
Appendix 1. 

Modelling details. 

 

Model overview  

 

Model case.  

To simulate conservation conflict management over time, we develop an individual-based 

model with a population of discrete animals, discrete farmers, and a biodiversity manager, all 

interacting on an agricultural landscape. The landscape is divided into discrete cells, each of 

which produces an agricultural yield and can hold any number of animals. Each farmer owns 

a contiguous block of cells that forms their ‘land’, and the sum of its cells’ productivity 

determines the farmer’s yield. Each animal’s reproduction and survival depend on the amount 

of agricultural resources it consumes from landscape cells, which consequently reduces the 

farmers’ yield. Farmers can cull animals that are on their own land to reduce yield loss. We 

chose population parameter values to ensure that unrestricted culling consistently drove the 

animal population to extinction (see the ‘initial parameters’ section below). The manager 

attempts to avoid extinction by maintaining the population around a predefined target size 

(TN). This target was chosen to be high enough to prevent extinction, but low enough to 

ensure a satisfactory yield to farmers. The manager’s method is to implement a policy 

incentivizing or disincentivizing culling as appropriate to increase or decrease population size 

to be closer to TN. Hence, following an adaptive management process, the manager updates 

this policy according to the monitoring of the population size (Nt) at each time step t. 

Farmers’ and manager’s actions are constrained by finite budgets (respectively BF and BM), 

which we interpret to reflect the total time, energy or money that a farmer can allocate to 

realize culling actions, or the manager to implement a change of policy and enforce culling 

restrictions at each time step. Furthermore, a conservation conflict will arise when the policy 

enforced by the manager prevents the farmers from culling as many animals as they want to 

minimize yield loss. Our case’s conflict dynamics are therefore affected by both the ecology 

of the population and the flexible, goal-oriented decision-making of the manager and 

farmers.   

 

Manager policymaking.  

To maintain the population as close as possible to TN, the manager receives a fixed, non-

cumulative budget BM at the beginning of each time step (i.e., it is completely lost if unused at 

the end of the time step). They can allocate it into setting a cost that farmers must pay to cull 

an animal on their land. A minimum cost of 10 budget units (b.u.) models the baseline budget 

needed for a farmer to cull an animal. The manager can draw into BM to raise this cost to 

discourage farmers from culling and favor population growth and can decrease it to facilitate 

culling and favor a population decrease. To model the budget needed to enforce a policy 



restricting culling, a raise of 1 in the culling cost requires an investment of 10 b.u. from the 

manager. Conversely, as the manager does not need to incentivize farmers to remove animals 

when the policy allows high culling rates, they do not need to spend budget to decrease the 

cost. The amount by which the manager changes the culling cost is computed according to 

their goal (see the ‘decision-making sub-model’ section below), i.e., keeping the population as 

close as possible to target. Manager’s goal was modelled as minimizing the distance between 

the monitored population size Nt and TN.  

 

Timing strategies.  

We included three timing strategies that determine whether a manager intervenes and updates 

the policy or waits and leaves it as is. The Control strategy (CTL) was the null model in this 

study. It corresponds to unconditional intervention at every opportunity and was modelled as 

the manager simply updating the policy at every time step. With the Adaptive Timing of 

Intervention strategy (ATI), the manager dynamically alternates between intervening and 

waiting based on the distance between Nt and TN. ATI defines a permissive range PT around 

TN in the form of TN ± PT. Within this range, the manager considers Nt close enough to TN, and 

consequently, that the current policy results in a sustainable culling rate for the population. 

Hence, at a given time step, the manager will update the policy if and only if the population is 

monitored outside this TN ± PT range. The Trajectory (TRJ) strategy is the same as the ATI 

strategy, except that when Nt is into TN ± PT, the manager makes a prediction on next time 

step’s population size based on the current and preceding monitoring results. If this prediction 

falls into the TN ± PT range, the manager assumes that the policy is effective and leaves it 

unchanged; otherwise, they update it. In both ATI and TRJ strategies, after a time step 

without updating the policy, the manager receives an additional proportion Bb of BM to model 

the benefits associated with waiting (e.g., the money, time or energy saved by not engaging in 

the process of updating the policy and enforce the change on farmers, or the interests gained 

from putting up the money saved). This bonus can be accumulated over several consecutive 

time steps of waiting but is lost as soon as the manager draws into their budget to raise the 

level of restrictions again.  

 

Farmers' action planning.  

At the beginning of each time step, each farmer receives a fixed, non-cumulative budget BF, 

which they allocate into culling a certain number of animals on the land that they own at the 

cost set by the manager’s policy. The number of animal culled is independently computed for 

each farmer using GMSE’s evolutionary algorithm (see the ‘decision-making sub-model’ 

section below), meaning that each farmer makes an independent decision for how to act 

according to their goal: maximizing their own yield. We used this model case to investigate 

how different timing strategies for a biodiversity manager’s intervention can affect the 

outcomes of an adaptively managed conservation conflict.  

 



Simulations with GMSE  

 

To simulate a conservation conflict management with different strategies under uncertainty, 

we used the R package ‘GMSE’ (Duthie et al. 2018). GMSE is a flexible modelling tool to 

simulate key aspects of natural resource management over time and address adaptive 

management questions in silico (Cusack et al. 2020, Nilsson et al. 2021). GMSE offers a 

range of parameters to simulate resource variations and management policy options with 

individual-based models of population dynamics, monitoring, manager decision-making and 

farmer decision-making.  

 

Initial parameters.  

We modelled a spatially explicit landscape with a grid of 200 by 200 cells, divided into 40 

equally sized rectangular pieces of land, each individually owned by one of 40 farmers. For 

the animals, we wanted to model a population that is stable in absence of culling, but under an 

important threat of extinction under a high culling rate. We defined the population dynamics 

model parameters such that, under constraint of density-dependent intra-specific resource 

competition only, an equilibrium was reached quickly and steadily, as a stable natural 

population would. The size at equilibrium (K) was sought such that the expected number of 

animals per farmer’s land was about a hundred on average (i.e., around 4000 individuals on 

the landscape). The farmers were provided with an initial budget high enough to cull up to the 

expected number of animals on their land at the baseline cost (i.e., 1000 b.u), and at first, the 

manager’s initial budget was set equal to the farmers’ one. We set TN at half the equilibrium 

size, which was low enough to maintain farmers’ yield over 90% of their maximum yield, but 

high enough to ensure a relatively low extinction risk of around 15% with the Control strategy 

(c.f. Management outcomes and Results sections in main document). We intentionally chose 

these parameters for the Control strategy to produce adequate management while also leaving 

room for improvement in order to determine the extent to which alternative strategies can 

generate better results. We set the initial population size N0 = 1000, which is sufficiently far 

below K for the population to be under extinction threat and justify the initial involvement of 

a manager.  

 

Population dynamics sub-model.  

GMSE’s population dynamics model features a population of N animals, each of which has an 

age as well as an x and y landscape position, all initialized at random (integers sampled with 

equal probabilities along the range of possible values). In each time step, each animal moves 

from its current cell to a random cell within a defined range of cells in any direction 

(including the original cell). After arriving at a cell, the animal feeds and consumes a 

proportion of 0.5 of the cell’s remaining yield. All animals move 12 times during a single 



time step, but individual movement across all animals occurs in a random order to avoid 

having a subset of animals complete all their moving and feeding before the others have 

started. After all movement and feeding has occurred, the animals asexually produce one 

offspring for every 5 resource units consumed (e.g., if an animal has consumed 12 resource 

units it produces 2 offspring). The offspring are added to the population as new individuals of 

age 0 on the cell on which they were produced. Next, animals that have consumed over 4.75 

resource units and have an age under or equal to 5 time steps survive to the next one. Animals 

that do not survive are removed from the population. This consumption criteria lead to 

density-dependent intra-specific competition for resource, and modelling life events discretely 

and probabilistically generates inter-individual variability, as well as geographical and 

demographic stochasticity, therefore accounting for several sources of uncertainty around 

population dynamics.  

 

Monitoring sub-model.  

We assumed that the manager makes no errors during monitoring, thus Nt represents the exact 

population size at each time step. This assumption avoided modelled stochastic monitoring 

errors that would have challenged a full understanding of management dynamics.  

Decision-making sub-model.  

Manager and farmer decision-making is modelled in GMSE using evolutionary algorithms 

(Hamblin 2012). Each time an agent makes a decision, the GMSE evolutionary algorithm 

generates a set of random possible policies for managers (culling costs) or action plans for 

farmers (number of culls), and then allows this set to evolve on its own self-contained 

timescale. Policies or action plans that are better aligned to an agent's goal have a relatively 

high fitness, and the fittest ones are selected to be the agent’s policy/action plan when the 

conditions for the algorithm termination are met (see supporting information S1 in Duthie et 

al. 2018, and GMSE documentation for further details). Our model thereby computes a 

practical but not necessarily optimal decision, recognizing that most people cannot think of 

every single possibility to choose the optimal one, but can choose the best option among those 

they could conceive. This process generates inter-individual variability, errors, and 

stochasticity in agents’ decision-making, therefore simulating several sources of uncertainty 

around human behavior.  

 

Timing strategies implementation.  

CTL is the default strategy in GMSE: at each time step t, the evolutionary algorithm 

calculates an appropriate cost of culling (most likely a raise in the cost when Nt < TN and a 

decrease when Nt > TN). In contrast, when applying ATI, the manager updates the policy only 

if Nt is out of the permissive range (TN ± PT). Hence, the evolutionary algorithm is called only 

if  

https://confoobio.github.io/gmse/articles/SI1.html


 

Otherwise, the cost is left the same as the previous time step. Lastly, when applying TRJ, the 

process is the same as ATI, except that the decision to update is based on a prediction of next 

time step’s population size 𝑁̂𝑡+1 instead of Nt. We chose as a predicting function a simple 

linear extrapolation based on the current (Nt) and previous (Nt-1) population sizes that has the 

advantage of including the influence of the active policy on population variation in a simple 

way. Hence, with TRJ the condition for calling the evolutionary algorithm is 

 , 

With 𝑁̂𝑡+1 = 𝑁𝑡 + (𝑁𝑡 −𝑁𝑡−1). 

Otherwise, the cost stays the same as previous time step. After a time step without calling the 

evolutionary algorithm, the manager starts the next one with an addition of a proportion Bb of 

BM b.u. to their regular budget BM. (See Fig. A5 for a flowchart of the different strategies.) 

 

Fig. A1. Flowchart of the three timing strategies. 

 

Table A1.1. Summary of useful symbols. 



Symbol  Status  Description  Unit 

tmax  constant  max simulation time  times steps 

TN  constant  manager’s target for 
population size  

nb. of individuals 

N0  constant  initial population size  nb. of individuals 

Nt  variable  population size monitored at 
time step t  

nb. of individuals 

PT  variable  permissiveness around TN  % of TN 

BM  variable  manager’s initial budget  b.u. 

Bb variable  budget bonus amount  % of BM 

fext  outcome  extinction frequency over a set 
of replicates  

% of replicates 

Yend  outcome  average farmers’ yield at the 
end of a simulation.  

% of landscape max 
productivity 

Yineq  outcome  average differential between 
lowest and highest farmers' 
yields at the end of a 
simulation 

% of highest yield 

dT  outcome  Average distance between Nt 
and TN at the end of a 
simulation 

% of TN 

tw  outcome  Average proportion of time 
steps without intervention  

% of simulation time 

 

Table A1.2. GMSE parameter values. Parameters not mentioned here were set to default (as 

in https://confoobio.github.io/gmse/articles/SI3.html). 

Parameter Value Description 

time_max 20 Maximum time steps in simulation 

land_dim1 200 Width of landscape (horizontal cells) 

land_dim2 200 Length of landscape 

res_death_type 0 Rules affecting resource death (consumption-based) 

res_birth_type 0 Rules affecting resource birth (consumption-based) 

observe_type 3 Type of resource observation (transect observation) 

res_move_obs FALSE Resource move during transect observation 

res_consume 0.5 Pr. of a landscape cell’s value reduced by 

  the presence of a resource in a time step 

max_ages 5 The maximum number of time steps a resource 

  can persist before it is removed 

minimumcost 10 The minimum cost of a farmer performing culling 

user_budget 1000 A farmer’s budget per time step for performing 

  any number of actions 

https://confoobio.github.io/gmse/articles/SI3.html


manager_budget 1000 A manager’s budget per time step for setting policy 

manage_target 2000 The manager’s target resource abundance 

RESOURCE_init 1000 The initial abundance of resources 

culling TRUE Resource culling (removes a resource entirely) 

  is a policy option 

stakeholders 40 Number of farmers in the simulation 

landownership TRUE farmers own land and increase utility indirectly 

  from landscape instead of resource use 

manager_sense 0.15 A metric of managers accuracy in predicting 

  change in stakeholder behaviour given a change 

  in cost 

consume_surv 4.75 Amount of cell value for a resource to eventually 

  survive until the next time step 

consume_repr 5 Amount of cell value for a resource to eventually 

  produce offspring 

times_feeding 12 Maximum number of times a resource consumes 

  landscape value per time step 
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