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Examining abiotic and biotic factors influencing specimen black oaks
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ABSTRACT. California black oak, Quercus kelloggii, plays an important role in the lifeways of many Indigenous tribes throughout
California. Native peoples tend black oaks using traditional ecological knowledge (TEK) to encourage the development and proliferation
of specimen oaks. These mature, large, full crowned trees provide a disproportionate amount of ecosystem services, including acorns
and habitat, when compared to smaller black oaks. Altered approaches to land management and the cessation of frequent low intensity
cultural burns places these specimen oaks at risk from encroachment, forest densification, and severe wildfire. This project is a
collaboration between academic researchers and a Native Advisory Council to examine abiotic and biotic factors influencing Quercus
kelloggii to reimplement traditional ecological knowledge and promote ecosystem resilience post-wildfire. Data were collected from 55
specimen black oaks at Pepperwood Preserve in northeast Sonoma County. Specifically, we classified specimen oak growth habitat by
measuring specimen oak crown area and live crown ratio, the size and number of surrounding trees, and amount of surface and ladder
fuel loads. The preserve burned in both the Tubbs Fire in 2017 and the Kincade Fire in 2019, the latter of which occurred three months
after the completion of the initial data collection. Immediately following the Kincade Fire we measured scorch height and related our
abiotic and biotic variables to fire severity. Forest densification was found to have a significant negative effect on both canopy area (p
= 0.003) and live crown ratio (p = 0.038) of the specimen oaks. Densification did not affect surface and ladder fuel load accumulation
since the Tubbs Fire in October 2017 (p > 0.05). Neither surface and ladder fuels nor forest densification variables significantly affected
scorch height on the specimen oaks (p > 0.05) following the Kincade Fire.
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INTRODUCTION
California black oak (Quercus kelloggii) has the widest
distribution and altitudinal range of all the oaks in the western
U.S., extending over approximately 780 miles from Eugene,
Oregon to Baja California (McDonald et al. 1990). Black oak is
a keystone species that provides numerous ecosystem services
(Crotteau et al. 2015, Long et al. 2017). In California oak
woodlands, over 330 species of animals depend on support from
oaks for at least one life stage (Barrett 1980).  

Black oaks are considered to be a “cultural keystone” species for
their role in Indigenous peoples’ diet, ceremonial practices, and
daily life (Garibaldi and Turner 2004, Long et al. 2016, 2017). As
a food source, black oak acorns are highly desired for their flavor,
high oil content, ease to pound and grind, as well as their
storability (Lee 1998, Long et al. 2016; M. K. Anderson 1993,
unpublished report). The act of gathering acorns is vital for cultural
transmission and remains an important social activity for many
Tribal members (Anderson 2005, Long et al. 2016). Black oak
acorns are incorporated into dances, rituals, and ceremonies and
the species appears in Native mythology (Long et al. 2016).
Because of their cultural importance, Native peoples throughout
present day California use traditional ecological knowledge
(TEK) to create ecological conditions that favor black oak
survival and persistence while treating the ecosystem as a whole
(Anderson 2005, Lake et al. 2017, Long et al. 2017). TEK has
been described as “a cumulative body of knowledge, practice, and
belief, evolving by adaptive processes and handed down through

generations by cultural transmission, about the relationship of
living beings (including humans) with one another and with their
environment” (Berkes et al. 2000:1252). These cultural practices
are much more than land stewardship techniques, but rather,
integral pieces of Indigenous culture that reflect a reciprocal
relationship with the land.  

Despite its vast range, drought adaptability, and cultural
significance, black oaks are threatened by altered approaches to
land management. Colonization and the forced removal from and
cessation of Native engagement with the land resulted in large
ecological shifts in California including habitat reduction for
many native plants (Kimmerer and Lake 2001, Anderson 2005,
Codding and Bird 2013). California Tribal communities have been
dispossessed of their traditional lands and their ability to
maintain cultural practices and autonomy stifled through
subjugation of racist land use laws, as well as outright genocide
(Fenelon and Trafzer 2014, Norgaard 2014, Madley 2016).
Indigenous peoples’ ability to practice their culture depends on
access to the land and the continued resilience of the plants and
plant communities on which they have depended for millennia
(Berkes et al. 2000, Anderson 2005, Garibaldi and Turner 2004,
Long et al. 2016, 2017).  

Native peoples create intimate multi-generational relationships
with individual specimen black oak trees that include burning,
tending, nurturing, and gathering (Anderson 2005). In Sonoma
County, California at Pepperwood Preserve, the Native Advisory
Council of Pepperwood wishes to return these practices to the
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land. Pepperwood Preserve is located on the traditional ancestral
territory of the Wappo (Milliken 2007). Black oak holds a
position of great cultural importance and is the Wappo tribe’s
preferred acorn for eating. As such, this project was developed as
one of the initial steps in facilitating the reimplementation of
these reciprocal stewardship practices. Our research was a
collaboration between Pepperwood’s Native Advisory Council,
Clint McKay (Wappo/ Pomo/ Wintun), Chair, Lucy McKay
(Pomo and Northern Sierra Miwok), Dr. Brenda Flyswithhawks
(Tsalági), Tek Tekh Gabaldon (Mishewal Wappo), and L. Frank
Manriquez, (Tongva and Ajachemem and Rarámuri),
Pepperwood’s management team, and researchers at Sonoma
State University.  

In meetings with Sonoma State researchers and the Pepperwood
management team, Pepperwood’s Native Advisory Council
expressed concerns regarding the presence and regeneration of
specimen black oaks on the preserve, not just the abundance of
the black oak species. Specimen oaks have been defined as large,
old, healthy trees with broad low crowns (Long et al. 2017). The
Native Advisory Council explained that this growth habit makes
it easier to gather acorns and also supports other culturally
significant understory plants. These trees provide a
disproportionate number of ecocultural services when compared
to smaller black oaks (Long et al. 2017). Clint McKay explained
the following:  

[A] specimen oak does not come with age. It comes with
the overall health of the tree and the tree’s ability to take
its rightful place within our natural world in the spirit of
reciprocity. The specimen oak benefits from its
microenvironment and in return can reciprocate its
bounty to the natural world; humans, animals and other
plant communities. Overcrowding or densification causes
the trees to not reach their full potential. We get small,
spindly trees that lack strength and the ability to produce
the quality and quantity of acorns needed to support
other life forms. 

Like numerous Indigenous groups around the world, Sonoma
County Tribal communities have difficulty accessing the plants
necessary for cultural practices, such as basket weaving and
maintaining a traditional diet, because of public land gathering
prohibitions, the cessation of cultural burns, limited access to
land, and habitat destruction (Garibaldi and Turner 2004,
Anderson 2005, Shebitz et al. 2009, Long et al. 2017). A very
limited amount of land in Sonoma County is under Tribal
jurisdiction. As a result, Tribal communities cannot possibly
sustain themselves on such limited land resources alone.
Traditional gathering places beyond Tribal lands are not always
accessible, which further restricts the traditional foods and
cultural resources contained therein. Lack of access to traditional
foods and the use of pesticides and herbicides on adjacent
agricultural lands directly affect both overall Tribal health and
the conditions of the few gathering places that remain open to
Tribal peoples. Policies, such as gathering restrictions on abalone
and salmon, also affect Native peoples (Clint McKay, personal
communication). Despite all the challenges, Tribal communities
continue to practice their cultural traditions and pass knowledge
through the generations. This cultural resilience is expressed in
many ways including efforts to revitalize language and traditional

crafts like basket weaving. It is also expressed by connecting
traditional stewardship practices with modern day political
movements like climate activism. A key component to cultural
resilience is working to restore both access to the land and the
ability to engage in traditional cultural practices.  

Present day conservation depends on understanding the
ecological and cultural history of a place, including cultural
practices and the roles and benefits they played in a given
ecosystem (Kimmerer and Lake 2001, Keeley 2002, Hayashida
2005, Codding and Bird 2013). Historically, researchers rooted in
the binary anthropological distinction between hunter gatherers
and agricultural societies missed Indigenous peoples’ influence
across many habitats of the California landscape and were
unaware of the importance of active management in California’s
ecosystems (Anderson 2005, Shebitz et al. 2009, Codding and
Bird 2013, Lepofsky et. al 2017). Indigenous people act as
keystone species in numerous ecosystems around the world
through the use of fire (Kimmerer and Lake 2001, Miller and
Davidson-Hunt 2010, Codding and Bird 2013, Christianson
2014). Fire has numerous beneficial effects on a landscape scale,
including plant germination, plant health, and maintaining
habitat heterogeneity (Kimmerer and Lake 2001, Keeley 2002,
Anderson 2005, Abrams and Nowacki 2008, Codding and Bird
2013, Kelly and Brotons 2017, Anderson and Keeley 2018). The
use of fire to increase abundance and production of masting tree
species has been documented across North America (Abrams and
Nowacki 2008). In California, intensification of the use of oak
and material correlates that accompany acorn processing such as
bedrock mortars, pestles, and acorn macrofossils date from ~6500
to 4300 cal BC (Hilderbrant 2007). Evidence from paleoecology
shows frequent cultural burns also occurred across much of
California during the mid to late Holocene, which is supported
by the ethnographic and archaeological record (Keeley 2002,
Anderson 2005, Stephens et al. 2007, Lightfoot et al. 2013,
Christianson 2014, Lightfoot and Cuthrell 2015, Anderson and
Keeley 2018). Burning and similar cultural practices have
significant time depth and have been a component of the black
oaks’ environment for millennia.  

Burning practices ceased in Sonoma County within the last 200
years after the imposition of fire suppression policies (Barnhart
et al. 1996, Hastings et al. 1997, Minnich et al. 2000, Kimmerer
and Lake 2001). Density of oak stands has increased since the
time of Euro-American settlement (1850–1910), and the state’s
adoption of a fire suppression model has increased oak mortality
(Barnhart et al. 1996, Hunter and Barbour 2001, Schriver et al.
2018). Fire suppression has allowed for forest densification by
Douglas-fir (Pseudotsuga menziesii) and hardwood species, which
increases drought sensitivity in oaks (Barnhart et al. 1996, Hunter
and Barbour 2001, Cocking et al. 2012, Long et al. 2018, Gedalof
and Franks 2019). Competition by neighboring trees, including
hardwood species, results in loss of acorn production and higher
rates of mortality (Asbjørnsen et al. 2007, Marcos et al. 2007,
Oheimb et al. 2011, Long et al. 2018). In addition, forest
densification increases the chance of oak mortality due to shade
induced stress and an increase in ladder fuels (Barnhart et. al.
1996, Cocking et al. 2012). Increased ladder fuels enable fire to
climb into oak canopies thereby increasing the chance of top kill
and mortality (Horney et al. 2002). The absence of fire allows for
fuel load accumulation that can result in higher fire severity
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thereby increasing the chance of top kill in a fire event, and
unintended injury to mature oaks during prescribed fires (Long
et al. 2018, Nemens et al. 2019; Fig. 1).  

Black oaks rely on frequent, low intensity fires and this fire regime
supports the development and proliferation of old, large black
oaks with broad, low crowns (Skinner et al. 2006, Cocking et al.
2012, Long et al. 2016, Hammett et al. 2017). The Native Advisory
Council and other cultural practitioners within California have
expressed the cultural and ecological importance of these
specimen oaks and the ecocultural services they provide (Cocking
et al. 2012, Long et al. 2016, 2017, Crotteau et al. 2015). Fire
suppression and its effects, including forest densification, place
existing specimen oaks at risk and discourage the regeneration
and development of future generations of legacy trees (Cocking
et al. 2012, Long et al. 2016, 2017, Nemens et al. 2018).

Fig. 1. Black oak trees (Quercus kelloggii) at Pepperwood
Preserve after a wildfire. From left to right; on the edge of
grassland, with encroaching Douglas-firs (Pseudotsuga
menziesii), landscape view.

METHODS

Objectives of the Native Advisory Council and research design
The Native Advisory Council asked that Sonoma State
researchers identify specimen black oaks at Pepperwood Preserve
and record the ecological conditions of the trees. Based on the
concerns expressed by the Native Advisory Council, a research
design was created to examine the effects of forest densification
on specimen oak crown shape. The accumulation of fire fuels since
the Tubbs Fire in 2017 was also measured. Scorch height on the
specimen trees was measured after the Kincade Fire, which
occurred during the field research in 2019, to determine the impact
of our measured biotic factors on fire severity around these
specimen oaks.

Study site
Pepperwood Preserve consists of 1263 hectares (3120 acres)
located northeast of the city of Santa Rosa in the Southern
Mayacamas Mountains (Gillogly et al. 2017). Elevation on the
Preserve ranges from 56 to 475 meters (185–1560 feet). Though
situated 40 kilometers (25 miles) east of the Pacific Ocean,
maritime influences such as coastal fog impact the preserve
(Gillogly et al. 2017). In total, 543 native species have been
collected and documented on the Preserve, 18 of which are
endemic (DeNevers 2013, Halbur et al. 2013, Gillogly et al. 2017).
Oak woodland stretches across 394 hectares (974 acres) of the
Preserve making it the dominant vegetation type. The main
overstory oak species are live oak (Quercus agrifolia var. agrifolia),
blue oak (Quercus douglasii), black oak, Oregon white oak
(Quercus garryana), and valley oak (Quercus lobata; Gillogly et
al. 2017). Other associated overstory species include Douglas-fir,

tanoak (Notholithocarpus densiflorus), madrone (Arbutus
menziesii), and bay (Umbellularia californica).

Location and determination of specimen oaks
To determine the location of specimen oaks within the Preserve,
cruising surveys were performed by vehicle and foot along main
roads. LiDAR and hyperspectral derived vegetation maps were
also used to identify areas of high black oak abundance (Fig. 2).
Initially, the search covered a 100 meter swath on either side of
major roads and trails to ensure easy access by cultural
practitioners, but eventually extended to more remote locations
after mapping the specimen black oaks adjacent to roads and
trails. Once a potential specimen oak was found, its geospatial
location was recorded (Garmin GPS), the tree was photographed
and marked by placing a tagged rebar stake into the ground two
meters from the north side of the trunk.  

All 55 specimen oaks identified were within the Tubbs Fire
perimeter which burned roughly 95% of Pepperwood Preserve in
October 2017. The Tubbs Fire perimeter encompassed roughly
14,895 ha, and more than 25% burned in both medium and high
severity (Ackerly et al. 2019). After the initial data collection was
completed, roughly 60% of the Preserve burned in the Kincade
Fire in October 2019. Of the 55 specimen oaks, 37 were within
the Kincade Fire perimeter and two fell during the fire event. (Fig.
2)

Ecological field measurements
Tree height of each specimen oak was measured using an
inclinometer. Crown height was determined by measuring from
the base of leafy canopy to top of canopy. The two crown
dimension variables measured were crown area and live crown
ratio. To determine crown area, the major and minor axes of the
crown were measured with a meter tape on the ground underneath
the crown. These measurements were then used to solve for the
area of an ellipse. Live crown ratio was determined by dividing
the total tree height by the canopy base height.  

Diameter at breast height (DBH) was recorded for each tree. DBH
was measured 1.3 meters from the base of the tree on the uphill
side, perpendicular to the trunk axis and to the nearest tenth of
a centimeter. To determine fire risk to each specimen oak, surface
fuels and ladder fuels were measured around each tree. Three
randomly selected and equidistant Brown’s transects originating
from the base of the specimen oak were used to quantify surface
fuels. Ladder fuels were quantified by photographing a 4 m tall
banner located 15 meters from the base of the tree at the end of
each Brown’s transect and then quantifying the area covered by
both dead and live branches using the program ImageJ (Kramer
et al. 2016). Any branches belonging to the specimen oak were
not included in the analysis.  

To quantify forest densification, all existing and potential forest
canopy trees larger than two meters in height were surveyed in a
15 meter circular plot with the specimen oak at the origin. Species,
DBH, tree condition (live, dead, or top kill), and distance to
specimen oak were recorded. Canopy position was determined
for these trees (by the same individual observer throughout the
experiment). Canopy positions were categorized as understory
(UN) if  less than 1/3 of the crown height penetrates the bottom
of the specimen oak canopy, emergent (EM) if  2/3 of the crown
height is within the canopy of the oak, and oak overstory (O) if
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Fig. 2. Maps of the specimen oaks identified at Pepperwood Preserve with respect to (a) local species
alliances and (b) fire severity during the 2019 Kincade Fire. Sentinel-2 data was used to extract the
relativized burn ratio (RBR) from the Kincade fires to represent burn severity.

1/3 of the crown height is level with the top of the oak canopy
(Cocking et al. 2012). Within two weeks following the Kincade
fire, scorch height was measured on all specimen oaks using an
inclinometer or meter tape when possible.

Statistical analyses
A hierarchical set of models was fit to analyze the effect of forest
densification on crown area and live crown ratio. The initial model
used the following forest densification variables as factors: total
DBH of surrounding trees and the average distance of
surrounding trees to the specimen oak tree. Average distance to
the specimen oak was not found to be significant (p > 0.05) in any
of the models and, as such, was excluded from subsequent
analyses. When the total DBH of surrounding trees was
significant, a new model was used to disentangle the effects of its
two component parts: mean DBH of surrounding trees (e.g., area)
and number of surrounding trees (e.g., abundance). If  either mean
DBH of surrounding trees or number of surrounding trees was
significant, a final model was run where each variable was then
categorized by canopy positions (overstory, emerging, and
understory) to determine if  the canopy position of the
surrounding trees affected live crown ratio and crown area.  

Two separate generalized linear models (GLM) were used to
determine the effect of forest densification on surface fuels and
ladder fuels. One hour, 10 hour, and 100 hour surface fuels were
included in the analyses. Forest densification variables included

total DBH of surrounding trees, number of surrounding trees,
and average distance of surrounding trees to the specimen oak.  

To determine the effect of the Kincade Fire on each specimen oak
tree, scorch height was measured as the height from the base of
the specimen oak tree to the highest visible char mark. It was then
standardized by dividing scorch height by total tree height. The
effects of forest densification variables and fire fuels (tons per acre
of fine surface fuels and total amount of ladder fuels) on scorch
height were evaluated in separate models. All analyses were run
in JMP 14.

RESULTS

Plot composition and structure
In total, 428 canopy trees from 8 species were present in the 55
plots. Mean DBH of specimen oaks was 100.37 cm (range = 65.3
cm to 168.6 cm). The mean height of specimen oaks was 14.82 m
(range = 10.28 m to 23.33 m). Sixty-nine percent of all
surrounding tree species were oaks (Quercus spp.). Coast live oak
was the most abundant species (27% of surrounding trees; 116
trees; present in 65.45% of plots; mean DBH of 54.26 cm). The
other tree species (listed in order of abundance) were black oak
(23% of surrounding trees; 100 trees; present in 63.64% of plots;
mean DBH of 55.04 cm), madrone (15% of surrounding trees; 65
trees; present in 40% of plots; mean DBH of 12.96 cm), Oregon
white oak (11% of surrounding trees; 48 trees; present in 36.36%
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of plots; mean DBH of 43.17 cm), bay (8% of surrounding trees;
34 trees; present in 36.36% of plots; mean DBH of 18.45),
Douglas-fir (7% of surrounding trees; 30 trees; present in 32.73%
of plots; mean DBH of 22.22 cm), blue oak (6% of surrounding
trees; 25 trees; present in 16.36% of plots; mean DBH of 48.73),
and tanoak (0.23% of surrounding trees; 1 tree; present in 1.81%
of plots; DBH of 13 cm).  

All canopy trees were categorized by canopy position. There were
168 understory trees (mean DBH = 15.12 cm), 80 emerging trees
(mean DBH = 50.05 cm), and 178 overstory trees (mean DBH =
61.23 cm). The species accounting for the largest percentage of
each canopy position were understory (35.19% madrone),
emerging (36.71% coast live oak), and overstory (34.83% black
oak).

Surface, ladder fuels, and scorch height
Across all plots, mean surface fuels were 5.4 tonnes per hectare
(range = 2.7 to 8.5 tonnes per hectare). Ladder fuels (dead or live
vegetation from 0 to 4 m in height) ranged from 0% to 48% across
all plots. Mean scorch height was 4.5 m (range = 0.3 m to 15.8
m). Scorch height was made equivalent to total tree height for the
two specimen oaks that fell during the Kincade fire event. None
of the forest densification variables had a significant effect on the
amount of fine surface fuels per square hectare or the amount of
ladder fuels pre-Kincade Fire (p > 0.05). The forest densification
variables, fine surface fuels, and ladder fuels did not have a
significant effect on scorch height post-Kincade Fire (p > 0.05).

Forest densification on crown area
Our initial model showed a strong negative effect of total DBH
of surrounding trees on specimen oak crown area (F1, 50 = 9.98,
p = 0.0027; Fig. 3). In the subsequent model, both mean DBH of
surrounding trees (F1, 51 = 7.33, p = 0.0092), the number of
surrounding trees (F1, 51 = 7.58, p = 0.0082), and their interaction
(F1, 51 = 6.27, p = 0.016) had a negative effect on specimen oak
crown area (Fig. 3). The final model found that the number of
emerging trees had a marginally significant negative effect on
crown area (F1, 20 = 4.17, p = 0.055). Although we detected a
marginally significant negative effect of the number of emerging
trees, we note that for 37 of the specimen trees there were no
surrounding emerging trees.

Forest densification on live crown ratio
The initial model showed that total DBH of surrounding trees
negatively affected specimen oak live crown ratio (F 1, 50 = 4.55, p
= 0.0378). The subsequent model showed a marginally significant
negative effect of number of surrounding trees on specimen oak
live crown ratio (F1, 51  = 3.73, p = 0.0591). The final model,
including canopy positions, indicated that the number of
overstory trees had the greatest negative effect on specimen oak
live crown ratio (F1, 20  = 8.37, p = 0.009).

DISCUSSION

Overall goal of tending trees and incorporating TEK specifically
at Pepperwood
In this collaborative project, we sought to find and map specimen
black oaks for the reimplementation of TEK within Pepperwood
Preserve. Based on expressed concerns of the Native Advisory
Council regarding the regeneration and crown shape of legacy
trees, we measured ecological variables to identify abiotic and

biotic factors influencing specimen oak growth and habitat post-
wildfire. Protecting existing legacy trees and restoring black oak
ecosystems at Pepperwood Preserve presents the opportunity to
partner with local Tribal peoples and increase their access to land
while promoting ecosystem restoration (Long et al. 2017, 2020).

Fig. 3. (A) The effect of mean diameter at breast height (DBH)
of surrounding trees on specimen oak crown area (F1, 51 = 7.33,
p = 0.009); (B) The effect of the number of surrounding trees
on specimen oak crown area (F1, 51 = 7.58, p = 0.008); and (C)
The effect of the interaction between mean DBH of
surrounding trees and the number of surrounding trees on
specimen oak crown area (F1, 51 = 6.27, p = 0.016).
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Understanding the effects of wildfire on tree structure
Our study site experienced two sequential wildfires (Tubbs and
Kincade) over a short temporal scale. Both fires involved wind
speeds of over 95 kilometers per hour. Such fires spread quickly
and are unpredictable because of erratic movements (Werth et al.
2011). This “extreme fire behavior” is affected by numerous
unseen factors such as wind shear and atmospheric stability
(Werth et al. 2011). The lack of a significant effect of the forest
densification variables on scorch height suggests that fire severity
may be operating on a larger spatial scale than the individual
surrounding tree variables and that there is more complexity to
fire severity aside from the immediate environment of the tree.
Larger spatial scale analysis may provide insights to fire
movements and risk assessment in such extreme conditions as
well as the ways that larger landscape level ecological variables
such as tree density affect fire severity and tree mortality (Eugenio
et al. 2016). In less extreme conditions, the immediate
environment around a focal tree would have been more significant.
Fuel loading was low and relatively homogeneous throughout the
55 plots, which we attributed to the first wildfire in 2017 (Tubbs
Fire). Fire fuel treatments have been shown to reduce the severity
of other fire events and reduce the chance of canopy fire (Stephens
et al. 2009). We note that many of the specimen oaks were in
relatively good condition prior to the fires and that the
surrounding environments were not overly impacted by
densification. This may have affected the lack of significant
relationship between densification and scorch height. The study
was limited to black oaks within the Tubbs Fire perimeter,
therefore the analysis describes the effects of a reburn rather than
a general wildfire. These constraints on the analysis may
understate the importance of pre-wildfire treatments on desired
outcomes.  

This short fire return interval coupled with the small spatial scale
of our study presents a challenge when looking at fuel load
accumulation over time and fire movement, but also a unique
opportunity to study the effect of repeated wildfires on black oak
regeneration and species composition at the preserve.  

High severity fire favors black oak over fire sensitive conifers and
leads to increased black oak composition in the overstory, but
can result in top kill of specimen oaks and the loss of the cultural
and ecological services they provide (Cocking et al. 2014,
Hammett et al. 2017, Nemens et al. 2018). A separate study at
Pepperwood Preserve found that black oaks that burned during
the Tubbs Fire experienced high levels of mortality relative to
other hardwood species, and that basal resprouting was common
(Ackerly et al. 2019). The high severity Tubbs and Kincade fires
can be viewed as a “reset” and present an opportunity to follow
up with increased stewardship (Long et al. 2016). Frequent fire
combined with grazing may reduce or eliminate the shrub layer
resulting in an oak savanna (George and Alonso 2008).

Understanding the effects of forest densification on tree and
stand structure at Pepperwood
Surrounding overstory trees accounted for the greatest negative
effect on live crown ratio of specimen oaks and larger tree size
magnified the negative effect on black oak crown diameter. Other
studies have also found that competition for light, space, and water
represses crown growth (Harrington and Devine 2006).
Encroachment by conifers and other hardwood species greatly

impacts tree growth and vitality, especially in shade intolerant
species such as black oak (McDonald 1969, McDonald et al. 1990,
Cocking et al. 2012, Schriver et al. 2018). Acorn yield increases
with crown diameter in California black oak (McDonald et al.
1990) and other oak species (Rose et al. 2012) and therefore
repressed crown growth can equate to a reduction in acorn
production, thereby negatively affecting the trees and the
ecological and cultural services they provide.  

Vegetation dynamics of black oak woodlands at Pepperwood and
the surrounding area are less studied than those in the northern
part of the state and southern Oregon, where conifers are
generally dominant in the overstory (George and Alonso 2008,
Cocking et al. 2012, 2015). In both locations, oaks serve as nurse
trees and increased canopy density of oak woodlands assists in
recruitment of Douglas-firs and other later successional canopy
trees (McDonald 1969, McDonald et al. 1990, Barnhart et al.
1996, Spector and Putz 2006). Encroachment, especially the
piercing of oak crowns by Douglas-firs, results in loss of tree
vigor, decreased resilience in fire events, crown dieback, and
potentially senescence of the focal oak (Barnhart et al. 1996,
Spector and Putz 2006, Devine et al. 2007).  

A closed oak canopy supports an increasingly mesic understory,
which facilitates the replacement of black oak by species such as
Douglas-fir and bay, thereby creating a mixed evergreen forest
(Wainwright and Barbour 1984, Barnhart et al. 1987, Hastings
et al. 1997). A study conducted in Santa Rosa observed black oak
woodland in what may represent several successional phases
ranging from open oak woodland, an increase of bay and
Douglas-fir in the understory, and finally bay and Douglas-fir
dominated canopy (Wainwright and Barbour 1984). Rapid
Douglas-fir expansion and increased canopy density has occurred
in Sonoma County in the past 100 years because of fire
suppression and grazing cessation (Barnhart et al. 1996, Hastings
et al. 1997). Madrone, juvenile Douglas-firs, and bays accounted
for the majority of understory trees in our plots. Shared
mycorrhizal associates between madrone and Douglas-fir may
contribute to recruitment of the conifer where madrone is present,
while increased bay facilitates the spread of the Sudden Oak
Death pathogen (Phytophthora ramorum); both of these dynamics
will place additional stress on the specimen black oaks (Hunter
and Barbour 2001, Meentemeyer et al. 2004). Though grazing
and mechanical Douglas-fir removal treatments occur on the
preserve, increased canopy density and grassland reduction has
been observed over the past 70 years (A. Dawson 2008,
unpublished report). This combined with an increase of madrone,
bay, and Douglas-fir in the understory suggest gradual
composition shifts from fire-tolerant and shade intolerant species,
such as black oak and other hardwoods, to less fire-tolerant more
shade tolerant hardwoods, and the nursing of young Douglas-fir
trees. Many fire dependent plant communities across North
America have undergone a similar process, referred to as
mesophication. Mesophication can result in fire regime change
and alter fire behavior and effects by creating damper, more
shaded understory conditions with less flammable fuelbeds
(Nowacki and Abrams 2008, Engber and Varner 2012). Of all the
California oaks, black oak leaf litter is among the most flammable
and generates the deepest fuelbeds (Engber and Varner 2012).
Burning of black oak litter was found to result in heavy fuel
consumption, brief  flaming and smoldering, and low intensity
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fire (Engber and Varner 2012). The majority of encroaching
overstory and emerging trees were live oaks, which were found to
repress fire (Engber and Varner 2012). It is possible that this
current trajectory will continue without the implementation of
additional stewardship practices.

Recommendations for stewardship in light of TEK
The Pepperwood Native Advisory Council advocates for
increased prescribed burning and thinning as a means to prepare
the land for cultural burning. An important difference between
prescribed and cultural fire is that prescribed burns primarily
focus on creating fire breaks and reducing fuels, whereas a cultural
burn takes an ecosystem level approach to promote the health of
the natural environment as a whole, including plant, animal, and
human life. A unique aspect about the ongoing project at
Pepperwood Preserve is that the Native Advisory Council and
Pepperwood staff  collaborate on the entire restoration process.
(Clint McKay, personal communication).  

This twofold approach to restoring the land and protecting
specimen oaks begins with fuel reduction in the form of
mechanical removal, pile burning, and prescribed fire, followed
by the continued use of fire to stave off  further degradation and
support ecosystem resilience. In addition to preparing the land
for cultural burns, our results suggest that mechanical removal of
overstory and emerging trees encroaching on specimen oaks may
be the best first step to encourage increased crown area and live
crown ratio, both of which are desired by today’s traditional
gatherers including those represented on the Pepperwood Native
Advisory Council (Cocking et al. 2012, Crotteau et al. 2015, Long
et al. 2016, 2017; Clint McKay, personal communication).
Thinning in oak woodlands has been shown to reduce water stress
(Moreno and Cubera 2008) and release from encroaching trees
increases epicormic branching in oaks and overall growth, thereby
increasing crown dimensions (McDonald 1969, Harrington and
Devine 2006, McDonald and Vaughn 2007) and mast products
in black oak and other oak species (Healy 1997, Healy et al. 1999).
Mechanical removal followed by controlled or pile burning is an
effective fuel reduction treatment (Hastings et al. 1997, Stephens
et al. 2009). Because the majority of observed Douglas-firs were
seedlings and juveniles (mean DBH 20 cm), controlled burns
would be an effective tool in mitigating conifer encroachment
(Hunter and Barbour 2001, Cocking et al. 2012), as well as
continuing the efforts of mechanical removal.  

Following mechanical removal of fuels and encroaching trees,
and then prescribed fire, cultural burns similar to the frequent,
low severity fire regimes seen in the ethnographic and
archeological record (Hastings et al. 1997, Keeley 2002, Anderson
2005, Christianson 2014, Lightfoot and Cuthrell 2015) would
protect specimen black oaks and facilitate the development of
mature black oak stands in part by discouraging conifer
recruitment and hardwood densification after severe fire events
(Cocking et al. 2012, Crotteau et al. 2013, Long et al. 2016, 2017,
Hammett et al. 2017, Nemens et al. 2018). In the context of TEK,
cultural burning fits in a larger system of ecological management
and Tribal stewardship strategies. For example, the use of fire
during certain times of the year may also promote native,
culturally significant understory plants and help control pests and
pathogens while simultaneously restoring Indigenous land
relationships (Kimmerer and Lake 2001, Huffman 2013, Long et

al. 2016, Lake et al. 2017, Anderson and Keeley 2018). In the fall
of 2020, the Native Advisory Council and the Pepperwood
management team began mechanical removal followed by pile
burning on the preserve, with the intention of reimplementing
cultural fire when the land is ready.  

Many researchers encourage us to view TEK not as a static system
locked in the past but as a dynamic system rooted in adaptation
(Pearce et al. 2015). Pearce and colleagues’ work (2015) views
TEK as an element of adaptive capacity or resilience and shows
how a peoples’ ability to adapt may depend on their ability to
continue to develop TEK in the context of a changing
environment. It is essential to remember that major biotic and
abiotic changes have occurred since precontact times, including
the introduction of invasive plants, increased fuel accumulation,
and stand density, and a warming climate. Western science and
TEK can work cooperatively to assess California ecosystems in
their current state and create unique stewardship plans for the
particular needs of a given site that account for ongoing climatic
and ecological change.

A way forward
To foster resilient ecosystems that support Tribal values a
multifaceted and diverse approach that incorporates Tribal
communities, land management agencies and organizations,
government, and the public is needed to create unique plans for
different social and ecological conditions throughout the state
(Lake et al. 2017, Long et al. 2017, Long and Lake 2018).
Government action and policy, at the federal, state, and local
levels, impact Tribal engagement with and access to the land. For
example, the Northwest Forest Plan (NWFP) helped to facilitate
increased collaboration with Tribal communities whose lands are
within the designated boundary (Long and Lake 2018). Though
the plan did not adequately include Tribal stewardship of
ecocultural resources, subsequent land management planning
rules prioritize the protection and management of sites and
resources of cultural importance (Long and Lake 2018).
Obstacles to Tribal stewardship on the land take many forms and
range from the federal level down to local restrictions on burning
such as air-quality regulations (Quinn-Davidson and Varner
2012, Long et al. 2017, Long and Lake 2018). Despite this, other
successful partnerships focused on TEK and black oak
restoration have formed throughout the state including work by
the Honorable Ron Goode and the North Fork Mono Tribe with
the Sierra National Forest and Greenville Rancheria in
collaboration with Plumas National Forest (Long et al. 2017).
These partnerships and others exemplify the dynamic and
inclusive active stewardship strategies needed to cultivate social
and ecological resilience and simultaneously promote ecocultural
resources.  

It is essential that the agencies, organizations, and other entities
with power and funding reach out in a culturally competent and
sensitive manner to include Tribal communities in decision
making and fund local Tribal action on the land. Understanding
the importance of place and cultural competency around
Indigenous worldview will aid in collaborations with Tribal
peoples, and incorporating local Tribal peoples into leadership
roles will aid in the decolonization of land stewardship (Muller
2003, Dockry et al. 2018). Collaboration between Tribal
communities and land stewardship organizations is mutually
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beneficial. Acknowledging Tribal authority and legitimizing TEK
has political benefits for Tribal groups, and Tribal involvement
will benefit ecosystems and society by incorporating the wealth
of knowledge embedded within TEK into land stewardship
programs. Successful partnerships have formed between land
management agencies and indigenous peoples in Australia,
Canada, and California, many of which involve TEK of fire
(Muller 2003, Shebitz et al. 2009, Christianson 2014, Robinson
et al. 2016, Lake et al. 2017).  

In conclusion, collaborating with and providing the opportunity
for Tribal communities to practice TEK will increase access to
land and biodiversity, keep California’s diverse vegetation types
from undergoing successional change, and promote the growth
and resilience of culturally significant plants (Anderson 2005,
Burr 2013, Fenelon and Trafzer 2014, Norgaard 2014, Armstrong
and Veteto 2015, Livingston et al. 2016). This has far reaching
implications on Tribal peoples’ well-being, their ability to engage
in cultural practices, and ecosystem health, because many cultural
practices are inextricably linked to California’s biodiversity and
aid in its preservation. Active stewardship of California
ecosystems and incorporating Tribal communities in land
stewardship action and decision making can benefit the health
and well-being of local tribes, the larger surrounding
communities, and ecosystems alike.  

Clint McKay shared his reflections on the importance of this
work:  

Native people talk about seven generations. We live our
life today based on the effects our actions will have seven
generations down the line. After the Tubbs and Kincade
fire I got to thinking about the stewardship of this land.
I started counting back from my grandchildren, and if
you go back seven generations that was the last time my
people were able to steward this land according to our
cultural values and traditions. To us these big wildfires
are like a reawakening of our culture and traditions and
it’s given this western world an opportunity to push the
reset button and start over. For seven generations my
people have been denied the opportunity to steward this
land according to our culture and traditions.
Unfortunately, it took these devastating wildfires but now
our scientific methods are starting to be heeded. People
are starting to ask for it and respect it. It is an opportunity
for learning, sharing, and bringing us back to a place of
center not for pointing fingers. We get another
opportunity; what are we going to do with it now?

Responses to this article can be read online at: 
https://www.ecologyandsociety.org/issues/responses.
php/13187
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