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The water-sensitive city meets biodiversity: habitat services of rain water
management measures in highly urbanized landscapes
Lauranne Pille 1 and Ina Säumel 2

ABSTRACT. Urban water managers face numerous challenges, including limited natural resources for maintenance of technical
infrastructure, changing demography, and dramatic environmental degradation. Although the vision of the “water-sensitive city” helps
to develop tools and strategies toward more sustainable urban water systems, it does not consider biodiversity effects. We therefore
aimed to determine habitat provision or habitat services provided by important rainwater management measures (e.g., ponds, swales,
rain gardens, green roofs, green walls, permeable pavement), and to highlight how specific design and management practices for such
measures enhance urban biodiversity. There is evidence of habitat services provided by rainwater management measures. Nevertheless,
the categorization of such measures as civil engineering structures and their related rules limit efforts to optimize the biodiversity
friendliness of design and management. The main factors to provide enhanced and more sustainable habitats are shaping design and
maintenance according to target species and favoring connectivity by integrating rainwater management measures into the urban blue-
green network. We find that strategic implementation of combinations of rainwater management measures into existing built-up areas
allows greater multifunctionality of urban infrastructure. The “biodiversity-friendly and water-sensitive city” implies the efficient
integration of ecological design measures in urban planning at building, neighborhood, and landscape scales.

Key Words: blue-green city; decentralized water infrastructure; low-impact development; stormwater management; sustainable urban water
drainage; urban biodiversity

INTRODUCTION
Today, urban water managers are faced with many challenges,
including complex demands of urbanization and environmental
degradation, broad organizational and technological diversity
within the water sector, and the uncertainty of global change
(Maksimovic and Tejada-Guibert 2005). Current water
infrastructure and management practice, however were
established mainly in the previous century and are resistant to
change (Brown and Farelly 2009, Apul 2010). Despite growing
awareness of the need for strategic investment in long-term
solutions for sustainable and adaptive urban water management,
institutional inertia in water infrastructure systems is high, and
sustainable urban water management is limited to a few
demonstration projects (Brown and Farrelly 2009, Russo et al.
2014). To future-proof cities, there is a need for a shift from
traditional water management toward more sustainable concepts
(Lienert et al. 2006).  

Centralized infrastructure currently addresses the symptoms of
urban runoff issues, such as flood-prone heat islands, streambank
erosion, and poor water quality, rather than addressing the root
causes. In contrast, decentralized infrastructure can respond by
integrating rainwater management (RWM) measures that favor
the local infiltration of water at the city scale, allowing more
terrestrial vegetation, better local climate regulation, and clean
water supply, and reducing flooding events. Such measures also
represent a cheaper alternative to centralized systems that involve
the construction of important drainage systems (Montalto et al.
2013). Many of the new urban water frameworks that have
emerged (Brown et al. 2008; see Fig. 1, stages I–VI) derive from
the “water-cycle city” approach, which aims: (1) to shift from
traditional centralized water management with large-scale
systems and top-down governance models to decentralized water

management based on small-scale systems with multilevel
governance, and (2) to close water and energy loops involving
rainwater, sewage, and graywater treatment, with specific
adaptation of the water quality to appropriate uses. Two of these
approaches are the “water-sensitive city” and the “blue-green
city”.  

The water-sensitive city approach extends the water-cycle city
approach by including normative values of a hydro-social
contract with regard to environment repair and protection,
security of supply, flood control, public health, amenity, livability,
and economic sustainability (Brown et al. 2008). Governance and
legislation are major drivers of change, and the vision of this
approach has been defined as a transition framework focused on
water governance, allowing assessment of the city’s water-
management transition to more sustainable states. However, the
approach does not include biodiversity targets.  

The blue-green city approach (in which “blue” and “green” have
evolved in parallel) integrates blue and green urban infrastructure
for multiple benefits, including some biodiversity targets (e.g.,
Lundy and Wade 2011, Rozos et al. 2013, Lawson et al. 2014,
Fenner 2017). Unlike the water-sensitive city, however, this
approach does not explicitly address the governance or
socioeconomic dimensions of urban water management,
although some cultural ecosystem services are included (e.g., for
public amenity or tourism). The main focus is rainwater retention,
infiltration, or climate regulation in urban green spaces (De
Vleeschauwer et al. 2014) using urban RWM measures such as
swales, ponds, green roofs, or green facades (Oberndorfer et al.
2007, Ahiablame et al. 2012, Voskamp and Van de Ven 2015).
Although the contributions of urban water infrastructure to
biodiversity and species conservation objectives are recognized in
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Fig. 1. The transition framework of the water-sensitive city represents a typology of different states of urban water management and
describes six distinct but cumulative stages toward the water-sensitive city’s vision. Stages I and III–VII are adapted from Brown et al.
(2008). In contrast to Brown et al. (2008), stage II centers on urban waterways as transport corridors, whereas blue-way city (V) refers
to the rediscovery of urban water bodies in planning and urban design and for environmental protection efforts. The water-sensitive
city can be combined with the currently used concept of the blue-green city (VIII), which focuses on the integration of blue and green
infrastructure, and can be amplified to the biodiversity-friendly and water-sensitive city (IX) to integrate biodiversity targets in the
design of water infrastructure.

these approaches, deeper insights into habitat provision are still
lacking (Lundy and Wade 2011, Williams et al. 2014), particularly
with regard to quantifying their benefits to biodiversity (Fenner
2017).  

In response, here, we extend the current concepts of the
“biodiversity-friendly” and water-sensitive city (Fig. 1, stage IX)
by integrating biodiversity targets and habitat provision (“habitat
services”; Kumar 2010), specifically addressing governance and
socioeconomic aspects lacking in the blue-green city approach. This
use of ecological design principles is a key strategy for the re-
conceptualization of water infrastructure (i.e., reducing engineered
structural components, development of adaptive impermanent
design, incorporating and biomimicking nature’s approaches, and
enhancing habitat diversity; see Apul 2010). We focus on RWM
measures, which are nature-based, cost-effective solutions that
simultaneously provide environmental, social, and economic
benefits and help build resilience in urban areas (European
Commission 2016), specifically measures that are directly related
to urban biodiversity such as swales, ponds, rain gardens, green
roofs, green walls, and permeable pavements. Here, we use the term
RWM measures rather than stormwater management measures to
include all types of run-off waters independent of the intensity of
the rainfall event, and to avoid confusion between similar terms
such as sustainable urban drainage systems, water-sensitive urban
designs, and low-impact development because they have different
scopes and contexts.  

The potential of urban green spaces for biodiversity conservation
and restoration has been considered mainly for medium- to large-
scale green spaces such as urban parks and forests, brownfields,

and gardens (e.g., Goddard et al. 2010, Kowarik 2011). Although
the roles of scale, connectedness, and heterogeneity of these green
spaces have been reviewed and linked to conservation management
(Aronson et al. 2017, Lepczyk et al. 2017), the habitat services of
small-scale artificial ecological systems such as green roofs and
walls, which are designed as technical urban infrastructures, have
not been addressed (Garrard et al. 2018). Therefore, our aims are:
(1) to review habitat services of urban RWM measures (i.e., swales,
ponds, rain gardens, green roofs, green walls, permeable pavement)
to identify biodiversity effects of urban RWM measures and
knowledge gaps, (2) to illustrate management approaches that
enhance the biodiversity friendliness of sustainable urban water
management, and (3) based on strategic implementation of RWM
measures, to discuss steps to be taken toward achieving a
biodiversity-friendly and water-sensitive city.

METHODS
We conducted a qualitative review of all scientific articles written
in English on urban RWM measures indexed in Web of Science
following PRISMA guidelines (Shamseer et al. 2015), using
keywords covering habitat services and RWM measures (Appendix
1). The advanced keyword search (last updated March 2018) in Web
of Science resulted in 830 references related to urban RWM
measures in the topic or title fields, of which more than one-half
(453) were published after 2011. Filtering the results to exclude
papers focused on technical aspects not relevant to our study
resulted in 300 articles from “ecology” and “biodiversity
conservation”. We then screened the titles and abstracts of the
remaining articles, eliminating those not related to our topic. In
case of doubt, we retained the article. Subsequently, we eliminated
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articles lacking access to the full-text version and sent requests
for the most relevant ones. Finally, we performed a full-text review
of the remaining articles. The whole process was conducted
independently by two reviewers, who then jointly reported a
synthesis (Table 1).  

Only 140 papers were found that directly addressed habitat
services or biodiversity of urban RWM measures. We further
included scholarly books and other grey literature found through
cross-references, and we considered studies on other urban green
elements (e.g., parks, gardens) that indicated habitat services or
biodiversity effects of analogous elements in streetscapes. In
addition, we summarized management approaches to foster
biodiversity (Table 1).

RESULTS
We synthesized the results from the review of current knowledge
on habitat services provided by RWM measures, including drivers
and pressures to enhance biodiversity (Table 1). Although
research on ponds and green roofs has produced a body of
literature (respectively 51% and 33% of the fully screened
publications on RWM measures), there is a global and consistent
lack of studies on other urban RWM measures with regard to
habitat services (Table 1, Appendix 1).

Greening city walls and roofs
The potential of green roofs and walls, also called green facades
or living roofs or walls, which are a result of ornamental and
horticultural practice, has been described frequently (for reviews,
see Francis and Lorimer 2011; for roofs: Oberndorfer et al. 2007,
Madre et al. 2014, Thuring and Grant 2016, Van Mechelen et al.
2015a, Blank et al. 2017; for walls: Francis 2011). Analyses of the
potential for building attached vegetation and some related
ecosystem services (e.g., cooling effects) for several cities revealed
that whereas at least one-third of roofs and wall surfaces can be
enveloped by greening, depending on building structure and
statics (Köhler 2006, Francis and Lorimer 2011, Bates et al. 2013,
Nagase and Nomura 2014, Ansel et al. 2016), the architecture of
many buildings might not allow the establishment of roof
gardens.  

Green roofs provide harsh habitats for species (i.e., dryland and
ruderal plant species; Dunnett et al. 2008, MacIvor et al. 2011,
Lundholm et al. 2014, Brown and Lundholm 2015, Catalano et
al. 2016), which cope with pronounced temperature extremes, low
water retention, and low nutrient availability (Francis and
Lorimer 2011, Francis and Chadwick 2013, Thuring and Grant
2016, Catalano et al. 2016). As with other RWM measures, there
are conflicting goals for seed mixtures, e.g., the rapidly filling
vegetation canopy required by engineering conflicts with the
preference for nondominant species to enhance species diversity
(Lundholm et al. 2014). In addition to a limited number of plant
species being sown or planted by standardized installation, there
is turnover in the species composition over years (Köhler 2006,
Köhler and Poll 2010, Catalano et al. 2016). However, green roofs
also can be colonized by native species (Madre et al. 2014,
Yalcinalp et al. 2017). Compared to dispersal-limited species,
anemochorous or zoochorous species are more likely to colonize
such roofs or walls spontaneously (Dunnett et al. 2008; Francis
2011). Roofs and, to a lesser extent, walls also provide habitats
for arthropod communities (Blank et al. 2017) such as spiders

(Köhler and Schmidt 1997, Brenneisen 2006, MacIvor and
Ksiazek 2015, Braaker et al. 2017), collembolans (Schrader and
Böning 2006, Davies et al. 2008, Schindler et al. 2011, MacIvor
and Lundholm 2011, Rumble and Gange 2013, MacIvor and
Ksiazek 2015), insects such as bees, carabids, weevils, cicadas,
aphids, ants, moths, butterflies, flesh flies, bottle flies, and
grasshoppers (Tonietto et al. 2011, Ksiazek et al. 2012, Madre et
al. 2013, Braaker et al. 2014, 2017, Williams et al. 2014, MacIvor
and Ksiazek 2015), bats (Pearce and Walters 2012), and birds
(Baumann 2006, Brenneisen 2006, Fernandez-Canero and
Gonzales-Redondo 2010, Lundholm et al. 2010, Francis 2011,
Chiquet et al. 2013, Williams et al. 2014, Thuring and Grant 2016).
However, although the implementation of green roofs is
frequently mentioned in city biodiversity strategies (e.g., City of
Sydney 2012, Ajuntament de Barcelona 2013, Senatsverwaltung
für Stadtentwicklung und Umwelt 2014), their conservation value
for rare species is as yet poorly documented (Williams et al. 2014).

There are a few studies of green walls, focusing mainly on
technical aspects of these vertical greening systems. Although
such measures often use a few ornamental species (e.g., Vitis,
Hedera, Parthenocissus, Clematis, Wisteria), unvegetated walls
can be colonized spontaneously by ruderal species (Francis 2011)
and, because they are representative of surrounding species
composition, can act as “ecosystem indicators” (Jim and Chen
2010). The walls offer three different habitat types: the top, middle,
and bottom of a facade or wall (Francis and Chadwick 2013). In
dense cities, due to reduced animal frequentation and potentially
low winds, wall colonization is limited (Qiu et al. 2016).

Keeping water in the city through ponds, swales, rain gardens, or
permeable paving
Ponds provide complex aquatic habitats and host a wide range of
species, including amphibians (Holzer 2014, O’Brien 2015,
Holtmann et al. 2017), fish, waterbirds, macroinvertebrates such
as molluscs and insects (Chester and Robson 2013, Hassall and
Anderson 2015, Hill et al. 2017, Thornhill et al. 2017), and
zooplankton such as cladocerans and rotifers (Mimouni et al.
2015). Aquatic and semi-aquatic habitat structures of urban
ponds are largely lost, fragmented, and isolated by urban
hydrology (Briers 2014), and also are endangered by multiple
pollution risks (Hassall and Anderson 2015). Because temporary
ponds are particularly vulnerable to soil drainage and pollution,
they are especially threatened compared to other small water
bodies (Nicolet et al. 2004). Although the species richness of
aquatic fauna is negatively affected by increasing urbanization
(Hamer and McDonnell 2008), depending on the design and the
urban environment, stormwater ponds contain similar levels of
biodiversity and macroinvertebrate community structure
compared to natural wetlands (Vermonden et al. 2009, Hassall
and Anderson 2015, but see Noble and Hassall 2015), and urban
ponds provide habitats for aquatic or semi-aquatic species (Oertli
et al. 2002, Vermonden et al. 2009, Hill et al. 2017) and species
with an aquatic life-cycle phase (Thornhill 2012). Simultaneously,
ponds constitute favorable environments for the development of
invasive species (Shochat et al. 2010, Hill et al. 2017), but such
undesired aquatic invasions, which occur especially in nutrient-
rich waterbodies with high vegetation cover, can be mitigated
through proper management (Bryant and Papas 2007,
Vermonden et al. 2009, Hamer and Parris 2011).  
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Table 1. Synthesis of habitat services provided by different rainwater management (RWM) measures; drivers (D) and pressures (P) of
biodiversity impacts; and options for the planning, design, and management of RWM measures. Numbers in parentheses corresponded
to literature references provided in Appendix 2.
 
RWM measure Habitat services Drivers and pressures of biodiversity impacts Options for planning, design, and management

Green roofs (GR) Can host various native and non-
native plant species (4, 8, 20, 24,
45, 104, 114, 116, 93–95, 147,
156, 158, 161); species are mostly
generalist and cosmopolitan, 
associated with dry, exposed,
disturbance-prone habitats (143);
colonizing species are mostly
ruderal and wind dispersed (24,
149); high species turnover (24,
45, 93, 149); GRs host birds,
reptiles, mammals (such as bats),
arthropods such as insects (e.g.,
bees, butterflies, moths, beetles,
grasshopers, flies, mites,
collembolans), and spiders (5, 6,
11, 14, 15, 17, 21, 37, 42, 46, 47,
49, 59, 65, 83, 87, 95, 102, 105,
113, 117, 122, 126, 131, 133, 135,
146, 147, 155, 156, 158, 160)
• Conservation value: GRs host
few endangered species; the
potential of GRs for ex-situ
conservation of species remains
unexplored (5, 6, 17, 20, 59, 87,
93, 101, 104, 105, 126, 146, 147,
155, 158); GRs act as urban
“stepping stones” and as
ecological corridors for a wide
range of animal species (2, 8, 14,
42, 117, 147, 156, 158)

Local scale:
• D/P: Local settings (e.g., shading, exposure) determine
GR vegetation and resilience; species composition
depends on GR age, size, height, design, and local
climate (2, 15–17, 24, 45, 47, 49, 93, 100, 101, 124, 131,
132, 143, 149, 155, 156, 158, 160); plant species function
differently whether in monoculture or mixture (33, 115);
occurrence of fauna and flora species can depend on
presence of other key species (110); GRs can act as a
source or a trap for endangered species, depending on
their mobility and ability to survive the harsh climates
of roofs (5, 101, 158)
• P: GRs are highly isolated; species composition can be
limited, especially for low-mobility species (2, 15, 65,
101–103, 146); uniform designs lead to the dominance of
few plant and animal species (4, 15, 83, 87, 104, 131,
158); high-intensity management does not allow
spontaneous vegetation (15, 45, 143)
• D: Substrate and plant species heterogeneity enhance
biodiversity (4, 15, 47, 101, 104, 106, 131, 143, 149,
158); shallow substrate and open space allow
spontaneous vegetation (15, 102); mycorrhizal fungi 
could enhance soil productivity and plant growth (109,
143) and could promote the establishment of
invertebrates that support decomposition and nutrient
cycling (101); invertebrates help pest control (101);
biomass accumulation promotes biodiversity resilience
(71, 101, 149)

Landscape scale:
• D/P: Regional factors determine vegetation structures
and their resilience (2, 15, 24, 45, 47, 100, 101, 155,
161); surrounding land uses affect biodiversity, especially
of invertebrate and bird communities (2, 15, 17, 32, 49,
65, 93, 101, 124, 131, 146, 156, 158, 160)
• D: GRs enhance habitat connectivity during breeding
periods (47)

Planning:
Enhance context sensitivity by consideration of local
setting (2, 101); GR planning at landscape scale for
optimized horizontal and vertical connectivity within
the urban network via stepping-stone effects (2, 14,
15, 42, 101–103, 131, 158); careful evaluation of the
ecology of wanted (e.g., endangered) species prior to
ex-situ implementation of GR (149, 158)

Design:
Create a habitat mosaic by using varying substrate
types and depths, altering drainage regimes, and
heterogeneous vegetation structure (4, 17, 33, 42, 47,
54, 59, 63, 83, 94, 101, 104, 106, 143–145, 149, 153,
155, 160); create refuges with sandy, stony, and rocky
areas, and deadwood (17, 49, 83, 104, 108, 131, 143,
149); enhance water retention by avoiding sloped roof
and using alternative substrates (e.g., biochar; 23,
131, 153); provide shade with existing building
structures or photovoltaic panels to enhance
biodiversity (134, 149); enhance food source provision
for animals (e.g., by using green waste substrates; 4,
14, 23, 111, 131); constructed wetlands on GRs
provide thermal benefits, low irrigation needs, flood
tolerance, carbon sink potential, resources for birds,
and easy management (47, 140, 143); use biodiverse
and regional seed mixtures adapted to GR climates
and that interact positively with other species in the
mixture (8, 14, 15, 20, 24 ,33, 70–72, 95, 99, 103,
113–115, 131, 156, 143, 148, 149); enhance
pollinator-friendliness with flowering plants (101);
allow spontaneous vegetation areas (15, 42, 117, 143,
156)

Management:
Species management plan to reduce undesirable
species (37, 110); differentiated management and
leaving some biomass on site are recommended (71,
149)

Green facades (GF)
or living walls

Can host few native and non-
native plant species; host mostly
herbaceous plants, lichens,
mosses, and algae because of the
harsh conditions; can host some
trees but at low frequency and
with low abundance (52, 53, 85,
86); can be colonized by
anemochorous and zoochorous 
species (52), with small and
dormant seeds (9), and by ruderal
species (52, 53, 129); provide
nesting locations, refuges, and
food for invertebrates and birds
(30, 44, 52, 92)
• Conservation value: needs
further research (9, 30, 55, 52)

Local scale:
• D/P: local settings (e.g., wall age, substrate types and
depth) and building characteristics (e.g., wall material)
influence the biota such that older and brick walls
harbor more species than younger and concrete walls
(52, 36)
• D: interstices (e.g., cracks, fissures, cavities) attract
sediments and seeds and allow species to develop (36,
52, 53); sediments and humus accumulation help host
more species (52); surface moisture is a key element to
allow species growth (52)
• P: only a few climbing species are adapted to local
climate for GFs (52); invasive species can occur
occasionally (52); regular cleaning and maintenance of
walls disable long-term species establishment (52);
climbing species can damage wall structure (52, 96);
anthropogenic activities would affect avian communities
more than environmental conditions of walls (30)

Landscape scale
• D/P: surrounding land uses determine biodiversity (36,
52); easy accessibility to GFs by flora and fauna species
favor their dispersal

Planning:
Planning of GFs at landscape scale is crucial to
allow optimal connectivity within the urban matrix 
(both horizontal and vertical) and enhance the
stepping-stone effect (52, 92); GFs can be coupled
with GRs to maximize connectivity and biodiversity
(52, 92)

Design:
Designing wall surfaces with complex 3-D shape 
improves habitat diversity (52); designing walls
surfaces with cracks and fractures allows sediment
and humus deposit and plant development (52, 53);
different wall materials and substrates enhance
habitat diversity (52); some plant species (e.g.,
Hedera helix) can benefit other species’ establishment
by mitigating microclimates (52); installing layered
systems on wall surface prevents root-related damage
(52); designing GF with evergreen species can be
beneficial for bird species by providing food and
refuge during winter (30); favoring support structures 
for climbing plant species (82)

Management:
GF are recommended over living walls because they
require less maintenance and have lower costs (125);
maintaining sufficient irrigation allows consistent
evapotranspiration and faster growth for a proper
cooling effect (22)

(con'd)
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Ponds (PO) Act as stepping stones for species
dispersal and genetic exchange
(18, 26, 61, 68, 69, 121, 142); host
various water-dependent species 
such as macrophytes,
amphibians, fish, waterbirds,
insects (e.g., Hemiptera,
Odonata, Coleoptera), molluscs,
cladocerans, amoebae, rotifers (3,
18, 19, 26, 31, 34, 48, 50, 51, 62,
64, 68, 69, 73, 76, 77, 78, 80, 81,
112, 119, 121, 123, 127, 132,
141,142, 151, 152, 154); species
composition of  artificial POs does
not differ from that of natural
POs (13, 16, 18, 26, 40, 68, 69,
76, 77); associated species serve
as food sources for terrestrial
species (7, 26, 142); provide
refuges for endangered species (1,
3, 18, 26, 141, 68, 69, 75, 77); PO
creation helps to restore
fragmented wetlands (26, 35, 77,
138); POs at greater spatial scale
in cities have increasingly
dissimilar communities of
macroinvertebrates because of
high variability in historical and
environmental factors (76)

Local scale:
• D/P: species composition and abundance depend on
PO characteristics (e.g., size, shade, water depth, habitat
diversity, historical factors) and species dispersal
patterns (3, 12, 13, 18, 25, 26, 38, 39, 57, 64, 68, 69, 142,
150); high dispersal ability of semi-aquatic species
improves PO resilience (62, 76); species composition is
related to PO design and location rather than function
(27, 69, 74, 97, 112); presence of certain organisms such
as fish or introduced species can negatively or positively
affect PO species communities and habitats (18, 26, 58,
68, 69, 76, 107, 130, 136, 137, 151); local environment
affects food network and biodiversity of small 
compared to larger POs (26, 43); communities develop
within 2–3 yr and vary greatly in time (68, 69, 18, 158)
• P: urban context and insufficient light exposure foster
proliferation of invasive species and decrease
biodiversity (66, 76, 142, 151); PO shade and size affect
frogs (154); water containing periods of  stormwater
retention POs can be too short to enable species
establishment (16, 29); certain management practices
and anthropogenic disturbances such as sediment
removal negatively affect biodiversity (18, 26, 29, 66- 69,
76, 120); pollutant desposition and eutrophication 
reduce biodiversity (18, 26, 29, 68, 69, 76, 84, 88, 97)
• D: vegetation, sufficient hydroperiod, variable water
depth, few impervious surfaces, and site age favor insect
and amphibian presence (64, 73, 81); good sediment
and water quality (e.g., low conductivity, stable oxygen,
high pH, and low nutrient loads) along with sufficient
hydroperiod foster biodiversity (18, 26, 66, 68, 69, 142)

Landscape scale: 
• D: high PO density and connectivity enable species
dispersal (18, 26, 64, 68, 69, 73, 77, 107)
• D/P: neighboring land uses affect POs (60); proximity
of POs to continuous forest fosters amphibian
conservation in urban areas (56, 64, 84); aquatic insect
richness depends on the density of POs (and water
depth) and proportion of surrounding buildings (73);
disturbance in one PO might not affect other nearby
POs in small catchment areas (76)
• P: barriers within the urban network reduce mobility
of aquatic fauna (10, 69, 78, 157)

Planning:
Integrate POs into nature conservation legislation
and promote PO implementation (68, 69, 73, 80, 81,
139, 142, 154); implement POs to optimize density
and connectivity at local and regional scales,
considering surrounding land uses (18, 26, 29, 41, 57,
67–69, 73, 78, 123, 142)

Design:
Diverse POs with complex morphology provide
diverse habitats (e.g., type of species, water
chemistry; 13, 18, 26, 48, 62, 67–69, 81); avoid steep
slopes to allow amphibians to move out of POs (68,
123); maintain light availability (51, 68, 80, 142);
implement diverse terrestrial and aquatic plant
species to support submerged and emergent
vegetation (13, 62, 68, 80, 142); include sequential
water treatment to enhance water quality (18, 62,
141); create interconnections of temporary and
permanent POs (67, 119, 141); focus on requirements
of target species (62)

Management:
Better management can significantly improve
biodiversity (76, 142); PO management without
considering biodiversity occurs mostly due to lack of
knowledge of PO ecology (76, 120); guidelines  
needed for biodiversity-friendly management plans
(e.g., reducing shading and nutrient inputs,
maintaining vegetation within 100 m of PO; 68, 69,
77, 120, 142); physical and social surroundings must
be considered for PO management; POs should be
implemented where surrounded by sufficient green
spaces (60); aesthetic and attractiveness purposes of
urban POs require intensive management that
promotes biodiversity (76); controling human access
to POs prevents unwanted species introduction (26,
68); POs are absent in nature conservation legislation; 
most POs are garden POs, poorly known and hardly
accessible (57, 68, 69); temporary POs should be
converted to permanent POs (80); citizen science can
be used to collect data for better management and to
increase awareness among citizens (108)

Swales and rain
gardens (SW)

SW host a limited number of 
plant species, often neophytes;
can host amphibians (64); can
host invertebrate species that are
not found in garden-bed type
greenspaces (89–91); can act as
ecological corridors (89–91)
• Conservation value: unknown

Local scale:
• D: structural diversity enhances habitat diversity (91);
using flowering species and various plant life forms 
significantly enhances invertebrate diversity (89, 91);
native plant species favor amphibians (64)
• D/P: SW shape influences biodiversity potential (90);
lateral slope affects biodiversity, with steeper slopes
associated with higher biodiversity (89); lower pH 
observed in SWs increases invertebrate activity
aboveground (89); leaf litter depth significantly affects
invertebrate richness, abundance, and diversity, offering
nutritional and growth substrate and refuges (90, 91)
• P: human activities can affect SW diversity (91)

Landscape scale:
• D/P: location and connectivity within the urban
network are important for SW biodiversity (90, 91)

Planning:
Plan SWs at a wide scale to consider surrounding
land uses and connect SWs with the urban green
network (89, 91)

Design:
Favor larger and more rounded over narrow linear
SWs (89); design SWs with flowering species and
different life forms to offer various strata (89); use
gravels or stones to offer refuges, and design steep
slopes to enhance habitat diversity (89); surround
SWs with hedges to reduce anthropogenic activities
within SWs (89); substrates and plant species
influence soil stability (128); steeper slopes and mid-
stratum vegetation foster biodiversity (89); using
compost in the substrates could be beneficial for
plant growth and pollutant removal (28)

Management:
Maintain consequent leaf litter depth to offer habitat
possibilities for soil invertebrates (90, 91); late
mowing (e.g., late autumn) is more beneficial than in
late summer for plant development (79)

The few existing studies provide evidence of the potential of
swales and rain gardens for biodiversity conservation by offering
habitats for flora and fauna (Kazemi et al. 2009a,b, 2011).
However, because swales are civil engineering structures that must

properly infiltrate set amounts of water, their highly regulated
design and maintenance standards inhibit the establishment of
spontaneous species.  
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Although there are few studies of the biodiversity effects of
permeable pavements, such RWM measures can support the
dispersal of small wildlife and seeds by connecting biodiversity-
harboring patches (Säumel et al. 2016).

DISCUSSION
To our knowledge, this is the first study to focus explicitly on
biodiversity effects of the wide set of existing RWM measures
and to identify approaches to strengthen biodiversity. We found
that, because engineers tend to analyze the functioning of such
measures, studies are dominated by parameters such as water
filtration efficiency, cooling effects, and pollutant removal. In
contrast, studies focusing on biodiversity effects are scarce, except
for ponds, wetlands, rivers (e.g., Céréghino et al. 2014), and green
roofs (e.g., Oberndorfer et al. 2007, Thuring and Grant 2016).
RWM measures provide a wide range of wildlife habitats
(Oberndorfer et al. 2007, Francis and Lorimer 2011, Lundy and
Wade 2011, van Leeuwen et al. 2012, Williams et al. 2014, Thuring
and Grant 2016, Hill et al. 2017; Table 1), and RWM measures
that follow ecological design principles reduce impacts on
biodiversity and support local wildlife communities (Ignatieva
and Ahrné 2013, Ruddick, 2016). In contrast to traditional civil
engineering structures, ecologically designed RWM measures
represent novel ecosystems (Hobbs et al. 2006) that are relevant
for species conservation, helping species to adapt to severe habitat
transformation resulting from high-density urbanization
(Kowarik 2011, Chester and Robson 2013, Williams et al. 2014,
Ikin et al. 2015, Van Mechelen et al. 2015a, Lepczyk et al. 2017).
Our review provides evidence that besides the quantity of urban
green spaces, the multifunctionality of urban landscapes is
enhanced by habitat quality and the biodiversity-friendly design
of green and blue infrastructure, including urban RWM measures.
Biodiversity is thus a crucial indicator of the sustainability of
urban water management (van Leeuwen et al. 2012) and should
be included in monitoring programs.  

The categorization of RWM measures as civil engineering
structures, and the resulting related rules, limit efforts to optimize
the biodiversity friendliness of their design and management. By
developing regulations based on knowledge exchanges between
experts of different sectors, biodiversity-friendly interventions
can increase the multifunctionality of urban RWM measures.
Such measures need to be considered as an integral part of the
urban infrastructure, not just as a technical means for managing
stormwater.

Shaping biodiversity by planning and design
Urban water bodies are often channeled and are far removed from
natural riparian dynamics. Because small-scale interventions are
currently being reshaped and renaturalized, following the
European Water Framework, they have the potential to provide
habitat for species. In addition to the rehabilitation of highly
modified urban water bodies, optimization of RWM measures
design is a crucial tool for promoting biodiversity through the
creation of habitats for targeted species (Savard et al. 2000, Palmer
et al. 2004, Kazemi et al. 2009a,b) and for improving the overall
provision of ecosystem services (Ahiablame et al. 2012, Ikin et al.
2015, Lundholm and Williams 2015). Although urban pilot
projects consider RWM measures, the importance of such
measures continues to be underestimated and their upscaling and
mainstreaming is slow and limited.  

Our review found that ponds can affect larger scales and can allow
habitat for a wide range of species (Nicolet et al. 2004, Hamer and
McDonnell 2008, Vermonden et al. 2009, Thornhill 2012, Apinda
Legnouo et al. 2014, Chester and Robson 2013, Briers 2014,
Jeanmougin et al. 2014, Hassall and Anderson 2015, Hill et al.
2017), whereas effects of garden ponds, rain gardens, and green
walls remain at the garden plot level (Kazemi et al. 2009b, Francis
2011, Chester and Robson 2013, Hill and Wood 2014). Because
patch size, habitat quality, and frequent implementation of green
walls and roofs are key factors in reducing isolation effects
(Mayrand and Clergeau 2018), the contribution of RWM measures
to the blue-green infrastructure can be optimized within the urban
matrix through efficient integration that takes into account the
surrounding land-use types and the species composition of
neighboring green spaces. Identification of target areas is crucial
in the planning of RWM measures, and tools such as the “integral
index of connectivity” (Pascual-Hortal and Sauroa 2006) are found
to be useful in quantifying the capacity to interact with other green
spaces (Fenner 2017). Decentralized systems are strongly related
to the landscape context; because RWM measures need to involve
a wide range of actors to achieve good integration within the urban
landscape, the inclusion of local property owners is critical to their
efficient implementation. To optimize overall connectivity within
the urban matrix, the mainstreaming and combination of such
measure implementations should be planned at the landscape scale.
Urban authorities therefore need to identify target areas to
implement biodiversity-friendly RWM measures within the blue-
green networks (Figs. 2 and 3).  

We found that architectural restrictions and regulations often
present obstacles to the design and installation of RWM measures
such as green roofs on existing buildings (Mayrand and Clergeau
2018), and RWM measures planning is frequently realized by
technical engineers using standard designs and seed mixtures (e.g.,
swales with a mean of < 10 species). For example, the Berlin
Standard for Swales consists of > 60 different rules, but only a
limited standard for greening (BWB 2012). Design decisions are
dominated by the main function of managing rain water, partially
in terms of aesthetics, and rarely consider biodiversity targets.
RWM measures design needs to be adapted to the life cycle of
target species, for example, providing suitable sites for oviposition,
sunbathing, or winter grounds (Hauck and Weisser 2015, Hill et
al. 2017, Lepczyk et al. 2017). Several studies find that ecosystem
services are positively correlated with the functional diversity of a
measure (Nelson et al. 2009, Van Mechelen et al. 2015b). In
addition, plant community diversity and functional trait
composition are important for ecosystem services provision
(Lavorel 2013), and functional diversity can be considerably
enhanced by optimal design that diversifies species composition,
vegetative structures, and substrate types, and integrates other
materials such as dead wood or stones (see key practices
summarized in Table 1 for each RWM measure). While
combinations of different types of measures highly benefit
biodiversity, maintaining unified ecological conditions with more
complex structures is essential because they enable species
dispersal, especially by green roofs and walls that are often linked
but offer conditions too disparate to be fully beneficial for urban
wildlife (Mayrand and Clergeau 2018).
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Fig. 2. Status quo maps were presented to local stakeholders as a basis for goal prioritization from different perspectives. See details
on the methodological approach in Fig. 3. These maps show the sample area of Berlin Schöneberg studied within the KURAS
project (Konzepte für Urbane Regenwasserbewirtschaftung und Abwassersysteme, http://www.kuras-projekt.de/). (A) The existing
pattern and connectivity of biodiversity-relevant elements of the green infrastructure (e.g., public parks, playgrounds, brownfields,
cemeteries) were assessed. The small dark-green arrows indicate the intraconnectivity of these elements within the sample areas, and
the large light-green arrows illustrate the interconnectivity between elements of the sample area within the broader urban matrix. (B)
Rainwater management measures that were selected and placed within a participatory simulation game (Fig. 3) strongly enhanced
connectivity within these elements.

Shaping biodiversity by intervention
RWM measures are designed to be low maintenance, and specific
interventions such as mowing or inserting deadwood or different
soil substrates can considerably benefit biodiversity. Because
plant communities change over time and can become quite
different from the initial plantings, we should also consider long-
term effects (e.g., Catalano et al. 2016). Because many flora and
fauna species not originally present can establish sustainably over
time, consideration of later successional habitats is critical to
sustaining the biodiversity-enhancing effects of RWM measures.
However, to ensure the functionality of RWM measures, some
trajectories such as the incorporation of woody species could be
limited; for example, intervention to maintain favorable
conditions on newly built green roofs during stressful periods in
the initial years can enhance perennial recruitment, benefiting
long-term coverage (Walker and Lundholm 2018).  

Applying disturbances to an ecosystem (e.g., controling the
hydroperiod of a waterbody, mowing the vegetation) can affect

its structure and function (Hobbs and Huenneke 1992), so
episodic intervention such as restoration, or regular intervention
such as mowing, can be used to enhance the ecosystem potential
by reducing unwanted species (e.g., woody species on green roofs,
fish or invasive species in waterbodies) and by increasing the
number and variety of target species (Hamer and McDonnell
2008, Vermonden et al. 2009, Chester and Robson 2013, Roy et
al. 2014, Hill et al. 2017, Miller et al. 2017). In some cases,
interventions can help to prevent wetlands and ponds from
functioning as ecological traps for certain species (Sievers et al.
2018), so long-term monitoring of biodiversity impacts for all
interventions (Table 1) is recommended.  

Interventions can also lead to unwanted effects for biodiversity
or the perception of RWM measures. For example, Jurczak et al.
(2018) showed that the restoration of shady urban ponds created
a sunbleak (Leucaspius delineatus) migration and led to the loss
of daphnid species. The reduction of mowing regimes also often
makes the vegetation appear unkempt, which citizens may
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Fig. 3. General planning steps for rainwater management (RWM) measures. Adapted from the strategic implementation of urban
green infrastructure steps developed by Norton et al. (2015). (A) Step I consists of identifying the weakest areas of a city where
RWM measures are most needed, and step II consists of characterizing these areas depending on the target purpose (i.e., identifying
quantity and quality of existing structures, considering interrelations to adjacent areas). Step III consists of optimizing the quality
of RWM measures before building new measures. Step IV focuses on the weakest areas of the targeted neighborhoods to define the
best combination of RWM to implement (step V). (B) The KURAS (Konzepte für Urbane Regenwasserbewirtschaftung und
Abwassersysteme, http://www.kuras-projekt.de/) approach for participatory planning of RWM measures given for a sample area in
Berlin. RWM measures were selected and placed across a neighborhood within a participatory simulation game. For details, see
Matzinger et al. (2017).

perceive negatively (Mathey et al. 2015), and is a barrier for public
acceptance. Including local residents in maintenance and
interventions can help promote acceptance of such green spaces.

Combining human activity and biodiversity friendliness
RWM measures planning and implementation need to consider
social-ecological perspectives. Combining human activity and
biodiversity friendliness enables reconfiguration of urbanized
landscapes to leave more room for biodiversity conservation
without restricting anthropogenic use of those spaces (Francis
and Chadwick 2013). Urban green spaces already support
biodiversity-friendly human activities, and RWM measures
represent a realistic option for ensuring ecosystem services and
nature protection without compromising societal use. Applying
these objectives to RWM measures is a key management tool for

addressing the massive scale of habitat loss from anthropogenic
activities, especially in cities, where restoration and preservation
solutions are hard, if  not impossible, to implement (Francis and
Chadwick 2013).  

Unlike restoration or preservation actions, the combination of
human activity and biodiversity friendliness can be retrofitted to
existing built-up areas at broader scales and does not need a
previous state or an unimpacted biodiversity template for
objective definition and evaluation. However, such interventions
often deliver limited results compared to what can be achieved
through traditional preservation or restoration actions. Although
RWM measures are most likely to enhance “ordinary”
biodiversity that can be experienced by people every day in the
urban outdoors, restoration actions can be achieved through
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measures such as ponds and offer better results in terms of
biodiversity conservation of more threatened species (Hassal and
Anderson 2015). RWM measures provide multiple habitat types
and extend the blue and green networks in urban environments
(Francis and Lorimer 2011, Ignatieva et al. 2011, Francis and
Chadwick 2013, Kim et al. 2017). Our review finds that local-scale
action has an effect on metapopulations at wider scales (Francis
and Chadwick 2013). Because of their capacity, for example, to
provide habitats or food for a wide range of species, some keystone
species exert a strong influence on the respective ecosystem
independent of abundance or size (Mills et al. 1993). These species
should be considered when building RWM measures and other
blue-green infrastructure (Francis and Chadwick 2013).  

Our review found that implementation of RWM measures in
densely built areas need to address some issues such as not
damaging buildings (e.g., climbing species on green walls).
However, the greatest challenge is acceptance by citizens because
RWM measures can also result in nuisances (Hoang and Fenner
2016), including insects such as mosquitoes, which are undesirable
in an urban environment (Francis 2011, Mackintosh and Davis
2013). Also, wild vegetation often is perceived negatively
compared to aesthetically well-kept vegetation, which is perceived
to confer healthy ecosystem services (Dobbie and Green 2013;
but see contrasting evidence for spontaneous growth roadside
vegetation, Weber et al. 2014). Because public engagement is
crucial for urban biodiversity conservation, and communities are
more likely to support green interventions if  they are aware of
the services they provide (Hassal and Anderson 2015), combining
human activities with biodiversity friendliness is a key strategy
because it promotes positive human–nature interactions. In
addition, partnership with local stakeholders has been shown to
enhance the economical aspect of decentralized systems,
including green approaches, which, compared to centralized
systems such as detention tanks, can be cost-competitive
(Montalto et al. 2007).

Biodiversity effects of rainwater management measures, barriers,
and knowledge gaps
Despite the growing body of literature, the multifunctionality of
RWM measures remains underexploited, with only their primary
function of water management taken into consideration, and their
additional benefits considered only coincidentally (Fenner 2017).
Existing research on other benefits, especially supporting
biodiversity, is based on short-term studies. Although the need
for long-term experiments to validate and to assess precisely the
conservation value of RWM measures is repeatedly stated in
literature (e.g., Chester and Robson 2013, Roy et al. 2014,
Williams et al. 2014, Thuring and Grant 2016, Blank et al. 2017),
little is known about the interactions between different ecosystem
services (e.g., water treatment functions, habitat services, cultural
services) and the quantification of those services. Although a
number of relatively easy-to-measure indicators have already
been used to assess the effects of urbanization on biodiversity,
such as vegetation cover and proportion of native and exotic
species, they are only proxies and are insufficient for measuring
biodiversity outcomes (Lenth et al. 2006, Garrard et al. 2018). In
addition, little is known about the effectiveness of RWM
measures; better quantification will help overcome the lack of
confidence among urban developers. The lack of demonstration
projects is also reported as a barrier for the mainstreaming of

RWM measures (Kuller et al. 2017). Interestingly, although RWM
measures have been implemented in cities for decades, they are
still seen as novel solutions (e.g., in the UK, see Fenner 2017).
Wider use of RWM measures will require systematic monitoring
and evaluation to demonstrate their benefits.  

The current lack of monitoring regulation illustrates the global
lack of effective legislation and governance for the
implementation of RWM measures and, more generally,
biodiversity-friendly infrastructures. The complex interconnections
of RWM measures as elements of the urban landscape and their
multiple functions regarding ecosystem services need to be
translated clearly into governance rules and legislation at different
levels of authorities (e.g., from local to international agencies;
Aronson et al. 2017, Fenner 2017, Kim et al. 2017). Explicit
multiscale analysis will reduce the barriers to strategic
implementation of multifunctional measures adapted to the local
context (e.g., environment, climate, social perception,
administration, or resources). Multistakeholder involvement and
fluid collaboration between stakeholders is essential for
designing, implementing, and maintaining biodiversity-friendly
and water-sensitive cities. Differences in knowledge among the
stakeholders can be addressed through better sharing of
knowledge and the development of a common understanding.
Because the perception of such urban ecosystems by citizens is
limited (Hassall 2014, McGoff et al. 2013), educational means
can help increase awareness of the multiple benefits of RWM
measures and promote acceptance (Goddard et al. 2010, Ikin et
al. 2015).  

The effectiveness of multifunctional and multiscale RWM
measures depends on the implementation process, which needs
be integrated in the existing landscape and urban planning to
adapt the design, combination of measures, and connectivity to
a given area. Because not all services can be provided by one
measure, the prioritization of desired functions and benefits is
necessary. Different steps of a pertinent implementation can be
adapted to favor different targets defined by local stakeholders
(e.g., enhancement of landscape quality, mitigation of urban heat
islands), and improving biodiversity can be considered.  

In the KURAS project (Konzepte für Urbane Regenwasserbew
irtschaftung und Abwassersysteme, http://www.kuras-projekt.
de/), target areas were first identified (Fig. 2) and RWM measures
were selected and simulated across the scales of two
neighborhoods in Berlin, from building via quarter to catchment
level, within a participatory simulation game (Fig. 3). The critical
evaluation of status quo, the feasibility of RWM measure
implementation, and the simulated impact were assessed, and
discussions were held with local stakeholders to achieve informed
decision-making. This process enabled coordinated and effective
planning of RWM measures from landscape to building scale, as
well as effective collaboration and coordination among the
different stakeholders involved. In addition, a range of actors
(including building and residential greenspace owners) developed
a non-standardized design of the decentralized measures,
ensuring both variety in types and design of measures, thus
amplifying their ecological weight.

CONCLUSIONS
The biodiversity-friendly and water-sensitive city’s vision
proposes a decentralized system that has been popular in debates
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on the future-proof city for several decades. However, its efficiency
in improving overall urban resilience has yet to be proven in
practice. The institutional barriers toward decentralized systems
(Brown and Farrelly 2009) and, more specifically, toward
ecological design implementation are primarily legislation and
the organizational capacity of stakeholders. The lack of studies
on the effectiveness of different ecological designs currently limits
mainstreaming of existing scientific knowledge for informed
decision-making, other than in a few examples of best practices.
To overcome these obstacles and facilitate biodiversity-friendly
RWM measures, ecological designs need to be integrated in
planning at different scales, and robust partnerships among all
the actors are necessary. Interdisciplinary collaboration among
the multiple stakeholders in the design, implementation, and
management of RWM measures, involving public and private
partners, also has the potential to increase citizen awareness of
sustainable water use in urban areas.  

Because of economic and environmental impacts, infrastructure
investment and replacement will be a gradual process using hybrid
technologies (Sapkota et al. 2016). The first steps toward
sustainable urban water management have been undertaken,
through water saving and re-use of water, and through
implementation of urban RWM measures (e.g., Brown et al. 2006,
Dietz 2007, Ahiablame et al. 2012, Conte et al. 2012), mainly in
cost-inefficient sectors of water infrastructure, in new buildings
or new neighborhoods. To develop tomorrow’s sustainable city,
implementation of RWM measures in existing neighborhoods
through urban restructuring needs to be extended beyond the few
existing examples.  

In summary, our review has highlighted the need to enhance the
habitat quality of single RWM measures at the building level, and
the need, on the whole city scale, to integrate such measures into
planning of ecological networks in different neighborhoods.
Because biodiversity-friendly urban RWM measures have the
potential to maximize patch and corridor size, increasing their
number and density will improve the habitat quality of the urban
green infrastructure. To enhance connectivity at the regional scale,
such measures should be implemented preferentially in corridor
areas. Integration of such measures will provide many
environmental, ecological, socio-cultural, and economic benefits
such as aesthetic and recreational value, food provision,
microclimate regulation, and energy savings, thus fulfilling the
water-sensitive and biodiversity-friendly city’s vision, which is
based on infrastructure multifunctionality to provide as many
ecosystem services as possible.
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APPENDIX 1. Appendix A: Keywords relating to urban water management measures (A) and outcome-related key words for habitat
services (B). Keywords relate to TEEB (2010) classification of ecosystem services. The terms shown in column "Keywords" were inserted
in the Web of Science search engine combined by ‘AND’ with keywords for different urban water management measures (A).
Appendix A: Keywords relating to urban water management measures (A) and outcome-related key words for habitat services (B).
Keywords relate to TEEB (2010) classification of ecosystem services. The terms shown in column "Keywords" were inserted in the Web
of Science search engine combined by ‘AND’ with keywords for different urban water management measures (A). Numbers of paper
per measure (C).

Search for : Keywords
A) Urban rainwater management
measures

Urban * Green roof Vegetated roofs; roof gardens, living roofs,
ecoroof, brown roof, turf roof, sod roof

Urban * Green Facade Green Walls; Vertical greening systems,
living walls, vegetated wall

Urban * Ponds
Urban *Swales Bioretention basin, bioswale,
Urban * Rain Gardens Bioretention areas, bioretention cell
Permeable pavement depavement of impervious area, pervious

pavement
B) Biodiversity effects and Habitat
Services of urban water management
measures

Biodiversity effects and Habitat services Biodiversity, species; habitat; Biodiversity
maintenance, gene pool protection,
nursery service; corridor

C) Number of papers per measure
Green roofs Green walls Swales Rain

gardens
Pervious
pavement

Ponds Total

Total results 236 124 32 57 19 430 830
Results with filter 99 25 11 18 6 153 300
Selected articles 72 10 7 4 4 85 182
Available articles 47 8 7 2 4 72 140
Articles used in the table 73 15 7 0 0 67 164
Articles from other sources 26 7 0 0 0 32 65
Reviews 9 2 1 0 2 10 25
Reviews selected and screened 4 1 1 0 1 5 12
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APPENDIX 2. Appendix B Reference lists for Table 1 on synthesis of habitat services provided by different rainwater management
(RWM) measures.
Appendix B: Reference lists for Table 1 on synthesis of habitat services provided by different rainwater management (RWM)
measures
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