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Does experimentally quieting traffic noise benefit people and birds?
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ABSTRACT. Protected natural areas are not free from noise, especially noise generated by traffic within park boundaries. Natural
soundscapes are important for maintaining community structure, providing positive visitor experiences, and increasing visitor support
for management actions that reduce impacts on natural resources. To test experimental quieting as a strategy to increase both wildlife
habitat quality and visitor experience, we enforced decreased speed limits and presented educational signage to reduce sound levels
along a road system in an alternating, on–off block design within Grand Teton National Park, Wyoming, USA. We continuously
recorded background sound levels while conducting bird space use assessments and visitor-intercept surveys along the experimental
corridor. Our mitigation approach lowered sound levels during sign-present weeks, yet there was no relationship between bird space
use near roadways and traffic noise, perhaps due to the increased duration of noise exposure created by lower speed limits. There was,
however, a relationship between visitor perception of birdsong diversity and background sound level. Critically, visitors preferred
soundscape mitigation strategies limiting personal access in exchange for better experiences in natural soundscapes.
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INTRODUCTION
A 60% increase in global road length is anticipated by 2050, or
25 million more kilometers of roadway than existed in 2010
(Dulac 2013). Roads have been instrumental in facilitating
economic growth, yet their presence has many negative effects on
ecological systems (Coffin 2007, Fahrig and Rytwinski 2009). In
addition to decreasing habitat, roads fragment landscapes,
dramatically increase land colonization, and lead to
overexploitation of wildlife and other natural resources
(Laurance et al. 2014, Ibisch et al. 2016). Traffic on roads comes
with an additional suite of problems that are difficult to
disentangle, including visual disturbance, large-scale deposition
of chemical pollutants, direct mortality from collisions, and
substantial noise pollution (Reijnen and Foppen 2006). However,
the traffic noise effect zone can be higher than the footprint of
other road effects (Madadi et al. 2017). Even protected areas are
not free from traffic noise exposure; in fact, traffic is the largest
source of anthropogenic noise in protected areas in the United
States (Buxton et al. 2017).  

Anthropogenic noise alters animal behaviors, distributions, stress
responses, and fitness (Barber et al. 2010, Kight and Swaddle
2011, Francis and Barber 2013, Shannon et al. 2016). Elevated
sound levels can mask acoustic information, lead to distraction,
or induce informational masking (Dominoni et al. 2020). Small
changes in sound levels matter and can result in negative responses
in wildlife (Shannon et al. 2016). Studies focused on traffic noise
have described increases in anti-predator behavior (Shannon et
al. 2014), decreases in foraging success (Siemers and Schaub 2011,
Bunkley and Barber 2015), disruption of mate-locating abilities
(Bee and Swanson 2007, Gurule-Small and Tinghitella 2018), and
reductions in reproductive success (Halfwerk et al. 2011, Kight
et al. 2012, Kleist et al. 2018). Experimental, large-scale traffic

noise playback research found that approximately one-third of a
migratory songbird community avoided noise, with near complete
avoidance in some species; further, those individuals that stayed
during migratory stopover showed reduced body condition and
reduced ability to gain weight, providing evidence that traffic
noise alone is a source of habitat degradation (McClure et al.
2013, 2017, Ware et al. 2015).  

Similar evidence indicates that human experiences in protected
natural areas are negatively affected by noise (Pilcher et al. 2009,
Benfield et al. 2018, Miller et al. 2018). Laboratory experiments
found that noise from vehicles resulted in negative ratings of both
landscape quality (Weinzimmer et al. 2014) and the soundscape
(Marin et al. 2011). Although the National Park Service (NPS)
manages soundscapes as a protected resource per NPS Director’s
Order #47 (Peel 2000), national parks are not free from noise
exposure (Barber et al. 2011, Lynch et al. 2011). A recent study
found that noise pollution, primarily from traffic, doubled sound
levels in nearly two-thirds of protected areas and resulted in a ten-
fold increase in approximately one-quarter of protected areas
(Buxton et al. 2017). The pressures associated with traffic do not
go unnoticed by park managers. In a system-wide national park
unit questionnaire assessing road impacts on wildlife populations
(N = 106), more than one-half  of the units responded that
transportation within their park unit was at or above capacity,
around one-quarter of units noted that traffic volumes were high
or very high and expected to increase, and approximately one-
half  of units expected effects to worsen over the subsequent five
years (Ament et al. 2008). What remains unclear is the
effectiveness of real-world traffic noise mitigation, and if
successful, whether visitor-wildlife interactions are improved
through soundscape mitigation.  
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We evaluated traffic speed reduction as a possible noise mitigation
strategy through a manipulative study using reduced speed limits
and educational signage in Grand Teton National Park, USA.
While alternating between sign-absent and sign-present treatment
conditions, we simultaneously conducted bird counts and visitor-
intercept surveys to test whether slower speeds, and associated
quieter background sound levels, increased habitat use for birds
and improved experiences for people. Previous research has called
for investigations into reduced speed limits as a management
strategy for improving roadside bird habitat (Parris and Schneider
2008, Ware et al. 2015, Francis et al. 2017). We predicted that
speed limit reductions would decrease background sound levels,
thus increasing bird space use near the roadway and increasing
positive visitor experiences in the park. Positive experiences, as
mediated through the soundscape, may increase visitor
willingness to trade-off  personal freedoms, such as speed limits,
in return for opportunities to experience increased natural
soundscapes and biodiversity.

METHODS

Study site
We conducted our study in 2016 in Grand Teton National Park,
Wyoming, USA (43°52’ N, 110°23’ W) during summer, which is
peak season for breeding birds and visitor use. Traffic
manipulations occurred along the John D. Rockefeller Jr.
Parkway/US-191/US-287/US-89 highways in the east-central
region of the park known as Oxbow Bend. During the 2016 NPS
centennial, Grand Teton National Park received the second
highest number of recreational visitors up to that year, with > 3.2
million individuals visiting the park (National Park Service 2017).

Traffic manipulations
Traffic manipulations rotated in an on–off schedule during a total
of 10 one-week blocks from 6 June to 14 August 2016. Because
of project reconfiguration, week 3 through week 6 did not
alternate and instead consisted of two sign-absent weeks (week 3
and week 4) followed by two sign-present weeks (week 5 and week
6). During treatment blocks we reduced speed limits from 72 to
40 km/h and placed roadside educational and enforcement
signage both northbound and southbound along the ~2.5 km
experimental road corridor (Fig. 1; Fig. S1 in Appendix 1). We
placed two decibel meter signs within the corridor facing each
direction. The signs used a wireless sound level reader placed in
the road shoulder leading to the display that showed the sound
level of the passing vehicle on a green-yellow-red scale, where
green = low, yellow = intermediate, and red = high).  

We collected vehicle speed data within the road corridor using a
PicoCount 2500 (https://www.vehiclecounts.com) automatic
traffic counter and classifier to calculate the average traffic count
and average traffic speed. Two pneumatic tubes were stretched
over the highway approximately 91 cm apart and secured with
rope and spikes in the road shoulder. Using the program
TrafficViewer Pro (https://www.vehiclecounts.com), we summarized
traffic counter data into five speed ranges. Speed data were non-
normally distributed and analyzed using a Kruskal-Wallis test
with the “kruskal.test” function in R (R Core Team 2016) for each
treatment condition. The traffic counter was operational from 8
June through 21 June, 28 June through 30 June, and 12 July
through 7 August 2016.

Fig. 1. Survey locations and site layout along experimental road
corridor.

Acoustic measurements
To assess background sound levels between treatment blocks
during the 70-day study, we continuously measured hourly L50
levels (sound level met or exceeded for 50% of the measurement
time) along the road corridor using 13 acoustic recording units
(ARUs; R-05s, Roland, California, USA) located between ~50
and 200 m from the roadway (Fig. 1). ARUs were suspended
within a camouflaged fabric windscreen and mounted to
vegetative structures approximately 1 to 1.5 m off the ground.
Units were set to record MP3 files using a 44.1 kHz sampling rate
and 128 kilobits-per-second recording mode. ARUs were powered
by lithium iron phosphate (LiFePO4) rechargeable batteries
(https://www.batteryspace.com) housed within a waterproof
plastic container, and power supply cords were encased within
rubber hosing to protect them from damaged caused by small
mammals.  

We converted a total of 19,386 h of acoustic recordings using
custom programs AUDIO2NVSPL and Acoustic Monitoring
Toolbox (Damon Joyce, programmer, NPS) into hourly L50
sound pressure levels. Data from two ARUs were excluded from
the analysis because the stations fell outside the experimental road
corridor. Data from 10 July 2016 were excluded from the analysis
because of elevated ambient noise because of heavy precipitation.
From these hourly values, we calculated the daily average for each
site using the period between 1 h prior to and after (0600 to 1300)
point count start and end times, resulting in a total of 4728 h
measured. We compared daily average L50 A-weighted decibels
(dB[A]), or decibels adjusted based on human hearing), using the
Wilcoxon rank-sum test between sign-absent and sign-present
treatment blocks across all ARU sites. Missing data for three dates
were estimated for use in bird survey analysis by averaging sound
pressure levels from the two closest dates with available data.

Bird surveys
We surveyed birds 20 times at each of 10 sites co-located with
ARUs throughout the 10-wk period. We added one site during
the study and used the final six weeks of survey data (12 surveys)
from this site in subsequent analyses. Our single observer
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Table 1. Comparison of marginal utility coefficients between sign-absent and sign-present treatment groups.
 
Attribute Coefficient

difference
Asymptomatic t-

ratio†
P

Information and enforcement management actions
1. No signs are posted along the road about natural quiet --- --- ---
2. Signs are posted along the road educating visitors about natural quiet 0.518 3.542 < 0.001
3. Signs are posted along the road educating visitors about natural quiet and asking visitors to limit

noise
0.310 1.676 0.009

4. Signs are posted along the road educating visitors about natural quiet and asking visitors to limit
noise, and rangers are stationed along the road to limit visitor-caused noise

0.407 2.277 0.002

5. Signs are posted along the road educating visitors about natural quiet and asking visitors to limit
noise, and rangers are enforcing visitors to limit noise along the road

0.254 1.616 0.107

Speed limits
1. You can drive 72 km/h (45 mi/h) on park roads near important wildlife habitat --- --- ---
2. You can drive 56 km/h (35 mi/h) on park roads near important wildlife habitat 0.512 5.253 < 0.001
3. You can drive 40 km/h (25 mi/h) on park roads near important wildlife habitat 0.140 0.733 0.464
4. You can drive 24 km/h (15 mi/h) on park roads near important wildlife habitat --- --- ---
†The sample sizes used to calculate the t-ratios are the number of respondents for each of the groups.

completed twice-weekly bird count surveys between 0700 and
1200 based on a modified protocol developed by Rocky Mountain
Bird Observatory (Hanni et al. 2009). Because detection of birds
varies by both date and time, we randomized point count location
order. Surveys lasted for 5 min each, with our observer recording
both the total number of birds observed and method of
observation (e.g., visual, song) for each minute of the survey. Our
observer used a laser rangefinder (TruPulse 360R, Laser
Technology, Inc., Colorado) to record the distance from bird
count center for each observation. We truncated our bird count
analysis to observations within 50 m to allow for a fine-scale
understanding of space use within a bird’s territory.  

After testing for the effect of treatment on bird count detectability
(Appendix 1), we analyzed bird counts with package “lme4”
(Bates et al. 2015) in R using a generalized linear mixed-effects
model (GLMM) with total bird count by site as the response
variable, daily-averaged L50 (dB[A]) and Julian date as fixed
effects, and site as a random effect. Fixed effects were scaled for
interpretation and to allow individual models to converge. Julian
date was included because of its relationship with both
background sound levels (our systematic on–off block design)
and bird count (e.g., lower counts in the latter parts of the breeding
season). Conditional R² values (R²GLMM[C]), i.e., variance
explained by both fixed and random effects, were calculated using
package “MuMIn” (Bartoń 2016) and function “r.
squaredGLMM” in R. In addition to a GLMM incorporating
total bird count for all species per site, individual GLMMs were
built for each species with > 100 overall observations.

Visitor behavior and experience
Trained university researchers used intercept survey techniques
to sample Grand Teton National Park visitors systematically
between 19 July and 14 August 2016. We stratified data collection
to represent weekends, weekdays, time of day (all times during
daylight hours), and sign-absent and sign-present periods. To
avoid a self-selection bias when intercepting a group, the person
with the most recent birthday was asked to participate in
completing the survey. Participants received a laminated copy of
the survey, and responses were recorded in situ by survey
administrators on an electronic tablet device using Qualtrics
survey software to securely store data.  

Intercept surveys assessed visitor trade-offs among a range of
potential management actions related to soundscape
management in Grand Teton National Park. The survey included
nine different paired scenarios, of which participants were asked
to make a discrete choice between the two. These methods reflect
the complex nature of park management in that they force
respondents to make trade-offs among conflict desires, including
access and ecological protection (Newman et al. 2005). We
developed two versions of the survey to increase the number of
scenarios tested. Management actions included both direct (e.g.,
enforcement, restrictions) and indirect (e.g., education,
information) components for two different attributes:
information to enforcement and speed limits (Table 1; Manning
2011). Information to enforcement contained five different levels
of sign use and enforcement, and the speed limit attribute focused
on driving speed near important wildlife habitat (Table 1). Sound
preference was measured as an attribute and used to standardize
the statistical model across the two groups (signs present and signs
absent) to allow for comparison.  

The survey included a stated choice experiment (Holmes et al.
2017) in which visitor responses were combined and analyzed to
produce estimates, or utility scores, for the level of preference for
each of the attributes. Higher utility scores indicate more
preference for an attribute, and lower ones indicate less of a
preference. This approach has been used in a wide variety of
environmental and natural resource management settings,
including many in the area of outdoor recreation and park
management to explore visitor preferences (Lawson and Manning
2002, 2003, Newman et al. 2005, Cahill et al. 2008).  

We used random parameter (mixed) logit modeling to analyze the
stated choice data and estimate the utility scores representing the
level of preference for each of the attributes. To analyze our stated
choice model, we dummy coded the attributes of information to
enforcement and closures. We used the management action “no
signs are posted along the trail about natural quiet” and “trails
are open during operating hours” as the baseline condition. The
estimates of each attribute therefore indicate the marginal
changes in utility score from the corresponding baseline
condition. To compare utility scores between sign-absent and
sign-present groups we used t-tests.  

https://www.ecologyandsociety.org/vol26/iss2/art32/


Ecology and Society 26(2): 32
https://www.ecologyandsociety.org/vol26/iss2/art32/

In our intercept surveys, we also asked visitors about the
importance of 18 different reasons and motivations for park
travel. We created a sound motivation index based on a subset of
the reasons and motivations that pertained to the importance of
sound and sound experience (e.g., to enjoy the natural quiet and
sounds of nature, get away from the noise at home, enjoy the peace
and quiet, and hear the sounds of nature). Individuals with a
higher sound motivation index score were more motivated to
experience natural sounds during their park visit.  

In addition, we assigned a noise sensitivity index score to
respondents based on a five-question noise sensitivity survey. The
survey asked respondents whether they agree or disagree with
whether they are sensitive to noise, have difficulty relaxing in a
noisy place, get mad at people who make noise and prevent them
from falling asleep or getting work done, get annoyed with noisy
neighbors, and get used to noises without much difficulty.
Individuals with a higher noise sensitivity score had greater
sensitivity to noise and noisy places.  

Visitor-intercept surveys also asked respondents to rate bird
chorus diversity based on their listening experience that day, as
well as to rank soundscape pleasantness on a six-point categorical
scale from very unpleasant to very pleasant. Using the “polr”
function in R package “MASS” (Venables and Ripley 2002), we
performed proportional odds logistic regressions to assess visitor
perception of birdsong diversity and visitors’ pleasantness
ranking of the soundscape. We used the number of species
counted during bird surveys and the hourly sound level for the
hour in which the survey was administered as predictors in each
respective model. The ARU closest to the turnout location where
surveys were administered was used for the hourly sound level
measurement. We also used the polr function to assess the
relationships between hourly sound level, sound motivation, noise
sensitivity, and visitor ratings of soundscape pleasantness. Given
the novel nature of this research, we focused on linear
relationships in the bird chorus diversity and soundscape
pleasantness analyses.

RESULTS

Acoustic environment and road manipulations
Sound levels (L50 dB[A]) along the road were higher during sign-
absent treatment blocks (Wilcoxon rank-sum test, N = 687, W =
74,404, P < 0.001). Sign-absent sound levels averaged 46.9 ± 0.10
dB(A) (mean ± standard error [SE]), whereas sign-present levels
averaged 45.4 ± 0.10 dB(A), a 1.5 dB reduction. This decrease in
background sound levels between sign-absent and sign-present
blocks is equivalent to ~29% increase of an individual’s listening
area, the distance at which an individual is able to detect acoustic
signals (Barber et al. 2010).  

Our traffic counter quantified 114,819 northbound and
southbound vehicles during the sign-absent treatment blocks and
109,090 vehicles during sign-present treatment blocks. The
majority of vehicles were categorized as traveling 72 to 79 km/h
(N = 46,199) during sign-absent blocks and 56 to 63 km/h (N =
21,564) during sign-present blocks (Table S1 in Appendix 1). After
grouping events into four speed limit bins, we found a relationship
between driving speed and treatment for the 8 to 38 km/h
(Kruskal-Wallis chi-squared = 51.62, N = 6129, df = 1, P < 0.001),
40 to 79 km/h (Kruskal-Wallis chi-squared = 6.90, N = 172,605,

df = 1, P = 0.009), and 80 to 119 km/h (Kruskal-Wallis chi-
squared = 37.73, N = 45,044, df = 1, P < 0.001) speed limit bins
(Table S2 in Appendix 1), with vehicles driving slower when
mitigation signage was present. There was no relationship
between driving speed and treatment for the ≥ 120 km/h speed
limit bin (Kruskal-Wallis chi-squared = 0.17, N = 131, df = 1, P 
= 0.68; Table S2 in Appendix 1).

Bird observations
We recorded 1402 observations of 43 bird species within 50 m of
the center of our bird count locations (Table S3 in Appendix 1).
Of these observations, eight species were recorded ≥ 50 times,
representing 68% of all observations. In our model incorporating
bird count for all species, there was no relationship between bird
count and sound level (N = 212, standard deviation [SD] = 3.38,
scaled β = −0.05 ± 0.06, P = 0.32, 95% confidence interval [CI]:
−0.16 to 0.05). However, there was a significant negative
relationship between bird count and Julian date (N = 212, SD =
20.22, scaled β = −0.21 ± 0.03, P = < 0.001, 95% CI: −0.27 to
−0.16; Table S4 in Appendix 1). In the individual models for each
of the four species with >100 observations (Setophaga petechia,
Yellow Warbler; Zonotrichia leucophrys, White-crowned Sparrow;
Empidonax oberholseri, Dusky Flycatcher; Vireo gilvus, Warbling
Vireo), there was no relationship between species count and
background sound levels (Table S4 in Appendix 1). However, three
of four models found a negative relationship between bird count
and Julian date (Yellow Warbler: N = 212, scaled β = −0.32 ± 0.06,
P < 0.001, 95% CI: −0.44 to −0.20; White-crowned Sparrow: N 
= 212, scaled β = −0.07 ± 0.08, P = 0.40, 95% CI: −0.23 to 0.09;
Dusky Flycatcher: N = 212, scaled β = −0.21 ± 0.10, P = 0.03,
95% CI: −0.40 to −0.02; Warbling Vireo: N = 212, scaled β =
−0.45 ± 0.10, P < 0.001, 95% CI: −0.65 to −0.26).

Visitor experience of bird chorus diversity and soundscape
pleasantness
A total of 471 individuals agreed to complete the survey, resulting
in an 82% response rate from the sampling effort. Visitor rating
of bird chorus diversity showed a negative relationship with sound
level (N = 468, β = −0.11 ± 0.03, P < 0.001, 95% CI: −0.18 to
−0.05; Fig. 2A). Sound level was not a predictor of visitor ranking
of soundscape pleasantness (N = 460, β = 0.02 ± 0.03, P = 0.38,
95% CI: −0.03 to 0.08). However, visitor noise sensitivity and
motivation to experience sounds in the park were predictors of
their rankings of soundscape pleasantness, with increasing noise
sensitivity decreasing pleasantness scores (N = 460, β = −0.34
± 0.09, P < 0.001, 95% CI: −0.52 to −0.17; Fig. 2B) and increasing
motivation to experience sounds increasing pleasantness scores
(N = 460, β = 0.25 ± 0.09, P < 0.01, 95% CI: 0.08 to 0.43; Fig. 2B).

Visitor preferences for soundscape management strategies
In the random parameter logit model, the management actions
“No signs are posted along the road about natural quiet,” “You
can drive 72 km/h on park roads near important wildlife habitat,”
and “Park roads near important wildlife habitat are open 24 h”
were used as the respective baseline condition, and therefore, the
associated coefficients were normalized to zero (Table 2).
Overwhelmingly, visitors supported at least some form of visitor-
caused noise management through sign use, as indicated by the
significantly positive utility scores for all four management
actions with signs posted (Table 2). Of all management options
involving signage, visitors’ strongest preference was for signs that
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educated visitors about natural quiet, asked visitors to limit their
noise, and had rangers stationed along the road to limit visitor
noise. Collectively, visitors had the highest utility scores for
management options “Signs are posted along the road educating
visitors about natural quiet and asking visitors to limit noise” and
“Signs are posted along the road educating visitors about natural
quiet and asking visitors to limit noise, and rangers are stationed
along the trail to limit visitor-caused noise.” Both of these options
promote an appreciation of natural quiet and move to limit visitor
caused noise (indirectly through signs and rangers). The
significant SDs of the attribute coefficients (Table 2) indicate that
although, on average, respondents support management options
for limiting noise, there is considerable preference heterogeneity
among respondents.

Fig. 2. Background sound levels and visitor traits affect
soundscape experiences. (a.) Probability of visitor-reported bird
chorus diversity ratings in response to sound level (L50 dB(A)).
(b.) Probability of visitor-reported soundscape pleasantness
ratings in relation to sound motivation and noise sensitivity
indexes.

On average, respondents supported reducing the speed limit from
72 km/h to 56 km/h or 40 km/h, as evidenced by the significant
coefficients for the 56 km/h and 40 km/h management levels (Table
2). The insignificant coefficients of road closure indicated that
respondents are not against management actions limiting access
for protecting breeding bird chorus, either after dawn or after
dawn and evening. The significant SDs of the associated
coefficients indicated that the respondents’ opinions vary (Table
2).  

These patterns were consistent across both sign-absent and sign-
present periods. The presence of mitigation signage affected

visitor preference for mitigations action. To test the differences
between the two coefficients across the control and treatment, we
estimated the individual parameters conditional on the choices
made for the nine choice scenarios for all respondents (Revelt and
Train 2000) and performed t-tests (Table 1). Three of four utility
scores, quantitative proxies of visitor management action
preferences for level of sign use (information to enforcement;
Table 1), showed a relationship with treatment condition (N = 2,
P < 0.01; N = 1, P < 0.001; Fig. 3). In other words, when mitigation
signage was present, visitors more strongly preferred three of four
sign management actions than when mitigation signage was
absent. Only one of three utility scores for speed limit levels (“You
can drive 56 km/h on park roads near important wildlife habitat”;
Table 1) showed a relationship with treatment condition (P <
0.001; Fig. 4). When signs were present, visitors more strongly
preferred reducing speed limits from 72 km/h to 56 km/h
compared to respondents in the sign-absent treatment condition.
Neither of the two management levels for road closures were
supported by visitors (P > 0.05; Table 2).

Fig. 3. Comparison of marginal utility coefficients for
information and enforcement management actions. Significant
differences between signs present and signs absent conditions
are indicated by asterisks, where *p < 0.05, **p < 0.01, ***p <
0.001

DISCUSSION
Our experimental quieting via speed limit reductions and
educational signage along the Oxbow Bend road corridor in
Grand Teton National Park decreased background sound levels,
thereby increasing opportunities for visitor to hear birds. When
signs were present, people more strongly preferred management
options aimed at managing soundscapes and lowered their noise
footprint through compliance with speed limit reductions.
However, there was no relationship between measured sound
levels and bird space use near the road corridor. Additionally,
visitor-reported soundscape pleasantness did not show a
relationship with background sound levels measured at the time
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Table 2. Results from the stated choice model for visitor preferences for soundscape management for sign-absent and sign-present
conditions. All parameters are assumed to be normally distributed, while correlations are allowed only within levels of each attribute.
The model was normalized by preference for bird song.
 

Signs present (treatment) Signs absent (control)

Attribute Coefficient SE† P Coefficient SE† P

Information and enforcement management actions
1. No signs are posted along the road about natural quiet Baseline condition -- -- Baseline condition -- --
2. Signs are posted along the road educating visitors about

natural quiet
1.796 0.332 < 0.001 1.278 0.323 < 0.001

3. Signs are posted along the road educating visitors about
natural quiet and asking visitors to limit noise

2.063 0.353 < 0.001 1.753 0.341 < 0.001

4. Signs are posted along the road educating visitors about
natural quiet and asking visitors to limit noise, and
rangers are stationed along the road to limit visitor-
caused noise

2.238 0.364 < 0.001 1.831 0.376 < 0.001

5. Signs are posted along the road educating visitors about
natural quiet and asking visitors to limit noise, and
rangers are enforcing visitors to limit their noise along
the road

2.224 0.335 < 0.001 1.970 0.345 < 0.001

Speed limits
1. You can drive 72 km/h (45 mi/h) on park roads near

important wildlife habitat
Baseline condition -- -- Baseline condition -- --

2. You can drive 56 km/h (35 mi/h) on park roads near
important wildlife habitat

1.431 0.264 < 0.001 0.919 0.245 < 0.001

3. You can drive 40 km/h (25 mi/h) on park roads near
important wildlife habitat

1.169 0.282 < 0.001 1.029 0.302 < 0.001

4. You can drive 24 km/h (15 mi/h) on park roads near
important wildlife habitat

0.170 0.341 0.618 0.039 0.351 0.911

Closures
1. Park roads near important wildlife habitat are open 24 h Baseline condition -- -- Baseline condition -- --
2. Park roads near important wildlife habitat are closed 1 h

after dawn for the morning breeding bird chorus
0.126 0.174 0.470 −0.156 0.196 0.425

3. Park roads near important wildlife habitat are closed for
1 h after dawn and 1 h in the evening for the breeding
bird chorus

0.251 0.216 0.246 −0.073 0.224 0.744

Number of choice questions 3752
Number of parameters 61
Log-likelihood ratio −1999.15
Pseudo R² 0.2175
†Standard error

Fig. 4. Comparison of marginal utility coefficients for speed
limit management strategies to reduce roadside background
sounds levels. Significant differences between signs-present and
signs-absent conditions are indicated by asterisks, where ***P 
< 0.001. 35 MPH = 56 km/h, 25 MPH = 40 km/h, and 15 MPH
= 24 km/h.

surveys were administered. The sound level relief  we measured
(1.5 dB[A]) was at a level greater than the amount at which humans
are able to distinguish a noticeable difference (1 dB over a range
of sound levels; National Research Council 2004). There was a
positive relationship between soundscape pleasantness and visitor
motivation to hear sounds and a negative relationship between
soundscape pleasantness and visitor noise sensitivity. We found
a positive feedback loop, whereby mitigation actions decreased
sound levels, increased access to natural sounds, and resulted in
stronger visitor support for soundscape mitigation strategies and
quieter soundscapes.  

Although ratings of soundscape pleasantness did not change,
visitors perceived greater bird diversity when mitigation signage
was present and sound levels were lower, which is an important
finding relating to visitor experiences in protected natural areas.
Opportunities to experience natural sounds such as birdsong are
ranked as key motivations and reasons for protecting these spaces
(Marin et al. 2011). Birds were present in the landscape for people
to hear, and when mitigation signage was present and it was
quieter, people perceived greater biodiversity. Increased perceived
biodiversity is linked to a greater valuation of ecosystem services
(Belaire et al. 2015). Under normal speed limits, background
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sound levels may mask these natural sounds from human listeners,
ultimately resulting in lost listening opportunities. Visitor
understanding of conservation actions paired with the realized
benefits of such actions are crucial for the willingness for and
success of mitigation strategies (Ballantyne et al. 2009). This
understanding and realization is key in instilling a sense of
conservation action and support in visitors of protected natural
areas (Ballantyne et al. 2009).  

Unsurprisingly, bird counts decreased as the breeding season
progressed. Despite increases in biodiversity perception, actual
bird use of space near the roadway remained unchanged in
relation to sound level. The relatively small change in sound level
we induced (1.5 dB[A]), in combination with the background
intensity of the acoustic environment (~45 dB[A]), likely limited
our ability to detect a response in birds, even if  present.
Interestingly, although not significant, the fixed effect of sound
level on bird abundance was negative in all models (though the
effect for sound level was < 0.1 for each model).  

One hypothesis for why bird abundance did not change is that
perhaps productive breeding habitat (e.g., riparian areas with
substantial willow cover) in close proximity to the road corridor
outweighed the potential negative effects of remaining in noise-
exposed areas. Another possible reason may be due to changes in
temporal soundscape characteristics caused by speed limit
reductions. Experimental speed limit reductions created longer
noise exposure from vehicle pass by events, for any given location
on the landscape. Instead of vehicles passing at faster speeds and
thereby creating a shorter duration of noise exposure, reductions
in speed limit resulted in a longer period of noise exposure. If  this
exposure level was still above the threshold that would result in
increased use of the area by birds, no change would be expected.
It seems that slower driving speeds might not be the ideal method
for noise mitigation, perhaps due to this extended noise exposure
of individual pass by events. Additionally, birds may have avoided
masking by traffic noise by using gaps in background noise to
more effectively transmit and receive acoustic signals, a strategy
found in multiple species (Gentry et al. 2017, Lee et al. 2017,
Proppe and Finch 2017).  

Slower speed limits and thus reductions in sound level did not
impact visitor rating of soundscape pleasantness. Instead, noise
sensitivity had the strongest effect for predicting ratings of
soundscape pleasantness, matching previous laboratory research
(Guillén and López Barrio 2007, Benfield et al. 2014). Ratings of
soundscape pleasantness may instead be related to visitor
expectations for the roadside parking area where surveys were
administered. Previous laboratory and field research has found
that the majority of participants in these types of studies had pre-
determined expectations of sounds present within spaces, sound
controllability, and the compatibility of behaviors to the spaces
(Davies et al. 2009, Bruce and Davies 2014). Visitors likely
expected to hear traffic noise and understood their lack of control
in avoiding noise along the roadside.  

Although our results demonstrate that signs are an effective noise
mitigation strategy with significant positive impacts on visitor
soundscape experience, we note that our study had limitations.
One such limitation is that we cannot rule out impacts from other
components of road effects such as visual disturbance, chemical
pollution, direct collisions, or downstream consequences of stress.

Importantly, because the reduction in sound level we achieved
was relatively small, we may not have been able to detect changes
in bird behavior if  they were indeed present. As mentioned, our
study occurred during the breeding season when birds had already
established territories and were limited to bounded areas; thus,
we focused on individual space use within set territories, which
was undoubtedly less labile than in other life cycle stages. For
example, it would be interesting to investigate the effects of
experimental quieting during migration (Ware et al. 2015). Other
traffic noise reduction strategies such as quiet pavement or
crepuscular road closures are additional promising avenues of
research.

CONCLUSION
Soundscape management can be used as a conservation tool to
enhance visitor perception and appreciation for nature and
protected areas. Our mitigation actions increased visitor
conservation support through reduced anthropogenic noise
exposure and improved access to natural sounds and biodiversity.
Speed limit reductions resulted in a positive feedback loop,
whereby visitors were willing to increasingly trade-off  access in
order to achieve soundscape and biodiversity conservation.  

Though we did not demonstrate a reduction in bird space use near
the roadway in response to reductions in speed limits and
background sound levels, reducing speed limits should not be
abandoned as a potential soundscape mitigation strategy,
especially as this approach resulted in increased positive
experiences for park visitors. As mentioned, there were limitations
to this study which occurred in a single study area and over one
season. If  managers could change speed limits at multiple sites
and couple quieting efforts with other conservation objectives,
this would provide an excellent adaptive management
opportunity (Williams 2011).  

A large body of research has found that noise has negative effects
on both people and wildlife (Shannon et al. 2016, Francis et al.
2017). No one-size-fits-all approach exists for addressing the
complex issues of roads and traffic noise. Varied and iterative
mitigation approaches will allow managers of protected areas to
find a balance between undue effects on wildlife and visitor
experience and visitor acceptability of these strategies. Finding
ways to quiet roadways is of utmost importance. Our work
suggests that doing so only increases the cry for the conservation
of natural soundscapes.

Responses to this article can be read online at: 
https://www.ecologyandsociety.org/issues/responses.
php/12277
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Supplementary Materials 
 
Bird count detectability 
Detectability can vary with multiple observers (Sauer et al. 1994, Alldredge et al. 2007, McClure 
et al. 2015) and in relation to excessive background noise (Simons et al. 2007, Pacifici et al. 
2008, McClure et al. 2015). To combat the effects of multiple observer bias, our study used a 
single point count observer. Though our average L50 sound levels were below and just above 45 
dB(A), the approximate threshold beyond which impairs human ability to detect birds (Ortega 
and Francis 2012), we examined potential differences in the probability of bird detection 
between sign absent and sign present treatment blocks using package Distance (Miller 2016) in 
Program R. We built several models using the different key functions and modeling detection 
either as intercept-only or as a function of treatment. We then ranked and compared detection 
models using Akaike’s information criterion (AIC) (Arnold 2010). We considered there to be an 
effect of treatment on detection if the factor for treatment was in a model within the top 98% of 
cumulative model weight (Burnham and Anderson 2003) and was not an uninformative 
parameter (Arnold 2010). Although a treatment model was indeed within 98% of the cumulative 
model weight, it was an uninformative parameter because the parameters in the AIC-best model 
were a subset of those in the treatment model and the 95% (and 85%) confidence intervals on the 
treatment coefficient overlapped zero (Arnold 2010). We therefore concluded there were no 
differences in detectability between treatment blocks and did not adjust observation counts 
(Table S5). 
 



 
Fig. S1. Enforcement and educational signage used within the experimental road corridor during 
treatment blocks. 
 
Table S1. Speed limit counts classified by traffic counter.  

Speed (mph) Signs Absent (n) Signs Present (n) 
5-14 mph 90 154 
15-19 mph 68 547 
20-24 mph 125 5,145 
25-29 mph 433 17,871 
30-34 mph 1,395 20,447 
35-39 mph 5,956 21,564 
40-44 mph 22,944 20,899 
45-49 mph 46,199 14,897 
50-54 mph 27,785 5,589 
55-59 mph 7,796 1,469 



60-64 mph 1,558 343 
65-69 mph 303 77 
70-74 mph 87 37 
75-79 mph 24 17 
80-99 mph 56 34 
Total 114,819 109,090 

 
Table S2. Results of Kruskal-Wallis statistical test for driving speed between treatment blocks.  

Speed (mph) n Kruskal-Wallis chi-squared df p 
5-24 mph 6,129 51.62 1 <0.001 
25-49 mph 172,605 6.90 1 0.009 
50-74 mph 45,044 37.73 1 <0.001 
75+ mph 131 0.17 1 0.68 

 
Table S3. Species detected during bird survey counts (<50 m from point count center).  

Common Name Scientific Name Count (#) 
Yellow Warbler Setophaga petechia 317 
White-crowned Sparrow Zonotrichia leucophrys 159 
Warbling Vireo Vireo gilvus 123 
Dusky Flycatcher Empidonax oberholseri 116 
Green-tailed Towhee Pipilo chlorurus 62 
Tree Swallow Tachycineta bicolor 61 
Pine Siskin Spinus pinus 57 
Song Sparrow Melospiza melodia 55 
Lazuli Bunting Passerina amoena 41 
Lincoln's Sparrow Melospiza lincolnii 41 
American Robin Turdus migratorius 37 
Chipping Sparrow Spizella passerina 34 
Common Yellowthroat Geothlypis trichas 33 
Audubon's Warbler Setophaga coronata auduboni 32 
Cedar Waxwing Bombycilla cedrorum 28 
Willow Flycatcher Empidonax traillii 23 
Gray Catbird Dumetella carolinensis 20 
House Wren Troglodytes aedon 19 
Fox Sparrow Passerella iliaca 17 
Red-naped Sapsucker Sphyrapicus nuchalis 16 
Western Tanager Piranga ludoviciana 15 
Mountain Chickadee Poecile gambeli 14 
Brewer's Blackbird Euphagus cyanocephalus 12 
Calliope Hummingbird Selasphorus calliope 10 
Dark-eyed Junco Junco hyemalis 10 
Clark's Nutcracker Nucifraga columbiana 6 
Northern Flicker Colaptes auratus 6 



MacGillivray's Warbler Geothlypis tolmiei 5 
American Goldfinch Spinus tristis 4 
Brown-headed Cowbird Molothrus ater 4 
Black-headed Grosbeak Pheucticus melanocephalus 3 
Broad-tailed Hummingbird Selasphorus platycercus 3 
Rufous Hummingbird Selasphorus rufus 3 
American White Pelican Pelecanus erythrorhynchos 2 
Brewer's Sparrow Spizella breweri 2 
Common Raven Corvus corax 2 
Downy Woodpecker Dryobates pubescens 2 
Hairy Woodpecker Dryobates villosus 2 
Swainson's Thrush Catharus ustulatus 2 
Bullock's Oriole Icterus bullockii 1 
Mountain Bluebird Sialia currucoides 1 
Red-tailed Hawk Buteo jamaicensis 1 
Townsend's Warbler Setophaga townsendi 1 
Total  1,402 

 
Table S4. Generalized linear mixed model results for all species combined and for individual 
bird species with >100 observations. Models include daily-averaged L50 and Julian Date as 
scaled fixed effects and a random effect for site.  The conditional variance (R2

GLMM(c)) is the 
variance explained by both fixed and random effects. *p<.05, ***p<.001 

Scientific Name n   Intercept 

Daily-
averaged L50 

(dB(A)) 
(scaled) 

Julian 
Date 

(scaled) 

Variance 
(Random 
Effect) R2

GLMM(c) 

        
All Species 212 β 1.86 -0.05 -0.21 0.09 0.45 

  S.E. 0.10 0.06 0.03   
  p <0.001*** 0.32 <0.001***   
        

Setophaga petechia 212 β -0.77 -0.04 -0.32 4.21 0.79 

  S.E. 0.65 0.14 0.06   
  p 0.23 0.80 <0.001***   
        

Zonotrichia leucophrys 212 β -0.45 -0.08 -0.07 0.34 0.27 

  S.E. 0.20 0.14 0.08   
  p 0.02* 0.58 0.40   
        

Empidonax oberholseri 212 β -0.81 -0.02 -0.21 0.37 0.26 

  S.E. 0.22 0.16 0.10   
  p <0.001*** 0.88 0.03*   
        



Vireo gilvus 212 β -0.84 -0.09 -0.45 0.34 0.31 

  S.E. 0.22 0.18 0.10   
  p <0.001*** 0.59 <0.001***   

                
  
 
Table S5. AIC table for bird detectability models.  

Model Key Function Formula AIC 𝞓AIC Relative Likelihood 
(exp(-0.5*𝞓AIC)) wi 

Uniform with cosine adjustment 
terms of order 1, 2, 3 NA 10108.01 0.00 1.00 0.30 

Uniform with cosine adjustment 
terms of order 1,2 NA 10108.74 0.73 0.69 0.21 

Hazard-rate ~1 10108.94 0.94 0.63 0.19 
Half-normal with cosine 
adjustment term of order 2 ~1 10110.23 2.22 0.33 0.10 

Half-normal ~1 10110.64 2.63 0.27 0.08 
Hazard-rate ~Treatment 10110.68 2.67 0.26 0.08 
Half-normal ~Treatment 10112.53 4.53 0.10 0.03 

Cumulative Model Weight     3.28   
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