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Deforestation and economic growth trends on oceanic islands highlight the
need for meso-scale analysis and improved mid-range theory in conservation
Nitin Bhatia 1 and Graeme S. Cumming 1

ABSTRACT. Forests both support biodiversity and provide a wide range of benefits to people at multiple scales. Global and national
remote sensing analyses of drivers of forest change generally focus on broad-scale influences on area (composition), ignoring
arrangement (configuration). To explore meso-scale relationships, we compared forest composition and configuration to six indicators
of economic growth over 23 years (1992–2015) of satellite data for 23 island nations. Based on global analyses, we expected to find
clear relationships between economic growth and forest cover. Eleven islands lost 1 to 50% of forest cover, eight gained 1 to 28%, and
four remained steady. Surprisingly, we found no clear relationship between economic growth trends and forest-cover change trajectories.
These results differ from those of global land-cover change analyses and suggest that conservation-oriented policy and management
approaches developed at both national and local scales are ignoring key meso-scale processes.
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INTRODUCTION
Forests support many species and provide a wide range of
economically and culturally valuable goods and services. Their
role in carbon sequestration and storage, for instance, is globally
significant (Molotoks et al. 2018). Global analyses suggest that
overall, there is a trend toward shrinking and degradation of
forests (Achard et al. 2002, Hansen et al. 2013, Curtis et al. 2018,
Song et al. 2018) and increasing forest fragmentation (Kasperson
et al. 1995, Turner et al. 2001a, Nagendra et al. 2003, Fearnside
2005). However, reforestation (the return of deforested locations
to forest, whether by planting or regeneration) has occurred
extensively in some areas (e.g., North America), and time series
of forest cover change show high variation and uncertainty in
deforestation and reforestation rates (Angelsen 2001).  

Deforestation is driven by a range of proximate and ultimate
causes that depend on both geographical and historical contexts
(Geist and Lambin 2002). Curtis et al. (2018) attributed 27% of
permanent global forest loss to commodity production, with
additional losses primarily due to forestry (26%), shifting
agriculture (24%), and wildfire (23%). Their analysis suggests a
clear divide between developed and developing nations (“the
global south”), with most commodity-driven deforestation and
shifting agriculture occurring in developing nations in Latin
America and Asia. However, the many different, interacting
variables that drive forest loss make it challenging to understand,
govern, and manage (Angelsen 2001, Geist and Lambin 2002).
Broad-brush analyses gloss over complexities and feedbacks at a
variety of different spatial and governance scales. Global analyses
have also focused heavily on measures of landscape composition
(amount of habitat or land cover) and have largely ignored
changes in landscape configuration (arrangement of habitat or
land cover, which, in a land-cover context, refers to the relative
position and dispersion of different land-cover types). The
importance of habitat configuration for deforestation has been
widely explored in individual cases at finer spatial scales (e.g.,
Laurance et al. 2002, Perz et al. 2008, Lorena and Lambin 2009,

Cumming et al. 2012), but is poorly connected to the
understanding of global trends.  

Several hypotheses that seek to explain changes in forests relative
to wealth have been proposed. First, forest transition theory
proposes that a decline in forest cover during industrialization is
followed by an increase in forest cover, possibly with a substantial
lag, after sufficient wealth has been accumulated (Mather 1992,
2001). Second, researchers have attempted to apply the
environmental Kuznets curve (EKC; Kuznets 1955) to forests and
have used it to argue that forest loss will follow a U-shaped curve
in relation to economic growth. These theories propose a similar
trend but different underlying mechanisms. Forest transition
theory invokes a mechanism of agricultural adjustment to land
quality, relying on the argument that over time, agricultural
production will become focused in smaller areas of better land,
with poorer land being abandoned and experiencing forest
regeneration (Mather and Needle 1998). By contrast, the EKC
proposes that as societies become wealthier, they invest more
heavily in environmental protection and improvement, again
leading to expansion of forests. Substantial concerns have,
however, been raised about both of these theories. Perz (2007) has
argued that forest transition theory is limited in its concept of
what forests are, its treatment of forest dynamics, its explanation
for forest transitions, and its generalizability. Similarly, bar a few
exceptions mainly relating to pollution, the EKC has been shown
to be unsuited to a wide range of environmental problems
(Dasgupta et al. 2002, Stern 2004), and an extensive metareview
across 76 developing nations found little support for its
application to forests (Koop and Tole 1999). In general, while no
one denies that changes in forest cover are nonlinear and complex,
there appears to be little consensus over singular mechanistic
explanations for either deforestation or reforestation (Angelsen
and Kaimowitz 1999, Chowdhury and Moran 2012) and a strong
need for greater awareness of context dependence in forest-cover
dynamics (Perz 2007).  
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Context dependence is particularly evident in the choice of scale
of land-cover change studies. Local analyses are often highly
detailed, achieving specific explanations but lacking in general
applicability. By contrast, global analyses extract more
predictable and more consistent broad-scale patterns but often
fail to explain their underlying mechanisms (Levin 1992). We
propose that there is a need for mid-range analyses of both
pattern and process in forest-cover trends, meeting recent calls
for the development of more strongly contextualized (“mid-
range”) theory (Meyfroidt et al. 2018) that connects fine-scale
detail and broad-scale pattern.  

We thus addressed the gap between global and local analyses of
deforestation by exploring the potential of oceanic islands as
mesocosms for understanding global deforestation patterns. We
use “meso-scale” to refer to a scale of analysis that falls between
global or continental analyses and local analyses, where “local”
refers to the area that is regularly accessed by a single community.
The island areas that we describe as meso-scale range from 4400
ha to 1.9 × 108 ha. Because of the general lack of comparative,
meso-scale analyses and mid-range theories in the published
literature, we could not use existing theories to select case studies
a priori. Our broader goal for this analysis was thus to use pattern
analysis to explore trends within a mid-level, mid-scale set of
cases that, in turn, can contribute to the development of
contextualized, mid-range theory through the creation of
typologies of forest change that reflect the range of causes that
can produce a given pattern.  

Most oceanic island nations (and inhabited oceanic islands
governed by mainland countries) are small (< 10,000 km²) and
topographically, ecologically, and socially heterogeneous
landscapes. Their clear boundaries make estimations of imports
and exports simple, and their size means that resource limitation
is obvious earlier than in larger systems, providing insights into
the landscape-level consequences of global phenomena such as
migration and overpopulation. Islands have been proposed as
ideal proxies for the study of landscape fragmentation at a global
scale (Lugo 2002) and have informed the understanding social-
ecological resilience in general (MacArthur and Wilson 1963,
Lugo 2002, Warren et al. 2015, Patiño et al. 2017). However,
there have been few quantitative, comparative studies of land-
cover change across islands.  

We looked at changes in both landscape composition and
landscape configuration across 23 different islands. To keep this
first meso-scale analysis comprehensible, we limited our analyses
to six key economic drivers that might explain the relationship
between the level of economic development of a country and
changes in forest cover. Based on the results of global analyses
(e.g., Curtis et al. 2018), we expected to find (1) a clear distinction
in deforestation rates and the pattern of deforestation between
developed and less developed nations, with national economies
strongly correlated with deforestation rates; and (2) clear
connections between economic indicators and the pattern of
landscape change because forest clearing for agriculture and
commodity production (e.g., pulp and paper) typically follows
a different pattern from forest clearing for forestry or by wildfire
(Henders et al. 2015).

METHODS

Data description
Multisensor Earth observation satellite data were used to quantify
changes in global forest cover from 1992–2015 at a spatial
resolution of 300 m for 23 island nations: Andaman and Nicobar,
Antigua and Barbuda, Bahamas, Cuba, Cyprus, Dominican
Republic, Fiji, Haiti, Indonesia, Jamaica, Japan, Martinique,
Mauritius, Philippines, Papua New Guinea (PNG), Puerto Rico,
Singapore, Solomon, Sri Lanka, Taiwan, Tasmania, Vanuatu, and
Zanzibar. These islands constitute the largest sample size for
which we could find reliable, consistent data across a sufficient
range of variables. They span a wide range of social, ecological,
and economic conditions, including both temperate and tropical
ecosystems, and a wide range of different policies and governance.
They thus offer good proxies for the study of landscape
fragmentation at a global scale.  

We used global land-cover data generated under the Climate
Change Initiative (Santoro et al. 2017). Data were derived from
multisensor time series of Advanced Very High Resolution
Radiometer (AVHRR) 7-day composite images, Medium
Resolution Imaging Spectrometer (MERIS) full-resolution 7-day
composites, and (for 2014 and 2015) Project for On-board
Autonomy-Végétation (PROBA-V) 7-day composites. The
annual land-cover maps were derived from unique baseline land-
cover maps generated from the MERIS full-resolution and
reduced-resolution archive from 2003 to 2012 (Table 1) and
grouped into six broad land categories: cropland, forest,
grassland, wetland, settlement, and other land (Table S.1 in
Appendix 1). In addition, land cover was measured at 1 km from
the AVHRR time series for the period 1992 to 1999, SPOT-VGT
time series for the period 1999 and 2013, and PROBA-V data for
years 2013, 2014, and 2015. When MERIS full-resolution or
PROBA-V time series were available, changes detected at 1 km
were rescaled at 300 m. The last step consisted of back- and up-
dating the 10-year baseline land-cover map to produce 24 annual
land-cover maps from 1992 to 2015.

Measurement of landscape fragmentation
We measured land-cover change over time in the area
(composition) and arrangement (configuration) of forest
habitats, using FRAGSTATS (McGarigal et al. 2012) to quantify
metrics at class and landscape levels. Metrics included measures
of contrast, shape complexity, aggregation, and isolation (Table
2). Formal definitions are available in Turner et al. (2001b) and
McGarigal et al. (2012).  

To correct for differences in the magnitudes of different metrics,
we standardized the landscape metrics for each of the 30 islands
by subtracting the mean and dividing by the standard deviation
for that metric. Using the standardized values of each metric
(Table 2), we performed three sets of analyses to explore changes
in forest composition and configuration within and between
islands. The analyses included: (1) quantification and between-
island comparisons of overall change in forest cover between 1992
and 2015; (2) comparison of trajectories of forest-cover change
among islands; and (3) assessment of the similarities and
dissimilarities among islands in relation to gross domestic product
(GDP).  
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Table 1. Data sources used to generate the global land cover maps from 1992–2015, following the methods of Lamarche et al. (2017).
 

Output map Reference period Sensor

Baseline 10-yr global land-cover map 2003–2012 • MERIS SR composites
Global annual land-cover maps 1992–1999 • Baseline 10-yr global land-cover map

• AVHRR global SR composites for back-dating the baseline
Global annual land-cover maps 1999–2013 • Baseline 10-yr global land-cover map

• SPOT-VGT global SR composites for up- and back-dating the baseline for the
reference period
• MERIS FR global SR composites between 2003 and 2012 to delineate the maps at
300 m
• PROBA-V global SR composites at 300 m for 2013 to delineate the maps

Global annual land-cover maps 2014–2015 • Baseline 10-yr global land-cover map
• PROBA-V global SE composites at 1 km between 2014 and 2015 for updating the
baseline
• PROBA-V time series at 300 m for years 2014 and 2015 to delineate the maps to
300 m

Table 2. Description and interpretation of landscape composition and configuration characteristics quantified at class and landscape level.
 

Metric Acronym Ecological interpretation Units Calculation method

Edge density ED Measure of edge, corrected for area; forest edges
can influence many ecologically relevant processes
such as the spread of fire, dispersal, and predation
(Cadenasso et al. 1997, Cadenasso and Pickett
2000)

m/ha Sum of the lengths (m) of all edge segments
involving the corresponding class type,
divided by the total landscape area (ha)

Mean Euclidean
nearest-neighbor
distance

ENN_MN Measure of isolation, which is important for
dispersal and patch recolonization

m Shortest straight-line distance (m) between a
focal patch and its nearest neighbor of the
same class

Percentage of
landscape

PLAND Measure of composition (relative cover), which
affects resource availability, competition, and alpha
(local) diversity

% Proportional abundance of each patch type
in the landscape (0 < PLAND ≤ 100)

Mean fractal
dimension index

FRAC_MN Measure of shape complexity, which influences
dispersal, predation, and edge effects

None Shape index based on perimeter:area
relationships in which the perimeter and
area are log transformed

Clumpy index CLUMPY Measure of aggregation; CLUMPY is the only
aggregation index that is independent of landscape
composition (measured by PLAND as relative
forest cover) and is unaffected by the shape of the
landscape; it captures the degree to which habitats
are aggregated or dispersed, which has
consequences for dispersal, predation,
reproduction, and metapopulation dynamics

% Proportional deviation of the proportion of
like adjacencies involving the corresponding
class from that expected under a spatially
random distribution (−1 ≤ CLUMPY ≤ 1)

Aggregation index AI Level of aggregation of spatial patterns; like
CLUMPY, aggregation has consequences for
metapopulation and ecological community
dynamics

% Number of like adjacencies involving the
corresponding class, divided by the
maximum possible number of like
adjacencies involving the corresponding
class

The first set of analyses used the PLAND metric (Table 2) to
quantify net loss or gain in forest cover between the years 1992
and 2015 using the standard percentage change relation. A range
of terms quantified is given in Table 3. We used percentage change
because the islands exhibited considerable variance in area, and
many metrics of forest composition and configuration are scale
dependent. Importantly, net percentage change does not reflect
variance in the rate of land-cover change or other properties of
the change trajectory. Our second set of analyses thus considered
forest dynamics using time series data that require the pattern and
random components to be identified to obtain uncorrelated data
points in time. We determined that values were uncorrelated at a
lag of 5 years using the autocorrelation function “acf” in the
“Stat” package of R (R Core Team). For this analysis, we thus
divided the total period of 24 years into four subperiods

(minimum of 5 years): 1992–1997, 1997–2002, 2002–2007, and
2007–2015.  

We selected key economic indicators for linking economic growth
and environmental sustainability based on standard economic
growth theories that suggest connections between wealth, labor,
capital, environmental stocks, and human well-being (e.g.,
Schumpeter 1983, Solow 1956, Swan 1956, Chenery et al. 1986,
Lin and Rosenblatt 2012). We focused on five variables that have
been strongly implicated as relevant to development trajectories
by Cumming and von Cramon-Taubadel (2018): population
growth, GDP (GDP per capita [constant local currency unit]),
forest rents, the Human Development Index (HDI), and the value
added by agriculture (%GDP). These data were obtained from
the World Bank Open Data Set (https://data.worldbank.org/).
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Table 3. Definitions of terms used to refer to changes in forest cover in the analyses and results. See Table 2 for definition of variable
acronyms.
 
Term Definition and determination

Prior forest cover Forest cover (total area, as measured through PLAND) of an island in 1992
Net percentage change in forest
cover

First, the net change in forest cover between 1992 and 2015 was calculated for each individual island as the sum of all
changes in PLAND over 1992–2015 (including reductions due to deforestation and disasters and increases due to
reforestation and forest expansion); then, we divided the net change in forest cover by prior forest cover and multiplied
this fraction by 100 to give the net percent change in forest cover

Net forest cover gain A positive net change in forest cover
Net forest cover loss A negative net change in forest cover
Mean change in net forest cover The sum of net percentage change in forest cover of all 23 islands divided by 23 gives a mean change in net forest cover

across all islands; the standard deviation of this value measures variability in net percentage change in forest cover
across all islands

National economies are essentially bimodal, with less financially
wealthy nations (those with HDI = 4) and more financially
wealthy nations (HDI = 1) tending toward two different social-
ecological attractors (Cumming and von Cramon-Taubadel
2018). HDI = 4 nations depend proportionally more heavily and
more directly on natural resources and agriculture and experience
lower GDP with increased population growth. Simplistically, one
might thus expect that higher population growth rate in HDI =
4 nations leads to greater levels of deforestation, whereas in HDI
= 1 countries, higher population growth rate leads to a higher
GDP (as a consequence, for example, of technological and service
industries) and, potentially, a reduced direct reliance on
ecosystems and lower deforestation rates. However, a series of
complex feedbacks means that the relationship between different
indicator variables and deforestation itself  is not necessarily
consistent.  

We tested for correlations between forest-cover change using
composition and configuration matrices and matching economic
data. Our third set of analyses used Mantel tests with the
nonparametric Spearman’s method in the “vegan” package in R
(Dixon 2003). The Mantel test was performed using data points
(for both ecological matrices [composition and configuration] and
economic growth drivers) that were uncorrelated in time, i.e., for
the four subperiods only. The Mantel test takes dissimilarity
matrices as input arguments; these matrices were calculated using
the “vegdist” function in the vegan package with default
arguments. For the Mantel test using population growth GDP
per capita data, 21 islands were included. For forest rents, data
from 20 islands were available, and for agriculture value (% GDP)
and HDI drivers, data from 19 islands were available.  

In our fourth set of analyses, we first grouped islands by forest-
cover change (both composition and configuration) and then
tested for a relationship between forest-cover change group
membership and GDP. To check for the possible statistical bias
that might emerge if  smaller islands have weaker economies, we
also tested for a correlation between GDP and island area using
standardized landscape metrics and proportions. Grouping used
an unsupervised, two-fold, hierarchical clustering approach to
calculate dissimilarity metrics for each island using a time series
clustering approach (the “diss” function in the “TSclust” library
in R; Montero and Vilar 2014). TSclust corrects for the time-
dependent component, so we used data from the entire study
period (not subperiods) to create groups. Next, for each metric,

we performed hierarchical clustering using Ward’s minimum
variance method to assign cluster membership to each island
based on an optimal value of the objective function (error sum
of squares). The option “ward.D2” was used because it minimizes
the Ward’s minimum criterion more efficiently than does the
“ward.D” method (Murtagh and Legendre 2014). The
dendogram clustering was based on the pairwise dissimilarities
and the number of groups for cutting the tree (k = 4) and the
height arguments of the “fviz_dend” function of the package
“factoextra” in R (Kassambara and Mundt 2017). Finally, to
check for an effect of absolute island area on variables of interest,
we compared island area, population growth and change, and
total forest area (in ha) and change in forest area (using the data
in Table 4). Summary data for the economic variables, forest rents
(% GDP), agriculture (and forestry and fishing) value added (%
GDP), and HDI with forest cover for each island are given in
Appendix 1 (Table S.2).

RESULTS
The mean change in net forest cover across all islands was −3.14%
± 15%. The range of net forest cover loss was approximately −50
to −1% by area, and the range of net forest cover gain was
approximately 1 to 28% (Fig. 1), determined from percentage net
forest change (Fig. A.1 in Appendix 1). Eleven islands experienced
net forest cover loss (i.e., < −1.0%), eight experienced net forest
cover gain (i.e., > +1.0%), and net forest cover for four islands
remained steady (between −0.22 and 0.90%), indicating the
complexities of deforestation and reforestation dynamics
occurring within the study data (formal definitions of mean
change in forest cover and related terminology are given in Table
3).  

Analysis of change trajectories across the four subperiods
revealed similarly complex patterns in landscape composition and
configuration over time (Fig. 2). For illustration, we have used
the change trajectories of Japan, Singapore, and PNG; these
islands were grouped together by forest-cover metrics (Fig. 3) and
other configuration metrics. For these islands, even though the
net change in forest cover remained low (−3.5 to +3.5%), the
landscape configuration changed significantly, with potentially
important implications for ecological processes that depend on
connectivity. For example, net forest cover change for Japan
between 1992 and 2015 was low (+0.26%), and time-series analysis
showed that forest patch complexity and edge length remained
steady (largest increase approximately 0.20% in shape and

https://www.ecologyandsociety.org/vol25/iss3/art10/


Ecology and Society 25(3): 10
https://www.ecologyandsociety.org/vol25/iss3/art10/

Table 4. Total area, population size, change in population, total forested area, and change in forested area on each island examined to
determine if  pressure from the population influences forested area.
 

Island Total population Forest area (CA; ha) Maximum CA change

Name Area (ha) 1992 2015 Change
(%)

CA (1992) CA (2015) Change
(%)

CA Year Change (%)

Anadaman and
Nicobar

825,000 No data 400,112 No data 649,656.27 646,692.39 −0.46 656,227.9 1996 1.01

Antigua and
Barbuda

44,000 64,471 93,566 45.13 18,512.32 18,093.25 −2.26 19,860.66 2009–2013 7.28

Bahamas 1,387,800 266,029 374,206 40.66 525,287.20 565,646.30 7.68 567,134.3 2010 7.97
Cuba 10,988,400 10,736,387 11,324,781 5.48 4,383,321.32 4,566,774.33 4.19 4,570,880.08 2010 4.28
Cyprus 925,100 800,611 1,160,985 45.01 180,428.36 190,419.43 5.54 190,419.43 2014–2015 5.54
Dominican
Republic

4,844,200 7,408,342 10,281,680 38.78 1,997,515.08 2,312,929.14 15.79 2,325,525.78 2010 16.42

Fiji 1,833,300 744,469 868,627 16.68 1,275,352.20 1,255,321.48 −1.57 1,255,321.48 2014–2015 −1.57
Haiti 2,775,000 7,319,493 10,695,542 46.12 392,020.34 391,097.16 −0.24 415,719.5 2004 6.05
Indonesia 190,456,900 258,383,256 187,739,786 −27.34 92,778,372.91 109,441,597.15 17.96 115,702,820 1993–2000 24.71
Jamaica 1,099,200 2,461,049 2,891,021 17.47 873,996.74 780,378.31 −10.71 780,378.31 2015 −10.71
Japan 37,791,500 125,331,291 127,985,133 2.12 26,054,153.73 25,346,524.97 −2.72 25,346,524.97 2015 −2.72
Martinique 112,800 362,757 378,478 4.33 81,823.50 81,404.43 −0.51 81,404.43 2015 −0.51
Mauritius 204,000 1,082,956 1,259,456 16.30 76,952.47 52,026.43 −32.39 52,026.43 2015 −32.39
Philippines 30,000,000 65,020,116 102,113,212 57.05 12,746,950.41 13,302,356.60 4.36 13,302,775.67 2014 4.36
Papua New
Guinea

46,284,000 4,836,217 8,107,775 67.65 39,635,914.03 39,273,520.70 −0.91 38,638,884.42 2000 −2.52

Puerto Rico 1,380,000 3,469,068 3,381,518 −2.52 525,596.97 578,935.30 10.15 587,869.56 2009 11.85
Singapore 72,150 3,199,642 5,592,152 74.78 12,596.64 8667.02 −31.20 8667.02 2015 −31.20
Solomon 2,839,900 329,995 603,118 82.76 2,692,243.52 2,700,078.46 0.29 2,705,035 2008 0.48
Sri Lanka 6,561,000 17,736,821 20,908,027 17.88 2,573,668.68 2,317,502.56 −9.95 2,279,645.82 2004 −11.42
Taiwan 3,619,300 20,868,148 23,557,477 12.89 2,276,092.77 2,196,941.65 −3.48 2,196,941.65 2015 −3.48
Tasmania 6,840,100 474,224 516,600 8.93 5,447,865.03 5,360,824.30 −1.60 5,311,537.06 2000 −2.50
Vanuatu 1,219,900 155,170 271,130 74.73 887,030.68 1,138,101.05 28.30 1,138,101.04 2014–2015 28.30
Zanzibar 246,100 350,000 No data No data 24,598.07 26,092.17 6.07 28,843.51 2004 17.26

Fig. 1. Net percentage change in forest cover for each island studied. The mean change in net forest cover across all islands was
−3.132%, indicated by the dotted line.
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Fig. 2. Change trajectories of six net forest-cover metrics for three example islands (Japan, Singapore,
and Papua New Guinea) over the four subperiods of our analysis from 1992–2015. These islands were
grouped together in their forest-cover metrics (Fig. 3). This figure shows that even though the net change
in forest cover remained low for some islands, the landscape configuration changed significantly, with
potentially important implications for ecological processes that depend on connectivity.

Fig. 3. Dendrogram showing hierarchical clusters that emerged from the relative forest-cover metrics (total area, as measured
through percentage of forest cover). The similarities and dissimilarities between islands in relation to forest cover measures
emerged as four stable clusters, where cluster members are more similar to one another than to other islands in the sample. This
result illustrates the relative irrelevance of national-level gross domestic product as a predictor of trends in island forest
composition and configuration. For example, the highly industrialized island of Japan shows similar trends to the much less
industrialized nation of Papua New Guinea.

https://www.ecologyandsociety.org/vol25/iss3/art10/


Ecology and Society 25(3): 10
https://www.ecologyandsociety.org/vol25/iss3/art10/

Table 5. Results of Mantel test correlations between matrices of landscape composition and configuration metrics and the economic growth drivers. To
perform the test, we first produced temporally independent data for each variable and economic driver for each subperiod. Subject-subject dissimilarity
matrices were then generated and compared using the Mantel test. Results with P > 0.05 are considered statistically significant. See Table 2 for metric
definitions.
 

Metric Population growth Forest rents Gross domestic product
per capita

Human Development
Index

Agriculture value added

r P r P r P r P r P

PLAND 0.8303 0.0167 0.8182 0.0500 0.5030 0.0333 0.8667 0.0167 0.8788 0.0250
FRAC_MN 0.7697 0.0250 0.8303 0.0250 0.7333 0.0166 0.9515 0.0083 0.7697 0.0667
ED 0.7818 0.0250 0.6970 0.0667 0.4545 0.0667 0.9515 0.0083 0.8545 0.0167
CLUMPY 0.6606 0.0416 0.8424 0.0250 0.4303 0.0750 0.8788 0.0083 0.8788 0.0167
AI 0.7333 0.0333 0.7818 0.0583 0.4424 0.0583 0.8788 0.0167 0.9758 0.0083
ENN_MN 0.9030 0.0167 0.3818 0.1167 0.7697 0.0416 0.8667 0.0083 0.8788 0.0083

Table 6. Results of ANOVA tests of the hypothesis that groups based on gross domestic product growth should be the same as the forest-cover change
groups. See Table 2 for metric definitions.
 

Metric used for clustering Degrees of
freedom

Sum of squares Mean squares F P Decision on statistical
hypothesis

PLAND 2 179.4 89.70 22.68 < 0.05 Reject
9 678.8 75.42 5.685 < 0.05 Reject
5 1458 291.53 20.06 < 0.05 Reject
3 8.2 2.723 0.182 > 0.05 Support

FRAC_MN 14 1813 129.50 14.47 < 0.05 Reject
2 199.8 99.92 4.771 < 0.05 Reject
1 87.6 87.55 4.082 < 0.05 Reject
2 36.8 18.41 1.072 > 0.05 Support

ED 14 1173 83.78 6.898 < 0.05 Reject
2 997.6 498.8 112.1 < 0.05 Reject
3 144.6 48.21 3.396 < 0.05 Reject

CLUMPY 2 107.6 53.81 3.893 < 0.05 Reject
6 404.6 67.43 3.807 < 0.05 Reject
5 593.2 118.64 11.73 < 0.05 Reject
8 1520 189.97 24.11 < 0.05 Reject

AI 8 1680 210.06 32.05 < 0.05 Reject
1 102.7 102.69 12.48 < 0.05 Reject
3 184.7 61.56 3.084 < 0.05 Reject
7 616.8 88.12 5.175 < 0.05 Reject

ENN_MN 5 912.3 182.47 19.85 < 0.05 Reject
4 483.7 120.92 17.34 < 0.05 Reject
3 263.8 87.93 5.533 < 0.05 Reject
7 630 89.96 5.218 < 0.05 Reject

approximately 2% in edge; largest decrease −0.64% in shape and
−1.53% in edge). By contrast, both aggregation index and
clumpiness changed significantly between 2002 and 2007, with
declines of −17.6 and −41%, respectively. Japan, for example,
showed a 37% increase in clumpiness in the period 2007–2015.  

To assess the similarities and dissimilarities between islands in
relation to economic variables, we performed Mantel tests using
landscape metrics and economic drivers for the corresponding
islands. The Mantel test comparing economic variables and meso-
scale land use (Table 5) showed that for 4 of 30 instances, the null
hypothesis was supported (e.g., forest rents and forest cover had
Mantel statistics r = 0.8182 and P = 0.05); for the others, the null
hypothesis was rejected (e.g., comparison of GDP per capita and
clumpiness gave r = 0.4303 and P = 0.0750).  

To assess the similarities and dissimilarities between islands in
relation to GDP growth, we grouped the islands by similarities in

their landscape metrics (Fig. 3). This unsupervised clustering
analysis indicated that there were four natural clusters of islands
(k = 4) for most metrics. Clusters represented groupings of islands
that were more similar to each other than to other islands,
providing an unbiased taxonomy of islands that was independent
of their economic data. Islands did not fall in the same clusters
for all metrics, indicating a lack of consistency in their forest-
cover trajectories. The ANOVA test of whether national economic
variables and meso-scale land use were interrelated (Table 6)
showed that for 2 of 23 instances, the null hypothesis was
supported; for the others, the null hypothesis was rejected. In
addition, the correlation between forest area and GDP was weak
(Spearman ρ = −0.19, P < 0.37). We thus found no clear
relationship between change in forest cover and economic
growth.  

Finally, comparison of the log of absolute island area to changes
in population density, forest area, and forest patch sizes yielded

https://www.ecologyandsociety.org/vol25/iss3/art10/
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no significant correlations (df = 3, sums of squares = 8181, F =
12, P < 0.0001), indicating that our results are not an artefact of
considering relative rather than absolute changes in forest cover.

DISCUSSION AND CONCLUSION
In stark contrast with most global deforestation analyses (Achard
et al. 2002, Hansen et al. 2008, 2013, DeFries et al. 2010, Song et
al. 2018), consideration of forest-cover change patterns and
trends at a meso-scale level of analysis did not provide a clear
separation of countries based on economic data. We found four
broad composition and configuration clusters within
geographically and socioeconomically heterogeneous islands
with varied forest cover, although the membership of each cluster
was not consistent for every forest-related metric. Island groups
as defined by forest-cover change contained mixed economic and
socioeconomic types and were geographically diverse. These
results paint a more complex picture than do coarser global land-
cover change analyses and suggest strong scale dependence in
current understanding of the relationships between forest cover
and economic activity. The lack of general trends is intriguing
and suggests that important processes and dynamics have not
been adequately included in existing theories of deforestation;
hence, islands appear to offer an interesting and potentially
feasible entry point for further research linking fine- and broad-
scale drivers of deforestation.  

Although local and meso-scale land-use trends are influenced by
national and global trends (Geist and Lambin 2002), they may
differ substantially from them. For 4 of 30 instances (Mantel test,
Table 5) and for 2 of 23 instances (ANOVA test, Table 6), our null
hypothesis was supported (e.g., for forest cover), whereas for other
instances it was rejected (e.g., for edge density), providing no clear
evidence to support a relation between landscape metrics and
drivers of economic growth. Forest-cover change and economic
growth should be strongly correlated if  composition and
configuration metrics were directly influenced by economic
growth (Crespo Cuaresma et al. 2017), implying that national-
level economic trends alone are not sufficient to explain
deforestation. In simple terms, our data show that wealth alone
does not drive forest conservation and that developing countries
are not necessarily poor stewards of forests, despite their
proportionally higher economic dependence on forests. For larger
nations, simplistically comparing national-level economic
indicators with deforestation per se through remote sensing
ignores the meso-scale dynamics of markets, access, and
settlement patterns that can strongly influence forest loss and gain
and economic growth patterns. Many authors (Cropper and
Griffiths 1994, Angelsen and Kaimowitz 1999, Lykke et al. 2002,
DeFries et al. 2010) have highlighted the demographic, policy,
and economic factors that contribute to growing demands for
agriculture, rangeland, and wood that in turn exert pressure on
forests, but the degree to which these influences are relevant across
different scales has been less clear. Encouragingly, it appears that
effective forest cover can be maintained across a wide variety of
national-level economic conditions. Our results thus provide
additional novel empirical support for recent calls for stronger
development of mid-range, contextualized theory (Magliocca et
al. 2018, Meyfroidt et al. 2018).  

Configuration metrics describe additional impacts of forest loss
and fragmentation on ecological processes and ecosystem
services. Despite the ongoing debate in conservation biology

about the relative importance of habitat composition and habitat
configuration (Fletcher et al. 2018, Fahrig et al. 2019, Miller-
Rushing et al. 2019), there is good evidence that habitat
fragmentation matters for a wide range of ecological processes
(Cunningham et al. 2015, Haddad et al. 2015). Interestingly, for
some islands in our analysis, landscape configuration indices
changed much more than composition indices, suggesting subtle
differences in the ways in which forests are used. These changes
are again largely undetectable at global scales of analysis,
supporting the argument that meso-scale analyses of landscape
change provide a potentially useful way of linking global and local
drivers of change.  

Differences in the results obtained by forest-cover analyses at
different scales have potentially important consequences for forest
policy and conservation efforts. For example, Le et al. (2012)
found that most forest conservation policies focus on area planted
and initial tree survival for short-term biodiversity restoration or
timber production, whereas broader criteria for longer term
success and sustainability are ignored. Treby et al. (2014) also
found significant gaps between global, national, state, and
territorial forest management plans; and Decocq et al. (2016)
found that small patches were generally not legally protected
against conversion to another land use. Long-term changes in
global forest cover are well documented and may be used to design
policies governing forest management and land use (e.g.,
reforestation and afforestation policies).  

Looking forward, theory suggests that incongruities between the
scales of forest management policy design and implementation
can result in poor forest management and conservation (Epstein
et al. 2015). Our analysis highlights the point that one of the
central questions for efforts to sustainably govern forests will be
that of how to align different policies and forest initiatives at
different scales (national, regional, and local) in ways that are
both effective within scales and consistent across scales.
Understanding the drivers of both deforestation and afforestation
at different scales will in turn require the deliberate measurement
and cross-case comparison of relevant influences on
deforestation, ranging from national policies through regional
governance structures to local regulations and guidelines.
Obtaining these data will require that social scientists in particular
step out of their standard paradigm (i.e., in-depth study at a single
location) and, instead, compare trends across multiple study
locations from different systems that are distinct at regional and
national as well as local scales (Cumming et al. 2020).
Consideration of islands and the ways in which they can be used
to understand how local and national scales of policy are
interrelated may thus offer important new insights for developing
more effective forest conservation policies.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/11713

Acknowledgments:

This research was supported by the ARC Centre of Excellence for
Coral Reef Studies and a James S. McDonnell Foundation
complexity scholar award to GSC.

https://www.ecologyandsociety.org/vol25/iss3/art10/
http://www.ecologyandsociety.org/issues/responses.php/11713
http://www.ecologyandsociety.org/issues/responses.php/11713


Ecology and Society 25(3): 10
https://www.ecologyandsociety.org/vol25/iss3/art10/

Data Availability Statement:

The data that support the findings of this study are openly available
in world development indicators. The data were obtained from the
World Bank Open Data Set (https://data.worldbank.org/). Global
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Appendix 1 

Table S.1. Legends used in the LC maps. The time series data were grouped into the six broad land categories, i.e. 
cropland, forest, grassland, wetland, settlement and other land. The class ‘other land’ is further described as 
shrubland, sparse vegetation, bare area and water. 

 

Classes LC value Label 

Agriculture 10, 11, 12 Rain-fed cropland 

Agriculture 20 Irrigated cropland 

Agriculture 30 Mosaic cropland (> 50%)/natural vegetation (tree, shrub, herbaceous cover) 

(< 50%)) 

Agriculture 40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland 

(< 50%) 

Forest 50 Tree cover, broadleaved, evergreen, closed to open (>15%) 

Forest 60, 61, 62 Tree cover, broadleaved, deciduous, closed to open (> 15%) 

Forest 70, 71, 72 Tree cover, needle-leaved, evergreen, closed to open (> 15%) 

Forest 80, 81, 82 Tree cover, needle-leaved, deciduous, closed to open (> 15%) 

Forest 90 Tree cover, mixed leaf type (broadleaved and needle-leaved) 

Forest 100 Mosaic tree and shrub (>50%) / herbaceous cover (< 50%) 

Forest 160 Tree cover, flooded, fresh or brakish water 

Forest 170 Tree cover, flooded, saline water 

Grassland 110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%) 

130 Grassland 

Wetland 180 Shrub or herbaceous cover, flooded, fresh-saline or brakish water 

Settlement 190 Urban 

Other,  120—122 Shrubland 

Sparse 140 Lichens and mosses 

Vegetation 150—153 Sparse vegetation (tree, shrub, herbaceous cover) 
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Bare area 200—202 Bare areas 

Water 210 Water 

 
Table S.2. Summary data for the economic variables, forest rents (% GDP), agriculture (and forestry, and 
fishing) value added (% of GDP), and HDI with forest cover for each island 

 

Island Forest rents (% of GDP) 
Agriculture, forestry, and 
fishing, value added (% of 

GDP) 
HDI 

Name 1992 2015 1992 2015 1992 2015 

Anadaman and 
Nicobar 

0.614 0.302 26.67 16.174 0.44 0.63 

Antigua and Barbuda No data No data 1.803 1.6123 No data 0.77 

Bahamas No data No data 2.663 0.821 No data 0.80 

Cuba 0.231 0.084 12.427 3.835 0.66 0.77 

Cyprus 0.011 0.009 5.724 1.8629 0.74 0.86 

Dominican 
Republic 

0.056 0.048 12.013 5.485 0.61 0.73 

Fiji 0.470 0.756 17.583 7.872 0.65 0.72 

Haiti 1.167 0.946 34.121 17.417 0.42 0.49 

Indonesia 1.318 0.523 19.521 13.493 0.53 0.70 

Jamaica 0.351 0.205 No data 6.309 0.65 0.72 

Japan 0.018 0.015 No data 1.114 0.82 0.91 

Martinique No data No data No data No data No data No data 

Mauritius 0.020 0.001 10.0127 3.154 0.63 0.79 

Philippines 0.58 0.265 21.821 10.260 0.6 0.70 

Papua New Guinea 3.771 2.711 25.979 17.457 0.39 0.54 

Puerto Rico No data No data 1.2128 0.827 No data No data 

Singapore 0.001 0.000 0.197 0.0326 0.74 0.93 

Solomon 7.310 21.48 44.414 No Data No data 0.55 

Sri Lanka 0.508 0.122 26.122 8.184 0.63 0.77 

Taiwan 0.001 0.002 21.329 8.422 0.52 0.74 
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Tasmania 0.188 0.119 3.053 2.373 0.87 0.93 

Vanuatu 0.903 0.814 16.20 25.842 No data 0.60 

Zanzibar 11.114 3.994 44.704 26.746 0.37 0.52 

 
 
 

 

Fig. A.1 Forest relative cover for each island for the years 1992 and 2015 (used to determine percentage net 
forest change (Figure 1)).  
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