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Appendix 1. Methodological Details and Rationales. 

This appendix is dedicated to expand on the details, rationales and performance 
evaluation of the methodology followed through this study. The sections are organized 
following the methodological steps listed in Fig. A1.1, however the actual work implied 
numerous feedback loops and reiterations of previous steps which are omitted for 
simplicity. 

 

Figure A1.1. Diagram of the methodological steps followed by this study. (1) Variables: 
analyze and systematize the conceptual SELS descriptions in Table 1 of Boillat et al. (2017) 
defining a list of variables to use as inputs for the clustering. (2) Datasets: search and retrieve 
the spatial data to best represent the selected variables. (3) Clustering analysis: generate 
automated classifications through hierarchical cluster analysis. (4) Clustering results: analyze 
the clustering outputs and agree on the SELS representation according to the specialists group’s 
territorial knowledge. (5) SELS descriptions: arrange in subgroups of regional specialists to 
discuss and describe each particular SELS. Arrows pointing backwards in relation to the 
numerical steps represent the feedback loops and local iterations of our process. 
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1. Variables  

We used as a reference the biome-level SELS typologies described in Table 1 of Boillat 
et al. (2017; hereafter conceptual SELS) to guide the variable selection process. Such 
descriptions were in a narrative form with no shared standard structure. We first 
exhaustively analyzed the conceptual SELS descriptions and listed all attributes 
mentioned for each of them. We then synthesized the list of attributes into general 
variables that represented the data we needed to acquire in order to capture those 
properties. The product of this process was our ideal input data list including 25 general 
variables (Table A1.1), from which we discarded and added variables through a heavily 
iterative process connected with step (2) Datasets.  

On one hand we had to discard all general variables lacking a dataset that was adequate 
(representative proxy) and spatially continuous (covering the whole continental extent) 
with a coherent methodology. On the other hand, we discarded all variables that referred 
to trends, since combining measures of state and trajectories raised concerns among the 
authors about methodological philosophical inconsistencies. 

Finally, to visualize whether our data was balanced across different aspects of the 
social-ecological systems we arranged the general variables within broader dimensions 
following the framework of Winkler et al. (2018). Compared to other popular 
frameworks, such as Ostrom’s framework for analyzing sustainability of social-
ecological systems (Ostrom 2009) ideal for addressing specific issues, the Winkler’s 
framework has a more general scope, which fits better the continental-scale broad 
multifaceted typologies of our study. We considered all Level III Winkler categories 
except Health, due lack of data. We recognized underrepresented dimensions in our 
original list of 25 general variables (Table A1.1), such as the Physical dimension, 
mentioned in the conceptual SELS names yet not in their descriptions; the Political 
dimension, which was indirectly suggested but not explicitly addressed; or 
infrastructural aspects of the Economic dimension. To complement and balance the 
representation of all different dimensions we incorporated the following variables: Flat 
relief, Temperature, Precipitation, Irrigation, Cities traveltime, Ports traveltime, and 
Governance indicators. 
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Table A1.1. Systematization process of the conceptual SELS’s descriptions: synthesis of all mentioned attributes into general variables. 

General Variable Description in Boillat et al., 2017 Included in this study 

Natural land cover SAL: forested areas; DML: semi-arid shrublands Yes 

Rate of land use change SAL: relatively rapid rate of land use change; high rate of deforestation No (trends) 

Change in cropland cover SAL: expansion of agricultural frontiers; STFD: decreasing agriculture No (trends) 

Change in livestock  SAL: expansion of cattle ranching; STFD: decreasing livestock; 
DML:extensive livestock grazing 

No (trends) 

Main livestock Species DML: particularly goats No (concerns on representation of 
informal livestock on datasets) 

Crop exports SAL: commodity markets driving LUC; CAL: some areas have shifted to 
export-oriented agriculture 

No (national level statistics) 

Ecosystem Degradation SAL: forest degradation due logging; DML: extensive degradation due 
capital-intensive land use and extensive cattle ranching; CAL: highly 
degraded and threatened natural ecosystems ('lomas costeras', dry tropical 
forests, wetlands) and Important biomes such as Brazil's Atlantic forest 
have become highly fragmented 

No (unclear definition/lack of data) 

Biodiversity loss SAL: biodiversity loss No (IUCN data not spatial) 

Carbon emissions SAL: high carbon emissions No (unclear impact) 

Protected areas SAL: expansion of protected areas; STFD: extensive formal conservation Yes  
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Cultural diversity SAL: expansion of indigenous areas; SAHA: high cultural diversity Yes  

Endemisms SAHA: high endemisms; DEM: high species endemisms No (lack of spatial data) 

Size of production units SAL: shifting to larger management/production units in some areas; 
SAPL: expansion of sizes of agricultural and livestock farms, large scale 
land acquisitions in recent years; SAHA: small subsistence-oriented 
management units; CAL: large scale land acquisitions for tourism and 
other developments 

No (lack of data covering the full 
continent) 

Land use diversity SAL: other areas with diversity of land systems; SAHA: high diversity of 
landscapes, limited mechanized agriculture and relatively high levels of 
biodiversity within anthropogenic landscapes; CAL: with mixed land and 
forest usages; SAPL: agribusiness surrounding indigenous and 
conservation areas in the Cerrado; DML: dominated by irrigated 
agriculture within matrix of semi-arid shrublands 

Yes  

Crop diversity SAHA: livelihood diversification; high agro-ecological diverstity Yes  

Environmetal conflicts SAL: new land uses in conflict with local and indigenous communities No (lack of data) 

Type of urbanization SAL: chaotic urbanization and peri urban expansion; DML: various 
degrees of urbanization; CAL: home to high population densities 

Yes  

Historical land use SAPL: long history of cropland and ranching settlements; SAHA: most 
landscapes with long history of human settlement; CAL: long history of 
human occupation 

Yes  

Migration rates SAHA: eleveated rates of rural out-migration No (lack of spatial data) 
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Political/economical 
relevance 

SAL: enhanced contributions to national economic growth and food 
security; SAHA: may become peripheral as political power and people 
move to the lowlands; CAL: concentration of political and economic 
power 

Yes  

Change in agriculture yields SAL: dramatic increases in ag productivity No (trends) 

Main crop types SAPL: high tech agribusiness (soybeans, maize and other grains and 
fiber); DML: high capital crops (vineyards, olives, fruit orchards); CAL: 
traditional tropical crops (sugar cane and coffee) & expanding crops (oil 
palm and eucalyptus) 

No (difficulties in creating the metric) 

Plantations STFD: growing forestry plantations (exotic conifers), low agriculture 
value; DML: high capital crops (vineyards, olives, fruit orchards); CAL: 
traditional tropical crops (sugar cane and coffee) & expanding crops (oil 
palm and eucalyptus); 

Yes  

Mining SAHA: opened up to new wave of mining Yes  

Tourism STFD: growing tourism; SAHA: opened up to new wave of tourism 
activities 

No (lack of data) 

The first column indicates the general variable we associated with the descriptions of column 2. The second column contains direct 
transcripts of all the descriptions on Table 1 of Boillat et al. (2017) sorted by the general variable we associated it with. The third 
column indicates whether the general variable was included in this study and the reason in case of not. Acronyms refer to the SELS 
typologies by Boillat et al. (2017): SAHA - South American Highlands and Altiplano; CAL - Coastal Agricultural Lands with long 
colonization history; DML - Dry and Mediterranean Lands; SAL - South American Lowlands: new agropastoral areas; SAPL - South 
American Plateau Lowlands: agropastoral historical areas; STFD - Southern Temperate Forests and Drylands. 
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2. Datasets  

To be used in this study, all spatial datasets were required to cover the full extent of the 
South American continent (dismissing islands) with a consistent methodology, in 
addition we preferred those closer to the year 2010 and a spatial resolution not greater 
than our grid size (exceptions are the governance indicators which are at the national 
scale, and plant diversity at 110km pixels). Country level data, as well as biomes and 
ecoregions, were allegedly discarded since they imply an artificial homogenization of 
the territory within arbitrary boundaries which may impact on the spatial representation 
of the SELS by misleading them to resemble those boundaries. It was a decision taken 
by the group of authors to avoid using country resolution data for all our variables 
except those representing political aspects. 

We tested for correlations, considering correlation coefficient of |0.75| (absolute value) 
as the maximum accepted correlation for two variables in the model (Fig. A1.2). We 
selected Spearman’s rank correlation coefficient due it is non-parametric, assesses 
monotonic relationships, and poses less strict data requirements than Pearson’s method 
(e.g. normal distribution or linear relationships).  

The final list of input variables for our analyses consisted in 3 physical, 2 biological, 6 
landscape, 7 economic (includes infrastructure), 2 demographic, 4 political, and 2 
cultural variables; 11 of which corresponds to the biophysical domain and 15 to the 
socio-economic domain (Table 1). Most of the variables are non-normally distributed 
(Fig A1.3), the implications of this on the results are addressed in the next section. 
Below we expand on the details of calculation of hexagon values for all input variables.  

Flat relief: Proportion of the hexagon covered by non-mountain classes in Karagulle et al. 
(2017) landforms classification. In this classification the mountain classes are four: high 
mountains, scattered high mountains, low mountains, and scattered low mountains. We 
chose this variable due it performs better than others in recognizing mountainous 
terrains embedded in other terrain types (Sayre et al. 2018). 

Temperature: Hexagon median of mean annual temperature based on the climate maps 
generated by ClimateSA. ClimateSA data averages the climatic conditions between 
1981 and 2010. 

Precipitation: Hexagon median of mean annual rainfall based on the climate maps 
generated by ClimateSA. ClimateSA data averages the climatic conditions between 
1981 and 2010. 

Plant diversity: Vascular plant species richness based on the Kreft and Jetz (2007) global 
patterns of vascular plant species richness calculated with the ordinary co-kriging 
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method. We consider Plant biodiversity as a proxy of overall biodiversity since diversity 
of different taxa such as mammals, birds, plants, reptiles and amphibia were found to be 
correlated regardless of environmental conditions (Qian and Ricklefs 2008) and 
vegetation heterogeneity has shown to be a strong predictor of species richness (Qian 
and Ricklefs 2008, Stein et al. 2014). 

Protected areas: Percent of the hexagon covered by protected areas, considering all 
categories of protection in the World Database on Protected Areas by UNEP-WCMC 
and IUCN. The data was downloaded in May 2019 and there is no information to sort 
protected areas created after our year of reference 2010. Although not the ideal 
situation, we consider the potential error is acceptable for the purpose of this study. 

Land cover: Percent of the hexagon covered by each of the considered classes (i.e. forest, 
shrublands, grasslands, crops and plantations) based on Graesser et al. (2015) annual 
land cover classification for South America. To represent our reference year we used the 
average land cover between 2009 and 2011. 

Cover diversity: The land cover diversity of each hexagon was calculated as the shannon 
diversity index of the area covered by each of the nine land cover classes included in 
Graesser et al. (2015). To represent our reference year we used the average land cover 
between 2009 and 2011. 

Centrality: This variable is a proxy of the hexagon share of the country’s economy, 
indicating the economic relevance of a particular region to the country. It was calculated 
by distributing the national gross domestic product (GDP) over the country’s territory 
following the relative distribution of nighttime lights (NTL). The value for each 
hexagon was calculated as the national GDP * hexagon sum NTL/national sum NTL. 
For hexagons that overlays with more than one country we consider it part of the one 
with major area. National 2012 GDP data was obtained from the World Bank database, 
and 2012 nighttime lights map from the NASA Earth Observatory. 

Cattle density: Total cattle production by hexagon according to the gridded Livestock of 
the World 2.0 by Livestock Geowiki (Robinson et al. 2014) available to download from 
https://livestock.geo-wiki.org/home-2/. 

Mine sites density: Number of mine sites by hexagon considering all categories of mines in 
the Mineral Resources Data System (MRDS) for the year 2011 available to download 
from https://mrdata.usgs.gov/mrds/. 

Crop diversity: Shannon diversity of the area covered by all different crops in the hexagon 
based on the 175 crop types by Monfreda et al. 2008. 
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Irrigation: Percent of the hexagon equipped for irrigation based on the layer 
“gmia_v5_aei_pct_cellarea” of the Global Map of Irrigation Areas (GMIA) by FAO 
AQUASTAT (Siebert et al. 2005). 

Cities travel time: Mean of travel time in hours to the nearest city of 50,000 or more people 
(Nelson et al. 2008). 

Ports travel time: Mean of travel time in hours to the nearest port. The map was produced 
for this study following the methodology of Weiss et al. (2018). The road network data 
was downloaded from the Global Accessibility Map project repository 
(https://forobs.jrc.ec.europa.eu/products/gam/). We considered all sea ports and inland 
ports on rivers included in the Río de la plata and Amazonas basins. Ports locations 
were obtained from Natural Earth (https://www.naturalearthdata.com/) and Ports.com 
accessed in February of 2018. The distance to ports map together with a detailed 
explanation of its development (including input data and the reproducible script), are 
available to download through this link. https://github.com/luciazarba/SELS-SA. 

Population density: Mean environmental population by hexagon, based on the Landscan 
environmental population for the year 2012 (Bright et al. 2012). 

Urbanization type: Category of biggest city in a 100 km buffer zone. Cities categories 
were: rural (no cities within the buffer zone), small city (less than 100,000 inhabitants), 
medium city (less than 1,000,000 inhabitants), big city (less than 10,000,000 
inhabitants), and metropolis (more than 1x107 inhabitants). Cities’ data was downloaded 
from the Global Accessibility Map project repository 
(https://forobs.jrc.ec.europa.eu/products/gam/). 

WBI governance indicators: Country values of the Worldwide Governance Indicators by 
the World Bank: Voice and Accountability, Political Stability and Absence of Violence, 
Government Effectiveness, Regulatory Quality, Rule of Law, Control of Corruption. 
Data was downloaded for the year 2010 from the World Bank website 
(https://databank.worldbank.org/source/worldwide-governance-indicators). Political 
Stability and Absence of Violence and Control of Corruption were eventually discarded 
due high correlation with other variables. In the model, the four political variables 
included as inputs were weighted down to 0.25 to minimize enforcing national 
boundaries. In this way the four political variables all together weigh as much as one of 
the variables in the other domains.  

Languages density: Number of different languages spoken within a 100 km buffer zone 
around each hexagon. The map of language distributions for South America was kindly 
provided by Mutur Zikin (Zikin 2007), and it was georeferenced and vectorized by the 
authors of this publication. 
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Anthropization century: The earliest century in which a 30% of the hexagon was covered 
by anthropic land cover classes based on Ellis et al. (2010) classification. It consists of 
anthrome classification maps for each century from 1700 to 2000. We considered as 
anthropic all classes except for water, remote croplands, remote rangelands, remote 
woodlands, wild woodlands, and wild treeless and barren lands. 

 
Figure A1.2. Variables correlation matrix. Spearman correlation between all 24 
numeric variables considered for the analysis. Positive correlations are in blue, negative 
correlations are in red, and the strength of the color reflects the strength of the 
correlation (white color corresponds to correlation coefficients close to zero, therefore 
not relevant for this purpose). 
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Figure A1.3. Variables Quantile-Quantile plots. These plots allow us to visualize the 
deviation of each continuous variable from a theoretical normal distribution. If the 
values (thick dots) lie along the thinner line the distribution has the same shape as the 
theoretical normal distribution. 
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3. Clustering analysis.  

We analyzed 26 variables across a grid of 13287 hexagonal cells (40 km side to side, 
area ~1,400 km2) covering the entire continent of South America in order to identify 
general typologies of social-ecological land systems (SELS). The process required to 
calculate the statistical distances between all pairs of hexagons along the 
multidimensional space and arrange them into groups based on such distances. All 
calculations were performed in R statistical software (R Core Team 2019) and the 
scripts are available through this link. https://github.com/luciazarba/SELS-SA. 

 

Statistical distance 

Two of our input variables were ordinal: urbanization type and anthropization century, 
which represented a major constraint due most distance calculation algorithms only 
accept continuous data. We followed the Gower distance method (Gower 1971) since it 
is the recommended algorithm for mixed data (Kassambara 2017, Boehmke and 
Greenwell 2019). As calculated in R with the daisy function (cluster package, 
Maecheler et al. 2019) the dissimilarity between two rows is computed as the weighted 
mean of the contributions of each variable. Contributions for numeric variables are 
defined as the absolute difference of both values, divided by the total range of that 
variable. For ordinal variables’ the contribution calculation function applies “standard 
scoring” (replacement of the variable’s levels by their integer codes); similar to using 
their ranks but avoiding ties.  

Several of our input variables did not follow a normal distribution (Fig. A1.3). Despite 
many data analysis algorithms require specific data distributions, the reference literature 
for gower (Gower 1971) and DIANA (Kaufman and Rousseeuw 1990) algorithms do 
not mention particular requirements or considerations regarding data distributions. We 
found in more recent literature that the Gower distance algorithm is the appropriate 
metric when clustering non-normally distributed data (Kassambara 2017, Boehmke and 
Greenwell 2019) since it is less sensitive to outliers and non-normal distributions than 
other popular methods like Euclidean distances (Boehmke and Greenwell 2019). 
Furthermore, searching through the gray literature we found a very interesting statement 
in a scholarly blog discussing the applicability of normality tests for machine learning 
techniques. One user pointed out that he/she was not aware of any clustering method 
that assumes normality, and that the cluster-structured data implies a multimodal (and 
thus non-normal) distribution (Cross Validated blog entry “How to Cluster with Non-
normal data” https://stats.stackexchange.com/questions/373404/how-to-cluster-with-non-
normal-data). 

https://stats.stackexchange.com/questions/373404/how-to-cluster-with-non-normal-data
https://stats.stackexchange.com/questions/373404/how-to-cluster-with-non-normal-data
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To account for potential issues with non-normally distributed data we deliberately used 
the Gower distance metric. Nevertheless, to mitigate the effect of data artifacts on the 
distance calculations we applied logarithmic transformation to those variables that 
presented highly exponential distributions (Table 1), and min-max standardization to all 
variables (forcing them to range between 0 and 1) to avoid unequal impact of variables 
on the distance measures due their different scales of values.  

 

Clustering Method  

We decided a priori, based on conceptual adequation, that the most appropriate 
clustering algorithm for the purpose of this study was Divisive Hierarchical Clustering 
(DIANA).  

As defined in the software vignette (sensu stricto Maechler et al. 2019 page 33): “The 
DIANA algorithm constructs a hierarchy of clusterings, starting with one large cluster 
containing all n observations. Clusters are divided until each cluster contains only a 
single observation. At each stage, the cluster with the largest diameter is selected. The 
diameter of a cluster is the largest dissimilarity between any two of its observations. To 
divide the selected cluster, the algorithm first looks for its most disparate observation 
(i.e., which has the largest average dissimilarity to the other observations within the 
same cluster). This observation initiates the "splinter group". In subsequent steps, the 
algorithm reassigns observations that are closer to the "splinter group" than to the "old 
party". The result is a division of the selected cluster into two new clusters.” 

Most methods build their clusters starting from their terminal nodes (leaves), 
considering local patterns or proximate neighbors to make decisions. Instead, DIANA 
starts from the root of the tree, taking into consideration the overall distribution of the 
data points for the initial splits, gaining in accuracy and favoring larger groups 
coherence rather than smaller groups purity (Kassambara 2017, Dey 2019, Boehmke 
and Greenwell 2020). The first step of the algorithm involved consideration of all 
possible divisions of the data into two subsets (and so forth in every iteration), which is 
computationally demanding for large datasets, but allows to capture the main structure 
of the data (Kaufman and Rousseeuw 1990). 

Since this study is not about sorting elements into distinct natural units that exist in the 
field but classifying the landscape into general typologies of similarity along a 
multidimensional continuum, we consider DIANA to be the most appropriate approach. 
Anyways, for the sake of exploration and following the recommendations of an 
anonymous reviewer, we tested alternative clustering methodologies (Table A1.2) and 
compared them through a series of clustering stability and internal validation metrics 
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(Table A1. 3). The endeavor was not straightforward since many clustering algorithms 
were not compatible with mixed data nor gower distances, therefore we had to make 
adaptations: the two ordinal variables in our data set were converted to numeric 
(equidistant fractions of 1) and similarities were calculated with the Manhattan method, 
one of the most popular methods that is capable of dealing with outliers and no-normal 
distributions (similar to Gower). The results do not show any of the methods to be 
definitely better than the others (Fig. A1.4), therefore we found no reason not to use 
DIANA. Disclaimer, due the mentioned modifications the results of this experiment are 
incommensurable with the results of other analysis of our study. 

 

Table A1.2. Clustering algorithms 

Method Definition 

Hierarchical 
agglomerative1 

each observation is initially considered as a cluster of its own 
(leaf). Then, the most similar clusters are successively merged 
until there is just one single big cluster (root). 

K-means1 partition the points into k groups such that the sum of squares 
from points to the assigned cluster centres is minimized. At the 
minimum, all cluster centres are at the mean of their Voronoi sets 
(the set of data points which are nearest to the cluster centre). 

PAM1 it is based on the search for k representative objects or medoids 
among the observations of the data set, instead of using the mean, 
for partitioning a data set into k groups or clusters.  

SOM2 type of artificial neural network that is trained using unsupervised 
learning to produce a low-dimensional, discretized representation 
of the input space of the training samples, called a map, and is 
therefore a method to do dimensionality reduction. 

DIANA1 the inverse of agglomerative clustering. It begins with the root, in 
which all objects are included in one cluster. Then the most 
heterogeneous clusters are successively divided until all 
observations are in their own cluster. 

1 Kassambara A. 2017 Practical Guide To Cluster Analysis in R - Unsupervised Machine 
Learning, STHDA Edition 1.  
2 Wehrens R., and J. Kruisselbrink. 2018. Flexible Self-Organizing Maps in kohonen 3.0. 
Journal of Statistical Software, 87(7), 1–18. doi: 10.18637/jss.v087.i07 
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Table A1.3. Cluster validation metrics 

Metric Definition 

APN1 measures the average proportion of observations not placed in the 
same cluster by clustering based on the full data and clustering based 
on the data with a single column removed 

AD1 computes the average distance between observations placed in the 
same cluster by clustering based on the full data and clustering based 
on the data with a single column removed 

ADM1 computes the average distance between cluster centers for 
observations placed in the same cluster by clustering based on the full 
data and clustering based on the data with a single column removed 

FOM1 the figure of merit measures the average intra-cluster variance of the 
observations in the deleted column, where the clustering is based on 
the remaining (undeleted) samples. This estimates the mean error 
using predictions based on the cluster averages. 

Connectivity2 reflects the extent to which items that are placed in the same cluster 
are also considered their nearest neighbors in the data space - or, in 
other words, the degree of connectedness of the clusters. And yes, 
you guessed it, it should be minimised. 

Dunn index2 represents the ratio of the smallest distance between observations not 
in the same cluster to the largest intra-cluster distance. As you can 
imagine, the nominator should be maximised and the denominator 
minimised, therefore the index should be maximized. 

Silhouette 
width2 

defines compactness based on the pairwise distances between all 
elements in the cluster, and separation based on pairwise distances 
between all points in the cluster and all points in the closest other 
cluster. Values as close to (+) 1 as possible are more desirable. 

avg. within3 average distance within clusters. 
1Brock, G., V. Pihur, and S. Datta. 2008. clValid: An R Package for Cluster Validation. Journal 
of Statistical Software, 25(4), 1-22. URL https://www.jstatsoft.org/v25/i04/   
2Kulma, K. 2017. Cluster Validation In Unsupervised Machine Learning. 
https://kkulma.github.io/2017-05-10-cluster-validation-in-unsupervised-machine-learning/  
3Hennig C. 2020. fpc: Flexible Procedures for Clustering. R package version 2.2-7. 
https://CRAN.R-project.org/package=fpc  

https://www.jstatsoft.org/v25/i04/
https://cran.r-project.org/package=fpc
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Figure A1.4. Comparison of clustering methods for reference. Performance of 
alternative clustering methods (line colors, Table A1.2) are compared in terms of 
stability and internal validation metrics (boxes, Table A1.3) along a gradient of number 
of clusters (K). Note the distance calculation algorithm for these analyses was 
Manhattan distance. Disclaimer: due the mentioned modifications the results of this 
experiment are incommensurable with the results of other analysis of our study. 

 

4. Clustering results 

In this section we describe how we analyzed the results of the DIANA analysis and 
agreed on a clustering output as the best SELS representation according to the 
specialists group’s territorial knowledge. This included the decision on the number of 
clusters and its map layout, examination of the spatial representativity of the SELS 
across their territory, and evaluation of the relative contribution of each input variable to 
the classification. 

Number of clusters 

The output of DIANA is a dendrogram of hierarchical clusters. To decide at which 
height to cut the dendrogram we considered quantitative validation metrics (Figure 
A1.5) and analyzed the resulting spatial layout and clusters’ statistics at the successive 
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dendrogram cuts in relation to our territorial knowledge to agree on the optimal number 
of clusters. We disregarded clustering outputs with less than 5 or more than 16 clusters 
since we considered them not informative or too complex for the purpose of this study, 
respectively. As shown in Figure A1.5, alternative validation metrics did not converge 
into one unique “optimal number of clusters”, therefore the decision was made based 
mostly on expert’s knowledge. After analyzing the output maps and variable’s statistics 
the authors agreed the map depicting thirteen clusters was the most adequate 
representation of smaller-size SELS for the purpose of this study, and we found no 
evidence in the quantitative validation metrics to contradict that decision. 

 

Figure A1.5. Identification of optimal number of clusters. Representation of three 
internal validation metrics performance: average silhouette width, average within 
distance, and dunn index (y axis) along the gradient of number of clusters (x axis). 

 

5. Input variable’s relative contributions 

To measure the input variable’s relative contribution we used Boosted Regression 
Trees. Regression trees are a regression/classification technique from machine learning 
where a model is trained to relate a response to their predictors by recursive binary 
splits. In boosted regression trees (BRT) the model accuracy is improved by repeating 
the regression tree algorithm adjusting the parameters in each iteration, similar to the 
“functional gradient descent” concept (Elith et al 2008). BRTs have very little 
restrictions, can handle different types of variables with no need of data transformation 
or outlier elimination, and can fit complex non-linear relationships. Through BRTs we 
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can estimate the relative contribution of each input variable to the classification, 
measured as the number of times a variable is selected for splitting the tree, weighted by 
the model improvement by that split, and averaged across all trees (Elith et al. 2008).  

We fitted 15 BRT different models in total, seeking to unravel the relative contribution 
of each variable in defining different target clusters: one multinomial for the 13 SELS 
simultaneously, one multinomial for the 5 SER simultaneously, and then individual 
binary models for each of the 13 SELS classes. Calculations were performed in R with 
the gbm function (gmb package, Greenwell et al. 2019) for the multinomial models and 
gbm.step function for the binomial models (dismo package, Hijmans et al. 2017). Model 
parameters are shown in Box A1.1. To evaluate how well the BRT models fit for each 
case we monitored the evolution of the holdout deviance along the iterations (Figure 
A1.6).  

 

Box A1.1 BRT model parameters 
  
Multinomial models: 
learning rate (shrinkage) = 0.005 
tree complexity (interaction depth) =1  
bag fraction: 0.5 
number of trees: 5000 

  
  
Binary models: 
learning rate:  0.005  
tree complexity: 1 (default) 
bag fraction: 0.5 
number of trees: varies along the models  
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Figure A1.6. Holdout deviance along the iteration of the BRTs for the individual 
binomial models (SELS A1 to SELS E3) and the multinomial SELS and SER models. 

 

 



19 
 

LITERATURE CITED 

 
Boehmke, B., and B. M. Greenwell. 2019. Hands-On Machine Learning with R. CRC 

Press. 
Boillat, S., F. M. Scarpa, J. P. Robson, I. Gasparri, T. M. Aide, A. P. D. Aguiar, L. O. 

Anderson, M. Batistella, M. G. Fonseca, C. Futemma, H. R. Grau, S.-L. Mathez-
Stiefel, J. P. Metzger, J. P. H. B. Ometto, M. A. Pedlowski, S. G. Perz, V. 
Robiglio, L. Soler, I. Vieira, and E. S. Brondizio. 2017. Land system science in 
Latin America: challenges and perspectives. Current Opinion in Environmental 
Sustainability 26–27:37–46. 

Bright, E., P. Coleman, A. Rose, and M. Urban. 2012. LandScan 2011. Oak Ridge 
National Laboratory SE, Oak Ridge, TN. 

Brock, G., V. Pihur, and S. Datta. 2008. clValid: An R Package for Cluster Validation. 
Journal of Statistical Software, 25(4), 1-22. URL 
https://www.jstatsoft.org/v25/i04/  

ClimateSA: historical and projected climate data for Mexico, Central and South 
America. Climate data generated with the ClimateSA v1.0 softwarepackage, 
available at http://tinyurl.com/ClimateSA, based on methodology described by 
Hamann et al. (2013) 

Debomit, D. 2019. Hierarchical clustering (Agglomerative and Divisive clustering). 
Blog entry at GeeksforGeeks org. https://www.geeksforgeeks.org/ml-
hierarchical-clustering-agglomerative-and-divisive-clustering/ (accessed 
February 2nd 2021) 

Elith, J., J. R. Leathwick, and T. Hastie. 2008. A working guide to boosted regression 
trees. Journal of Animal Ecology 77(4):802–813. 

Ellis, E. C., K. K. Goldewijk, S. Siebert, D. Lightman, and N. Ramankutty. 2010. 
Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and 
Biogeography 19(5):589–606. 

Gower, J. C. 1971. A General Coefficient of Similarity and Some of Its Properties. 
Biometrics 27(4):857–871. 

Graesser, J., T. M. Aide, H. R. Grau, and N. Ramankutty. 2015. Cropland/pastureland 
dynamics and the slowdown of deforestation in Latin America. Environmental 
Research Letters 10(3):034017. 

Greenwell, B., B. Boehmke, J. Cunningham, and GBM Developers, 2019. gbm: 
Generalized Boosted Regression Models. R package version 2.1.5. 
https://CRAN.R-project.org/package=gbm 

Hennig C. 2020. fpc: Flexible Procedures for Clustering. R package version 2.2-7. 
https://CRAN.R-project.org/package=fpc  

https://www.jstatsoft.org/v25/i04/


20 
 

Hijmans, R. J., S. Phillips, J. Leathwick, and J. Elith, J. 2017. dismo: Species 
Distribution Modeling. R package version 1.1-4. https://CRAN.R-
project.org/package=dismo 

Karagulle, D., C. Frye, R. Sayre, S. Breyer, P. Aniello, R. Vaughan, and D. Wright. 
2017. Modeling global Hammond landform regions from 250-m elevation data. 
Transactions in GIS 21(5):1040–1060. 

Kassambara, A. 2017. Practical Guide to Cluster Analysis in R: Unsupervised Machine 
Learning. STHDA. 

Kaufman, L., and P. J. Rousseeuw. 1990. Partitioning around medoids (program pam). 
Finding groups in data: an introduction to cluster analysis, 344, 68-125. 

Kulma, K. 2017. Cluster Validation In Unsupervised Machine Learning. 
https://kkulma.github.io/2017-05-10-cluster-validation-in-unsupervised-
machine-learning/ 

Kreft, H., and W. Jetz. 2007. Global patterns and determinants of vascular plant 
diversity. Proceedings of the National Academy of Sciences 104(14):5925–5930. 

Maechler, M., P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik. 2019. cluster: 
Cluster Analysis Basics and Extensions. R package version 2.1.0. 

Monfreda, C., N. Ramankutty, and J. A. Foley. 2008. Farming the planet: 2. Geographic 
distribution of crop areas, yields, physiological types, and net primary 
production in the year 2000. Global Biogeochemical Cycles 22(1). 

Nelson, A., 2008. Estimated travel time to the nearest city of 50,000 or more people in 
year 2000. Global Environment Monitoring Unit-Joint Research Centre of the 
European Commission, Ispra Italy. URL: http://bioval. jrc. ec. europa. 
eu/products/gam/. 

Qian, H., and R. E. Ricklefs. 2008. Global concordance in diversity patterns of vascular 
plants and terrestrial vertebrates. Ecology Letters 11(6):547–553. 

R Core Team 2019. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria http://www.R-
project.org/. 

Robinson, T. P., G. R. W. Wint, G. Conchedda, T. P. V. Boeckel, V. Ercoli, E. 
Palamara, G. Cinardi, L. D’Aietti, S. I. Hay, and M. Gilbert. 2014. Mapping the 
Global Distribution of Livestock. PLOS ONE 9(5):e96084. 

Sayre, R., C. Frye, D. Karagulle, J. Krauer, S. Breyer, P. Aniello, D. J. Wright, D. 
Payne, C. Adler, H. Warner, D. P. VanSistine, and J. Cress. 2018. A New High-
Resolution Map of World Mountains and an Online Tool for Visualizing and 
Comparing Characterizations of Global Mountain Distributions. Mountain 
Research and Development 38(3):240–249. 

Siebert, S., P. Döll, J. Hoogeveen, J.-M. Faures, K. Frenken, and S. Feick. 2005. 
Development and validation of the global map of irrigation areas. Hydrology 
and Earth System Sciences 9(5):535–547. 



21 
 

Stein, A., K. Gerstner, and H. Kreft. 2014. Environmental heterogeneity as a universal 
driver of species richness across taxa, biomes and spatial scales. Ecology Letters 
17(7):866–880.  

UNEP-WCMC and IUCN, 2019. Protected Planet: The World Database on Protected 
Areas (WDPA [On-line, downloaded on May 2019], Cambridge, UK: UNEP-
WCMC and IUCN. Available at: www.protectedplanet.net.  

Wehrens R., and J. Kruisselbrink. 2018. Flexible Self-Organizing Maps in kohonen 3.0. 
Journal of Statistical Software, 87(7), 1–18. doi: 10.18637/jss.v087.i07  

Weiss, D. J., A. Nelson, H. S. Gibson, W. Temperley, S. Peedell, A. Lieber, ... & P. W. 
Gething (2018). A global map of travel time to cities to assess inequalities in 
accessibility in 2015. Nature, 553(7688), 333-336. 

Winkler, K. J., M. W. Scown, and K. A. Nicholas. 2018. A classification to align social-
ecological land systems research with policy in Europe. Land Use Policy, 79, 
137-145. 

Zikin M. Diversidad lingüística latinoamericana. Muturzikin.com © 2007. 
http://www.muturzikin.com/carteamerique.htm 

 


