307 $536 $133
50% $3355 $2784 $1535 $2679 $664
90% $6039 $5011 $2763 $4822 $1196

 

We assessed the cost-effectiveness of the expanded treatment
scenarios (S3–S5) by converting the total property value at risk
results above to a benefit per treated hectare metric. The benefit
from the expanded treatment is defined as the reduction in value
at risk relative to S2, the business-as-usual scenario. Figure 6
shows these results for each of the expanded treatment scenarios
and property destruction rate assumptions. For all destruction
rates, there is a larger benefit per hectare for the scenarios that

treated a greater area. The benefit per hectare is relatively similar
between the expanded treatment scenario that utilized hand and
mechanical thinning approaches (S3) and the fire-focused
scenario (S5). Benefits per treated hectare also increase
substantially as the assumed property destruction rate increases.

Fig. 6. Benefit, measured in $/acre, of the expanded forest
management scenarios (S3–S5). Benefit is measured as the
reduction in property value at risk in each scenario, relative to
the business-as-usual scenario (S2). Results are normalized by
dividing by the number of treated acres in each scenario.

The per hectare benefits can be compared to fuel reduction
treatment costs in the region. Holland, Evans, Long, et al.
(unpublished manuscript) show that treatment costs for the
scenarios in this study were approximately $3500–$4700 per
hectare for the hand/mechanical treatment scenarios (S2–S3) and
$2200–$2700 per hectare for the fire-focused scenarios (S4–S5).
S3 and S5 deliver property risk-reduction benefits on the upper
range of these treatment costs for the 10% destruction rate
assumption. As the assumed destruction rate increases, the benefit
begins to exceed the scenario treatment costs. S4, the fire-focused
scenario with a treated area similar to the business-as-usual
scenario (S2), only delivers property risk-reduction benefits in
excess of the treatment costs once the destruction rate approaches
90%. Of course, this simple cost–benefit comparison only
considers benefits from avoided property loss or damage and none
of the other potential ecological, health, or economic benefits
from expanding fuels treatments.

DISCUSSION
Wildfire risk to residential property is driven by two factors: the
probability of wildfire occurrence and the possible damage from
that wildfire. This study assessed this risk by combining two
unique datasets on the risk of wildfire and the location of
structural assets. Applying this data to the Lake Tahoe Basin, we
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found that more intensive forest management aimed at reducing
fuel loads inside the WUI and across the landscape outside the
WUI can dramatically reduce the fire exposure risk of structures
in the region. Under a WUI-focused business-as-usual scenario
(S2) of minimal thinning and no prescribed fire, approximately
11,000 properties in the Basin were at risk of a moderate- or high-
intensity fire over the next 30 years. The three more aggressive,
but not unrealistic, management scenarios considered in this
analysis reduced the number of properties at risk by 45–76%
relative to this baseline.  

Although this study emphasizes the risk to property from wildfire
events, it is important to consider other factors driving wildfire
hazard threats to physical capital assets, such as development
patterns and social dynamics. For example, social networks are
critical to sharing information and developing perceptions
around wildfire risk (Brenkert-Smith et al. 2006). Infrastructure
also plays a large role in wildfire risk planning. In many WUI
areas in the western United States, housing density is growing
without adequate increases in road networks to allow for
evacuation (Cova et al. 2013). Public acceptance of prescribed
fire is also dependent on local relationships with forest managers
and an understanding of the practices and precautions being
implemented (McCaffrey and Olsen 2012). Finally, zoning and
housing policy in the WUI, which is driven by a diverse set of
state and local stakeholders, requires an improved understanding
of fire risk in order to plan future development effectively
(Syphard et al. 2013, Mockrin et al. 2018).  

We linked fire presence to property loss at a model scale, which
is not a reflection of the reality of property defense. Syphard et
al. (2014) showed that clearing a defensible space with low fuel
levels around structures increases the likelihood of structures
surviving, although landscape-scale factors were more important.
Additionally, the choice of building materials and home design
can mitigate fire risk (Quarels et al. 2010) and best practices pair
flame-resistant materials and design with a well-enforced
defensible space. Recent research on the 2018 Camp fire also
suggests an externality effect in that proximity to a destroyed
structure increased the likelihood of a home being destroyed
(Knapp et al. in review). Despite the actions that can be taken at
the structure level, we can still reasonably assume that fire risk as
measured by the number and intensity of wildfires a structure is
exposed to is an important metric for property owners and
planners in the region.  

Although this study clearly demonstrates the benefits of fuel
treatments to reducing property risk in the Lake Tahoe Basin,
forest managers face many obstacles in trying to meet their fuel
reduction and restoration targets (Steelman 2016). Forest Service
resources are spread thin and exploring alternatives to hand-
thinning and controlled burns, such as industry-driven
mechanical thinning, may be important if  fuel load goals/
reduction is to be successful regionally (Donovan and Brown
2005). Under expanded prescribed fire scenarios, managers will
also need to consider feasible burn windows based on air quality
regulations. Recent analysis suggests that in Lake Tahoe these
windows are mostly available in Spring and Fall, and multiple-
day windows are quite rare (Striplin et al. 2020).  

There are several important limitations to our analysis. First, there
is evidence that extreme weather events can reduce, or even

eliminate, the effectiveness of fuel treatments in mitigating
wildfire spread and severity (Ager et al. 2010, Lyderson et al. 2014,
2017). Our analysis does not factor in variation in weather
conditions across the replicates and may be most representative
of average weather conditions. Our results may therefore not be
robust to extreme weather conditions, which are an important
factor in the spread of high-severity wildfire. Similarly, we only
considered a single future climate scenario and model, but there
is variation across both of these dimensions, which may affect fire
and the effectiveness of fuel treatments. Future work should
examine the importance of both sets of factors when considering
landscape-scale forest management planning.  

Our analysis provides estimates of economic benefits to property
owners of reducing the wildfire hazard threat in the Lake Tahoe
Basin. Resource planning decisions must also consider tradeoffs
in ecosystem services associated with thinning treatments, such
as management costs, carbon sequestration, and adverse health
impacts from smoke exposure. The potential benefits of more
active forest management, under the assumptions identified
above, are approximately $8–$14 million annually. Holland,
Evans, Long, et al. (unpublished manuscript) show management
costs of $3.6–$5.4 million annually in the expanded treatment
scenarios. Long, Drury, Evans, et al., (unpublished manuscript)
show damages of $6–$80 million from smoke exposure during
simulated extreme wildfires in the region. On an annualized basis,
the public health and property benefits from the expanded
treatment scenarios are roughly similar and individually outweigh
the costs of expanded management. These findings provide
support for efforts in the region to invest in fuels reduction
treatments that may not be profitable solely in terms of financial
return.

Responses to this article can be read online at: 
https://www.ecologyandsociety.org/issues/responses.
php/13169
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