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Supplemental Methods: 

 

Climate projections 

A combination of 8 projections were used from 4 different global change models (GCMs) at two 

relative concentration pathways (RCPs).  The RCPs chosen were 4.5 and 8.5, the former 

representing an emissions-controlled future, while the latter represents an uncontrolled emissions 

future.  The particular combination is based on recommendations from Pierce et al. 2016.  The 

LANDIS model utilizes the following climatological variables: daily precipitation (figure S1 and 

S2), daily maximum temperature (figure S3), daily minimum temperature, daily average 

windspeed, and daily average wind direction that are averaged across the Level II EPA 

ecoregions in the study area. 

Forest succession 

NECN (v6.5) simulates both above and belowground processes, tracking C and N through 

multiple live and dead pools, as well as tree growth (as net primary productivity--a function of 

age, competition, climate, and available water and N).  Soil moisture, as well as movement 

across the dead pools: wood and litter deposition and decomposition, soil accretion and 

decomposition are based on the CENTURY soil model (Parton et al. 1983, Scheller et al. 2011).  

Carbon estimates by pool were validated against Wilson et al. (2013) at the ecoregion level, 

where the model overestimated total C for only one region but was within one standard deviation 

for all others (see supplemental figure S4).  Forest growth estimates using the climate data for 

year 2010-2015 for the region were calibrated against the MODIS 17a3 product annual mean for 

2000 – 2015 (Figure S5).  Reproductive success is dependent on temperature and water. 

Fire modeling 

The SCRPPLE extension (v2.1) models ignitions by drawing the number of ignitions from a 

zero-inflated Poisson distribution and allocates them across the landscape with a weighted 

ignition surface for each type of fire modeled (Scheller et al. 2019).  The weather influence on 

fire is based on the Fire Weather Index (FWI) measures created by the Canadian Fire Prediction 

System (1992).  There are three categories of fires that can be modeled: lightning, accidental 

(i.e., human started), and prescribed fire.  The extension also includes the ability to explicitly set 

fire suppression effort levels across the landscape as well as by ignition type, where the 

suppression parameter reduces the probability of fire spread from one cell to another.  Effort 

levels can range from 0 to 3, where 0 is no suppression attempted, to 3 which represents high 

effort and was designed to mimic current suppression efforts in the Basin (Figure S6).  However, 

suppression effectiveness can be limited by weather as well, a maximum wind speed parameter 

can limit suppression to days only when resources can be deployed safely.  That parameter was 

set at wind speeds of 11 meters per second (~25 miles per hour) in consultation with regional fire 

personnel.  Prescribed fires follow a set of weather prescriptions for when fires can occur (Table 

S2). 

Contemporary wildfires (2000-2016, from CalFIRE FRAP) were used to parameterize fire 

spread and size from the Central Sierra Nevada in order to increase the sample size of fires.  

Mean annual fire area (in ha) for observed data was 117 hectares per year (SD = 309), for 

modeled data, the mean value was 122 hectares per year (SD = 210).  In order to move from fire 



intensity to fire severity (to encompass the mortality associated with fire), five fire experts 

working in the LTB provided their estimates of mortality for varying species, age, and intensity 

combinations.  More details about the parameterization of the fire extension are found in Scheller 

et al. (2019).  Suppression effort and fire spread are calibrated at the same time in order to try to 

account for both forces in recreating the contemporary fire regime.      

Insect modeling 

A modified version of the Biological Disturbance Agent extension (Biomass BDA v.2.0) was 

used to simulate insect outbreaks.  Outbreak locations are based upon the species host density at 

a given site and the presence of non-hosts reduce disturbance probability.  However, unlike 

Kretchun et al. (2016), the trigger for an outbreak was changed to be responsive to climate 

signals.  This is because for many beetle species climate influences outbreaks in three ways: low 

winter temperatures cause beetle mortality; year-round temperatures influence development and 

mass attack; and drought stress reduces host resistance. Here, we modeled climate influences as a 

function of drought and mean minimum winter temperature, recognizing that the full suite of 

climatic influences is necessary for a fully mechanistic model.  So long as annual climatic water 

deficit exceeded a set threshold, in conjunction with mean winter minimum temperatures 

exceeded a certain threshold, outbreaks could occur.  A comparison between the modeled and 

observed outbreak dataset (USFS Aerial Detection Survey: 

https://www.fs.fed.us/foresthealth/applied-sciences/mapping-reporting/index.shtml) found an 

overestimation of frequency of occurrence but an underestimation of area impacted by insects 

(Figure S7).  

https://www.fs.fed.us/foresthealth/applied-sciences/mapping-reporting/index.shtml


Supplemental Tables: 

Table S1. Suppression effort levels and effectiveness on fire spread probability. 

 
Fire Weather 

Index Thresholds 
Effort Level 

Fire Type 
Low-

mod 

Mod-

high 
Low Moderate High 

Accidental 40 60 0 5 10 

Lightning 40 60 0 5 10 

Rx 40 60 0 0 0 

  



Table S2.  Prescribed fire parameters used for Scenario 5 

Prescribed Fire Parameters   

MaximumRxWindSpeed 6.6 (m/s) 

MaximumRxFireWeatherIndex  55 (unitless) 

MinimumRxFireWeatherIndex  10 (unitless) 

MaximumRxFireIntensity 1 (low) 

NumberRxAnnualFires 364 (days of year allowable, subject to climate constraints) 

FirstDayRxFires  1 (first julian day for allowable fire, subject to climate constraints) 

TargetRxSize 72 (hectares) 

 



Name Longevity 

Sexual 

maturity 

age 

Shade 

tolerance 

Fire 

tolerance 

Seed 

effective 

dispersal 

distance 

(meters) 

Maximum 

dispersal 

distance 

(meters) 

Vegetative 

Reproduction 

Probability 

Minimum 

age veg 

reproduction 

Maximum 

age veg 

reproduction 

Post-fire 

regeneration 

Pinus jeffreyi 500 25 2 5 50 300 0 0 0 none 

Pinus 

lambertiana 550 20 3 5 30 400 0 0 0 none 

Calocedrus 

decurrens 500 30 3 5 30 1000 0 0 0 none 

Abies 

concolor 450 35 4 3 30 500 0 0 0 none 

Abies 

magnifica 500 40 3 4 30 500 0 0 0 none 

Pinus contorta 250 7 1 2 30 300 0 0 0 none 

Pinus 

monticola 550 18 3 4 30 800 0 0 0 none 

Tsuga 

mertensiana 800 20 5 1 30 800 0.0005 100 800 none 

Pinus 

albicaulis 900 30 3 2 30 2500 0.0001 100 900 none 

Populus 

tremuloides 175 15 1 2 30 1000 0.9 1 175 resprout 

Non-N fixing, 

Resprouting 80 5 2 1 30 550 0.85 5 70 resprout 

Non-N fixing, 

Seeding 80 5 2 1 30 1000 0 0 0 none 

N fixing, 

Resprouting 80 5 1 1 30 500 0.75 5 70 resprout 

N fixing, 

Seeding 80 5 1 1 30 800 0 0 0 none 

Table S3.  Species parameters used in modeling.



 Supplemental Figures: 

 

Figure S1.  Observed versus modeled total C, in megagrams C per hectare, by ecoregion, error 

bars represent +/- 1 standard deviation. 

 

  



  

Figure S2.  Comparison of MODIS (left) and LANDIS (right) estimates of Net Primary 

Productivity in g C/m ^2.  Mean landscape value for MODIS was 393 g C/m ^2 (sd 134), while 

for LANDIS the mean value was 320 g C/m^2 (sd 312). 

  



 

 

Figure S3.  Projected precipitation in mm yr-1, lines of best fit are GAM estimated, and boxplots 

represent distribution of annual precipitation for the years 2090-2100. 



 

Figure S4.  Projected number of consecutive days with no precipitation, lines of best fit are GAM 

estimated, and boxplots represent distribution of consecutive days per year for the years 2090-

2100. 

  



 

Figure S5.  Projected daily maximum temperature in degrees C, lines of best fit are GAM 

estimated, and boxplots represent distribution of daily temperatures for the years 2090-2100 for 

the future climate projections. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S6.  Map of suppression effort and management zone.  



 

Figure S7. Observed versus modeled number of hectares affected by insect/mortality agent. 

  



References 

Kretchun, A. M., Loudermilk, E. L., Scheller, R. M., Hurteau, M. D., & Belmecheri, S. (2016). 

Climate and bark beetle effects on forest productivity—linking dendroecology with forest 

landscape modeling. Canadian Journal of Forest Research, 46(8), 1026-1034.  

https://doi.org/10.1139/cjfr-2016-0103 

Parton, W.J., D.W. Anderson, C.V. Cole, J.W.B. Stewart. 1983. Simulation of soil organic 

matter formation and mineralization in semiarid agroecosystems. In: Nutrient cycling in 

agricultural ecosystems, R.R. Lowrance, R.L. Todd, L.E. Asmussen and R.A. Leonard (eds.). 

The Univ. of Georgia, College of Agriculture Experiment Stations, Special Publ. No. 23. 

Athens, Georgia. 

Pierce, D.W., Cayan, D.R. and Dehann, L., 2016. Creating climate projections to support the 4th 

California climate assessment. University of California at San Diego, Scripps Institution of 

Oceanography: La Jolla, CA, USA. 

Scheller, R., Kretchun, A., Hawbaker, T. J., & Henne, P. D. (2019). A landscape model of 

variable social-ecological fire regimes. Ecological Modelling, 401, 85-93.  

https://doi.org/10.1016/j.ecolmodel.2019.03.022 

Scheller, R.M., Spencer, W.D., Rustigian-Romsos, H., Syphard, A.D., Ward, B.C. and Strittholt, 

J.R., (2011). Using stochastic simulation to evaluate competing risks of wildfires and fuels 

management on an isolated forest carnivore. Landscape Ecology, 26(10), 1491-1504.  

https://doi.org/10.1007/s10980-011-9663-6 

 


