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ABSTRACT. Large-scale land transactions (LSLTs) can precipitate dramatic changes in land systems. Ethiopia has experienced one
of the largest amounts of LSLTs in Africa, yet their effects on local land systems are poorly understood. In this study, we quantify the
direct and indirect land use and land cover (LULC) changes associated with LSLTs at eight socio-environmentally diverse sites in central
and western Ethiopia. To estimate these effects, we employ a novel, two-stage counterfactual analysis. We first use a region-growing
procedure to identify a “control” site with comparable landscape-level characteristics to each LSLT. Then, we sample and reweight
points within each control site to further improve covariate balance. This two-stage approach both controls for potential confounding
factors at multiple spatial levels and reduces the costs of extensive LULC data classification. Our results show that the majority of the
reported transacted area (62%) remained unconverted to large-scale agriculture. Most of the land that was developed into large-scale
agriculture displaced smallholder agriculture (53%), followed by conversion of woodland/shrubland (35%) and forest (9%). Beyond
their boundaries, LSLTs indirectly influenced rates of smallholder agricultural expansion and abandonment, pointing to site dependence
in how LSLTs affect adjacent land systems. In particular, the low prevalence of forest within and around these LSLTs underscores a
need to move beyond measures of deforestation as proxies for LSLT effects on land systems. Our two-stage approach shows promise
as an efficient method for generating robust counterfactuals and thereby LULC change estimates in systems lacking wall-to-wall LULC

data.
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INTRODUCTION

Lower- and middle-income countries have experienced a rapid
increase in large-scale land investment for agricultural
development. Uncertainty in food prices, demand for biofuels,
and economic prospects have spurred governments and private
investors to acquire large tracts of agricultural land at a pace and
scale that is inarguably massive (Cotula 2009, Deininger and
Byerlee 2011). Although driven by global and national forces,
large-scale land transactions (LSLTs) ultimately affect socio-
environmental systems, including smallholder farming systems,
at local scales. These effects are often difficult to measure because
they occur both within and beyond LSLT boundaries, i.e., LSLTs
generate both direct and indirect socio-environmental effects.
Given the intimate connection between people, environmental
function, and land systems (Messerli et al. 2015, Coomes et al.
2016), observation of changes in land use and land cover (LULC)
via satellite imagery analysis offers a relevant proxy for
understanding the socio-environmental effects of LSLTs.
However, especially in contexts dominated by mixed crop-
livestock agriculture, characterizing LULC requires sensitivity to
a high level of spatial detail (Sweeney et al. 2015). Consequently,
both the physical extent of LSLTs in mixed crop-livestock land
systems and their effects on adjacent land systems remain poorly
understood.

Within LSLT borders, other studies have found several patterns
relevant to LSLT-induced LULC change. Globally, LSLTs have
been located in a range of LULC contexts, including cropland,
shrubland, grassland, and forest (Messerli et al. 2014), suggesting
direct LULC changes to intensive agriculture from smallholder
agriculture, grassland, shrubland, and forest. Indeed, in forested
landscapes, LSLTs can be a dominant proximate cause of
deforestation (Carlson et al. 2012, Davis et al. 2015). Yet, there is

a growing base of evidence that many LSLTs remain idle with no
or only partial implementation (Ali et al. 2015, Teklemariam et
al. 2016, Agrawal et al. 2019), as a result of speculative
investments, investor inexperience, and financial constraints.
Even when implementation occurs, it may take several years for
direct LULC change to materialize (Magliocca et al. 2019a). In
any case, because smallholder livelihoods depend on both
privately held agricultural land and common-pool resource
systems (Rasmussen et al. 2017), LSLTs targeting both existing
smallholder farms and communal land can constitute a form of
“land grabbing” (De Schutter 2011, Dell’Angelo et al. 2017).

By displacing local livelihoods, LSLTs can also significantly alter
the land fabric beyond their borders. Studies examining indirect
LULC changes have primarily focused on forested contexts and
have most frequently found LSLTs to cause increased rates of
deforestation beyond their borders (Davis et al. 2015, 2020, Ben
Yishay et al. 2016, Zaehringer et al. 2018, Magliocca et al. 2019a,
b). In these contexts, the amount of indirect LULC change can
be influenced by factors such as the rate of direct land conversion,
crop type, and other implementation characteristics (Magliocca
et al. 2019a).

In mixed crop-livestock systems, which underpin African
agriculture (Thornton and Herrero 2015), the indirect effects of
LSLTs on LULC change are less well understood. However, there
are a range of mechanisms through which LSLTs could affect
adjacent smallholder land systems. Such indirect LULC change
can occur in two principal directions: smallholder crop expansion
and smallholder crop abandonment. Increases in the extent of
smallholder agriculture, i.e., smallholder expansion, could result
from population displacement, in-migration, degradation of
existing farmland, rebound effects, or other shifts in economic

'Department of Industrial and Operations Engineering, University of Michigan, USA, *School of Environmental and Forest Sciences, University of
Washington, USA, *School for Environment and Sustainability, University of Michigan, USA, *School of Geography, Development and
Environment, University of Arizona, USA, *School of Sustainability, Arizona State University, USA, ‘Gerald R. Ford School of Public Policy,
University of Michigan, USA, "Department of Civil and Environmental Engineering, University of Michigan, USA


https://doi.org/10.5751/ES-12825-260434
https://doi.org/10.5751/ES-12825-260434
https://www.ecologyandsociety.org/viewissue.php?sf=148
mailto:tgw@umich.edu
mailto:tgw@umich.edu
mailto:sadietrush@gmail.com
mailto:sadietrush@gmail.com
mailto:jasullivan@arizona.edu
mailto:jasullivan@arizona.edu
mailto:cliao29@asu.edu
mailto:cliao29@asu.edu
mailto:nchest@umich.edu
mailto:nchest@umich.edu
mailto:arunagra@umich.edu
mailto:arunagra@umich.edu
mailto:sguikema@umich.edu
mailto:sguikema@umich.edu
mailto:danbro@uw.edu
mailto:danbro@uw.edu

opportunities (Lambin et al. 2001, Lambin and Meyfroidt 2011).
Smallholder expansion is more likely to occur in “frontier” regions
with abundant land availability (Meyfroidt et al. 2018) and is likely
to have negative implications for ecological functioning (Shennan
2008) and for livelihoods dependent on such functioning (Vosti
and Reardon 1997). In contrast, reductions in smallholder
agriculture and increased land abandonment, i.e., decreasing
extent of smallholder agriculture, could result from displacement
and out-migration, lower agricultural reliance owing to forced
relocation in search of new employment opportunities, or
agricultural land degradation (Lambin and Meyfroidt 2011).
Reduced cultivation extents may contribute to natural ecosystem
regeneration, but have negative social implications if these
changes occur as a result of forced migration or soil degradation.
LSLTs have the potential to accelerate or reduce both smallholder
expansion and abandonment, with the net effect dependent on
factors such as the amount of smallholder displacement, the level
of intensification spillovers, and local land governance systems.

Ethiopia is dominated by mixed crop-livestock smallholder
systems. It has experienced among the largest numbers of LSLTs
in Africa (Schoneveld 2011), yet no multi-regional comparisons
of LSLT-induced LULC change exist. Case studies in Ethiopia
have reported LSLTs replacing smallholder agriculture with
outgrower schemes (Wendimu et al. 2016) and mention
conversions from forest- or rangelands that were considered
“unused” by the Ethiopian government but of importance for
locallivelihoods (Shete and Rutten 2015, Shete et al. 2016, Nalepa
et al. 2017). Further, similar to other contexts, many Ethiopian
land investments have been only partially developed (Ali et al.
2015, Teklemariam et al. 2016, Shete et al. 2016). Given the
distinct socio-environmental context of Ethiopia in comparison
to other studied countries, the effects on LULC in Ethiopia will
not necessarily mirror that of other contexts. For instance,
Ethiopia has a relatively low level of forest cover, making measures
of deforestation less useful or reliable indicators of impact than
in other settings. A rigorous assessment of the observed effects
of LSLTs on LULC in Ethiopia can therefore contribute to more
generalized understanding of these phenomena, particularly as
they occur in mixed crop-livestock landscapes.

In this study, we examine the direct and indirect effects of LSLTs
on LULC change in Ethiopia. Our analysis spans eight
contextually diverse LSLT sites in the Oromiya, Beneshangul-
Gumz, and Gambella states of Ethiopia. We selected these sites
in different administrative regions to represent a range of investor
origins and encompass the diversity of landscapes targeted by
LSLTsin Ethiopia. We used a semi-automated object-based image
analysis (OBIA) approach with very high-resolution (VHR)
imagery (0.3-10 m) to provide the spatial detail necessary to map
LULC before and after LSLT implementation. Our meso-level
analysis of micro-level data provides more accurate LULC
information and context-specificity than large-scale analyses
(Edelman 2013, Messerli et al. 2014, Eckert et al. 2016), and
greater representativeness compared to single-site based analyses.

Generating rigorous estimates of LSLT-induced LULC change
requires disentangling the effects of LSLTs from other potential
causes and confounding factors. Confounding effects exist at two
conceptual levels. First, there is ample theoretical and empirical
evidence that LSLTs are not randomly located within a landscape
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(Messerli et al. 2014, Dell’Angelo et al. 2017), i.e., there is a site-
level selection bias. Comparing changes in and around LSLTs
with other arbitrary locations is therefore inappropriate. Second,
indirect LULC change often results from decision-making
processes that operate at smaller scales, for instance household-
level decisions about single or a limited number of agricultural
field(s). These conditions of both site and context may therefore
exert important influences on local LULC change. To address
these challenges, we employ a novel, two-stage treatment-control
procedure to identify counterfactuals that match both site- and
point-level characteristics.

DATA AND METHODS

LSLT site selection

We selected eight sites in Ethiopia that have experienced large
LSLTs (> 500 ha) within the past 20 years (Appendix 1). Each site
was delineated by the georeferenced boundaries of an LSLT. We
focused on three administrative regions that had experienced a
high level of transaction activity: Oromiya (sites OR1,OR2, OR4,
ORY5), Beneshangul-Gumuz (BG3, BG4), and Gambella (GM1,
GMY5). The sites were purposively selected from a wider set of
LSLTs (hence the non-consecutive numbering) to represent a
range of socioeconomic and environmental contexts, defined by
size of transaction, national origin of investor (domestic or
international), initial LULC composition (cultivated or
uncultivated landscape), and region within Ethiopia. To support
site selection, information was compiled from academic literature,
LSLT databases, and field visits. For the purposes of this study,
it was necessary to select a subsample of sites from the wider pool
of Ethiopian LSLTs because wall-to-wall LULC data do not exist
and LULC classification is a costly process.

Satellite imagery classification

For each site, we classified LULC at two time periods, one
representing conditions prior to the establishment of the LSLT
(Pre-LSLT) and one after its effects are expected to have occurred
(Post-LSLT). Because of the prevalence of smallholder
agriculture, woodland, and shrubland, as well as our interest in
mapping fine-scale changes between these states and to large-scale
agriculture, our analysis required a high level of spatial detail.
Such detail is generally not available in large-scale LULC datasets
and can be difficult to classify with fully automated processes.
Therefore, we adopted a semi-automated approach to classify
VHR satellite imagery.

We obtained VHR multi-spectral imagery from sensors onboard
the IKONOS (1-4 m resolution), GeoEye-1 (0.5-2 m),
WorldView-1, 2 & 3 (0.3-2 m), and Sentinel-2 (10 m) satellites.
The data spanned the period of 2004 to 2016. Because of image
data availability and timing of transactions, our Pre-LSLT and
Post-LSLT dates differ by site and, in some cases, there was
insufficientimagery available Pre-LSLT. In these cases, we selected
the earliest imagery available and maintained a minimum 5-year
difference between the Pre- and Post- images (Appendix 2). The
implication of this limitation is that we potentially underestimate
the LSLT-induced LULC change.

With this imagery, we classified LULC into nine classes (Table 1)
using a semi-automated segmentation-based approach. First, we
identified contiguous polygons from pixel groupings with similar
spectral characteristics using the ERDAS IMAGINE Objective
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Table 1. Land use and land cover classes. Values in parentheses under the aggregated classes represent the inter-rater reliability.

LULC class Sub-class Description
Smallholder Smallholder Cultivated areas (< 10 ha) with a mosaic of different subsistence crops (primarily cereals), fallow area,
(80.7%) agriculture and cycle of crop maturity; some settlements and sparse tree cover.

Rural settlement
Large-scale agriculture
(55.4%)
Forest
(73.9%)
‘Woodland/shrubland
(78.9%)
Bare/exposed soil
(19.6%)
Other (36.9%)

trees (< 10%).

Development

Water

Wetland
February).

Natural and impermeable surfaces, including roads and dense housing.

Cultivated fields (> 10 ha) with vegetation pattern indicating uniform planting (monocrop) and harvest
cycles; may include tree crops and is clearly visible from satellite imagery.

Densely forested area with 70%-100% closed canopy cover

Mixed area of small trees, short bushes, shrubs and open grassland; 10%—-70% ground coverage, small
Land with very sparse grass or completely no vegetation cover.
Major roads and urban or industrial infrastructure with a minimum mapping unit of 30 meters.

Natural and artificial water bodies: rivers, lakes, and reservoirs.
Swampy and waterlogged in the wet season (June—August), dry in the dry season (December—

tool. Next, all polygon segments were manually classified by
trained analysts into the nine LULC types, which were then
combined into six aggregated classes to both reflect categories of
interest and minimize inter-class confusion (measured using inter-
rater reliability). Appendix 2 provides details.

LULC change outcomes

To assess direct LULC change, i.e., within the LSLT boundaries,
we measured transitions between the six aggregated LULC classes
in Table 1. For each site, we calculated the fraction of land in each
class in the Pre- and Post-LSLT periods as well as the area
transitioning between each combination of classes.

We interpreted an LSLT’s indirect effects to comprise effects on
agricultural activities and livelihoods adjacent to the LSLT
boundaries, here determined as LULC change within a 10 km
buffer of each LSLT (henceforth “treatment site”). The buffer
distance was set to reflect distances over which indirect impacts
were expected to extend, based on our discussions with in-country
partners and surveys conducted in the field (Hajjar et al. 2019).
We assessed two indirect LULC change outcomes: smallholder
expansion, describing the conversion of any non-smallholder
land to smallholder agriculture (Y,); and smallholder
abandonment, describing the conversion of land from
smallholder agriculture to any non-smallholder LULC (Y,).

Because the assessment of indirect LULC change is based on
LULC data alone, we cannot directly make inferences about the
mechanisms contributing to these outcomes, e.g., whether
increased smallholder abandonment is due to LSLT-induced
displacement. Further, because of the diversity of LULC across
our sites, we did not distinguish between, for example, smallholder
expansion into forest or into woodland-shrubland; given the very
low level of forest cover in some sites, such distinctions were not
always meaningful and could not be easily compared between
sites. Finally, we excluded BG4, GM1, and GMS5 from our
assessment of smallholder abandonment (Y,) because less than
5% of their area initially comprised smallholder agriculture.

Two-stage treatment-control approach

Rationale and overview
Because LULC change occurs even in the absence of LSLTs,
estimating an LSLT’s indirect impact requires an appropriate

counterfactual, i.e., a proxy for LULC change outcomes in the
absence of the LSLT. Causal analyses of indirect LULC change
frequently select counterfactual observations by sampling points
from a wider buffer region, e.g., up to 100 km or further, around
the central treatment site (Davis et al. 2015). Such “donut”
approaches are pragmatic when wall-to-wall LULC outcome data
are available (e.g., Hansen et al. 2013). However, because of the
high data fidelity required for analyses of LULC in mixed crop-
livestock systems and the paucity of large-scale classified datasets,
a donut-based approach would require classification of a massive
land area, adding considerable time and expense to the analysis.
Beyond these pragmatic considerations, such approaches are
conceptually questionable in the context of LSLTs, which are
assigned to the landscape as spatially contiguous parcels, rather
than isolated points. Point-based matching using counterfactuals
from a wider donut region may therefore miss important
landscape-level characteristics that influence the politics and
pragmatics of land acquisition and transaction.

Our two-stage approach to overcome these challenges (Fig. 1)
used a region-growing process in the first stage to identify a
characteristically similar “control site” that is equivalent in size
and within 30 km of each treatment site. In the second stage, we
sampled points from within each treatment and control site and
reweighted the control points so as to maximize the site-level
covariate balance. Whereas the first step aimed to sub-sample
from the 30km donut to identify a comparable, spatially
contiguous polygon and reduce the LULC classification burden,
the second step aimed to use the data from each control site
systematically to reduce bias in the LULC change estimates. For
both stages, we utilized covariates for which wall-to-wall public
datasets exist.

Stage 1: Control site selection

LSLTsare assigned to the landscape as contiguous polygons when
land deals are made. This location assignment is likely influenced
by landscape-level characteristics that influence the costs and
politics of acquiring land and converting it to large-scale
production. Previous studies have shown that LSLTs globally may
preferentially target “the commons” (Dell’Angelo et al. 2017) and
sparsely populated, poorer, forested areas (Liao et al. 2020).
Additionally, global assessments of LSLT locations have used
population density, agricultural production potential, and
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Fig. 1. (A) Site locations within Ethiopia and (B) schematic
illustration of the two-stage treatment-control approach.
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accessibility as explanatory factors (Messerli et al. 2014, Rulli and
D’Odorico 2014). Accordingly, in Ethiopia, a “Land Bank”
established in 2008 set aside close to 3.5 million hectares of
purportedly unused land for large-scale development (Rahmato
2011, Nalepa et al. 2017).

The first stage sought to control for this site-level selection bias
by identifying a similar-sized control site near each treatment site
that minimizes their difference across four confounding factors:
elevation, population density, night light index, and forest cover.
The selected covariates encompass notions of production
potential (elevation, forest cover) and accessibility (population
density, night light index) found to be relevant in the previous
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studies mentioned above. Data sources and additional
justification are in Appendix 3. We resampled these covariate
raster images to a spatial resolution of 1 km and rescaled their
values between 0 and 1.

To select contiguous control sites, we randomly generated 30
candidate control polygons of identical size and within 30 km of
each LSLT. Candidate control polygons were generated using the
following procedure: (1) randomly select a pixel within 30 km of
the land transaction boundary but outside the treatment site, i.e.,
from the donut; (2) determine the neighboring pixels of the
selected pixel, and evaluate the sum of squared difference, i.e.,
Euclidean distance, between values at each neighboring pixel and
the treatment area on the four matching covariates; (3) select the
pixel that shows the smallest difference compared to the
characteristics of the treatment area and merge it with the selected
pixel(s) in the previous step; (4) continue steps 1-3 until the total
area of the grouped pixels reaches the size of the treatment area
and convert the grouped pixels into a polygon; (5) repeat steps 1—
4 for 30 times; and (6) select the control site as the polygon with
thelowest sum of squared differences over all matching covariates.
In this process, no constraints were imposed on the shape of the
control polygons, but because of spatial autocorrelation in the
covariate data they tended to emerge as compact shapes, i.e., good-
fitting pixels are likely to be adjacent.

Stage 2: Point sampling and weighting

Indirect LULC change within each site is influenced by processes
at sub-site scales. For example, the conversion of a section of
forest to an agricultural field is only likely to occur if it is
financially and practically feasible. Many factors may
theoretically influence these sub-site LULC change outcomes,
and these factors are not necessarily perfectly balanced between
the treatment and control sites. We therefore conducted a point-
level rebalancing to prioritize data from areas within each control
site that most closely match the respective treatment site.

We first generated a systematic random spatial sample of a
prespecified number of points from each treatment and control
site. The LULC data were stored as polygons, i.e., vector data,
and we sampled points within polygons that were (1) outside of
the LSLT boundary and (2) not in large-scale agriculture in the
Post-LSLT period. The latter condition was set because some sites
contained large-scale agriculture outside of the LSLT boundary
in the Post-LSLT period. These may have been due to inaccuracies
in the georeferenced LSLT boundaries, so we excluded these areas
from the sampling procedure to ensure that sample points
represented indirect effects.

There is a trade-off when sampling points: larger sample sizes
enable higher statistical power but the points become increasingly
spatially correlated, i.e., LULC changes in one location will
influence the conditional probability of changes in a nearby
location. Spatial autocorrelation is problematic because it
introduces data redundancy and can artificially reduce the
variance of statistical estimates (Griffith 1987), thereby conveying
a greater level of confidence than is warranted. We used Moran’s
I to test for residual spatial autocorrelation in the LULC change
outcomes after controlling for the effects of our covariates. We
experimented with a range of sample sizes and selected the largest
sample size for which the residuals were not significantly spatially
correlated.
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After sampling the points, we used an entropy balancing
algorithm (Hainmueller 2012) to calibrate a weight for each
control point to improve the site-level covariate balance between
the treatment and (reweighted) control points. The entropy
balancing procedure seeks to retain as much data as possible from
the control site, i.e., keep control point weights as close as possible
to one, while satisfying balance criteria. Entropy balancing has
been shown to achieve estimates that are comparable to matching
(Busso et al. 2014), but its data-retention feature makes balancing
advantageous in our context relative to other matching
approaches that rely on a large pool of control observations. This
is because we wanted to avoid excessively discarding control
observations, as each had been sampled from an area of the same
size as the treatment site, i.e., the control site.

The entropy balancing controlled for the following confounding
factors: slope, soil productivity, population density, forest cover,
and distance to road (Appendix 3). This selection was informed
by previous point-level causal analyses of land change in low- and
middle-income countries (Blackman 2013, Nolte et al. 2013,
Ferraro and Hanauer 2015, Ben Yishay et al. 2016) as well as
hypotheses about the additional drivers of our selected LULC
change outcomes. For instance, high population densities in areas
with reasonable market access (distance to road) may contribute
to agricultural expansion (Lambin et al. 2001). In contrast, low
soil productivity may drive smallholders to abandon agricultural
production. The selected covariates contain some overlap with
those used for the first-stage procedure, but we replaced night-
light index with distance to a major road and replaced elevation
with slope and soil productivity as these variables are more
relevant for describing agricultural LULC change at a point level.
‘We did not control for household-level factors, e.g., demographics
or wealth, because it would have required exhaustive surveying
of all households in these regions, spatial delineation and
assignment of individual agricultural fields to households, and
association of information about multiple households to
communally managed land. We instead used the selected socio-
environmental covariates as proxies for household-level drivers
of LULC change.

Assessing covariate balance

We examined how each stage of the two-stage procedure affected
the covariate balance, i.e., the degree of similarity between the
treatment site and the counterfactual. For the first stage, we
compared the balance between the wider donut region (i.e., the
null counterfactual) and the selected control site (the first-stage
counterfactual). For the second stage, we compared the balance
before and after the rebalancing procedure. We ran this
calculation twice for the second stage, once using points sampled
from the control site and once using points sampled from the 30
km donut region. The latter case aimed to provide an estimate of
the balance that could have been achieved via the standard, donut-
based approach with rebalancing. In all cases, we used the
absolute standardized mean difference (ASMD) to assess
covariate balance between the treatment (7) and control (C)

observations:
— u (1)

ASMD Jr

2 2
ort+oc

2
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where the mean (u) and variance (0% were calculated using the
weighted control points in the second stage. In general, an AMSD
less than 0.1 is considered acceptable (Austin 2009).

Estimation strategy

We quantified indirect LULC change at a site-level, calculating
the difference in the probability that a point in the treatment site
experiences the LULC change outcome (Y, or Y,) relative to a
reweighted point from the corresponding control site. In all cases,
we repeated the point-based sampling and analysis procedure 100
times with different random seeds to provide confidence intervals
on our estimates. To verify the robustness of the LULC change
estimates to the sampling and rebalancing procedure, we also
estimated indirect LULC change under two alternative
approaches: (1) using genetic matching, an optimization-based
matching algorithm that provides a covariate balance at least as
good as that of propensity score matching or Mahalanobis
distance matching (Diamond and Sekhon 2013); and (2) sampling
and rebalancing 1000 points in each treatment and control site.

RESULTS

Initial LULC compositions

In the Pre-LSLT period, the sites in Oromiya (OR1, OR2, OR4,
and ORY) primarily comprised smallholder agriculture (Fig. 2).
Thesitesin Gambella (GM1 and GM5) and Beneshangul-Gumuz
(BG3 and BG4), with generally lower population densities
(Appendix 4), were primarily uncultivated, i.e., forest, woodland/
shrubland, and bare soil. With the exceptions of GMS that had
a large amount of bare soil in its Treatment site and GM1 that
had unbalanced amounts of smallholder agriculture, LULC is
generally relatively similar between the paired treatment and
control sites. Visual cross-checking of the classified LULC data
with the original imagery confirmed that the bare soil in GMS is
not due to classification error.

The land transacted as part of the LSLTs exhibited differences in
comparison to the surrounding treatment buffer areas. Notable
examples include OR1 and OR2, in which the LSLTs were entirely
located in smallholder agricultural land and woodland/
shrubland, respectively. Additionally, in all BG and GM sites, the
proportion of smallholder agricultural land was lower in the
LSLT than the surrounding buffer area.

Three sites (GM1, OR4, and ORS5) showed signs of large-scale
agriculture in the Pre-LSLT period (Fig. 2). In all cases, this was
because insufficient imagery was available before the LSLT
establishment date (Appendix 2). Although the Pre-LSLT period
in these cases is not a true representation of LULC prior to LSLT
execution, it is the best possible and each of these sites does show
clearincrease in large-scale agriculture into the Post-LSLT period.
The implication of large-scale agriculture presence in the Pre-
LSLT images for these sites is that our analysis will underestimate
the extent of transition to such agriculture as a result of LSLTs.

Direct LULC changes

Across all sites, 35% of the transacted area was located in
woodland-shrubland, 32% in smallholder farms, 8% in forest, and
6% in bare soil (Fig. 3). Twenty percent of the area was already
developed as large-scale agriculture. At the site-level, the LSLTs
were located in a variety of different landscapes, including almost
exclusively uncultivated LULC, i.e., forest and woodland/
shrubland (BG3, BG4, OR2, GM 1, GMS5), mixes of uncultivated
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Fig. 2. Site-level land use and land cover (LULC) in the Pre-LSLT (large-scale land transaction)
period. The “Trt” bars represent the buffer area in each treatment site (i.e., surrounding the LSLT).

The “Other” class (Table 1) is not displayed.
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Fig. 3. Direct land use and land cover (LULC) changes, i.e.,
within large-scale land transaction (LSLT) boundaries,
aggregated over all eight sites. The widths of the bars indicate
the fraction of each LULC type and transition. For clarity,
transitions smaller than 5% of the largest transition are not
displayed.
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and smallholder-cultivated (OR4 and ORS), and exclusively
smallholder (OR1; Fig. 4).

Only 38% of the overall transacted area was developed as large-
scale agriculture in the Post-LSLT period (Fig. 3). In no sites was
the area within the LSLT boundary fully developed (Fig. 4), and
in some cases less than 10% of the transacted area was developed
(OR2 and GMY5). Of the land that was developed into large-scale
agriculture during the analysis period, the majority involved
conversion from smallholder agriculture (53%; primarily in OR1,

OR4,and OR5)and woodland/shrubland (35%; OR2, OR4, BG3,
BG4), with a smaller proportion of conversion from forests (9%0;
primarily BG3). Various other LULC changes occurred within
the LSLT boundaries, with sites experiencing deforestation (ORS5,
GMS5), reforestation (most notably BG4), and expansion of
smallholder agriculture (ORS5).

Indirect LULC changes

Bias reduction in the two-stage procedure

The control sites selected by the first-stage region growing
algorithm generally had comparable levels of bias to the wider
donut regions, which was above the acceptable AMSD limit of
0.1 (Fig. 5A; Austin 2009). Thus, in most cases, the site selection
process yielded a pool for control samples that was comparable
to random sampling from the donut but only approximately 1/8th
of the size, i.e., a circle with 10 km radius versus a donut with 30
km outer radius and 10 km inner radius. The algorithm, however,
was not able to find a comparably sized area with comparable
bias in the GM1 site. In particular, there were large disparities in
the elevation and population density covariates for this site
(Appendix 4). This could be due to large diversity in the covariates
across GM 1’s buffer region, or that the LSLT was targeted at a
non-representative area within the landscape.

The point-level indirect LULC change analysis entailed sampling
75 points from each treatment and control site to achieve an
appropriate balance between statistical power and spatial
independence (Appendix 4). Rebalancing within the sampled
control points effectively reduced bias to within acceptable limits
across all sites and outcomes (Fig. 5B and C). A donut-based
approach, i.e., sampling and rebalancing points from the entire
30km donut, led to acceptable bias in all instances except outcome
Y, in ORI, in which the algorithm was unstable, with several
points receiving extremely large weights. Because we included the
donut-based rebalancing solely for comparative purposes, we do
not dwell on this particular instability.
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Fig. 4. Direct land use and land cover changes within each site. For clarity, transitions smaller than
5% of the largest transition within each site are not displayed.
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Fig. 5. Covariate balance at the first stage site selection (A) and
the second stage point rebalancing (B and C). The second stage
is shown twice because the analysis for each outcome (Y1 and
Y?2) required sampling points from different areas. BG4, GM1,
and GM5 were excluded in the assessment of Y2 because they
contained very little smallholder agriculture Pre-LSLT (large-
scale land transaction). For this figure, we averaged the
absolute standardized mean difference over all covariates. The
individual covariates are shown in Appendix 4.
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Indirect LULC change outcomes

Although all treatment sites experienced some level of both
smallholder agricultural expansion and abandonment (Fig. 6; 0-
stage boxplots), the counterfactual-based analysis shows that
LSLTsled to bothincreased and decreased rates of both outcomes
(Fig. 6). However, for both outcomes, the indirect LULC change
estimates were site-specific and generally not statistically
significant. OR 1 was the only site with estimates consistent across
95% of the sampling replications. In OR1, where the LSLT was
located almost entirely in existing smallholder agriculture (Fig.
2), the LSLT increased the probability of smallholder expansion
in the treatment buffer area by approximately 20% and decreased
smallholder abandonment by 5%-10%. The other sites displayed
a range of effects. For instance, the trends in OR4 are in the

Fig. 6. Indirect land use and land cover (LULC) change
estimates and the effect of the two-stage treatment-control
approach. The 0-stage distributions represent the probability of
each LULC change outcome in points sampled from the
treatment site buffer area only, 1-stage represents treatment/
control site differences, and 2-stage represents differences
between treatment and reweighted control points. Box plot
whiskers indicate 5% and 95% intervals on the estimates across
the 100 sampling replications.
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opposite direction to those in OR1 for both outcomes, i.e., the
LSLT in OR4 decreased smallholder expansion and increased
smallholder abandonment. These effects were large in magnitude,
though not significant at a 5% level.
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In the Oromiya sites, which contained the highest levels of existing
smallholder agriculture, the LSLTs had divergent effects on
smallholder expansion. This divergence was associated with the
proportion of smallholder agricultural land inside the LSLT
boundary (Fig. 2); the Oromiya sites in which the LSLT was
located on primarily smallholder agricultural land (OR1, ORY)
experienced increased smallholder expansion spillover effects. In
contrast, the sites with lower amounts of smallholder agricultural
land in the transacted region (OR2, OR4) experienced decreased
rates of smallholder expansion. Sites outside Oromiya with low
existing smallholder agriculture (BG4, GMS5) showed very little
expansion of smallholder agriculture over the analysis period in
either the treatment or the control sites. The treatment sites with
moderate existing smallholder agriculture (GM1 with 17% and
BG3 with 35%) both experienced small levels of smallholder
expansion over the analysis period, which was marginally higher
than in the respective control sites (Fig. 6).

The results were robust to the choice of the second-stage bias
reduction method, i.e., genetic matching produced similar indirect
LULC change estimates to entropy balancing (Appendix 4).
Using a much larger sample size (sampling 1000 points within
each treatment and control site) led to similar median estimates
but much narrower confidence bands, demonstrating the risks of
autocorrelation in sample points, i.e., increased tendency to reject
the null hypothesis of no effect (Appendix 4).

DISCUSSION

Our results provide evidence of LSLTs having limited levels of
implementation (in the Post-LSLT period), displacing
smallholder agriculture, and causing divergent spillover effects in
surrounding landscapes. Our meso-level analysis and two-stage
approach have improved our ability to quantify and generalize
the link between observed LULC change and the presence of
LSLTs over case studies and prevailing donut-based matching
approaches. However, we can neither yet identify the mechanisms
through which the observed effects arose nor quantify the specific
environmental and social effects of the LULC changes. We
therefore use these results to raise questions for further
investigation using additional social and environmental data.

Location and development of LSLTs

The eight LSLTs were located in diverse socio-environmental
landscapes (Fig. 2). The sites in Oromiya, closer to the capital
Addis Ababa than the other sites and with substantial existing
smallholder agriculture, could be described as “densely populated
and easily accessible croplands,” which represents around one-
third of land deals globally (Messerli et al. 2014:449). The sites
in Gambella and Beneshangul-Gumuz, with average population
densities as low as 3 people/km? and considerably lower levels of
existing smallholder agriculture, correspond most closely to a
“moderately accessible and moderately populated shrub- or
grassland” category, which represents an estimated one quarter
of land deals globally (Messerli et al. 2014:449). Thus, even within
a single country, the socio-environmental contexts targeted by
LSLTs can differ widely.

The LULC within the LSLT boundaries prior to transaction was
not always representative of the surrounding landscape. For
example, in all BG and GM sites the proportion of uncultivated
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LULC, i.e., woodland/shrubland and forest, was higher within
the LSLT than the surrounding buffer area (Fig. 2). This is
consistent with other evidence of LSLTs being targeted in the
commons (Dell’Angelo et al. 2017) or areas of land that are
assumed to be unproductive or unused (Deininger and Byerlee
2011, D’Odorico et al. 2017, Liao et al. 2020). Ethiopia’s Land
Bank potentially contributes to this result (Rahmato 2011).
Although we cannot definitively equate our uncultivated land
classes with the term “commons,” descriptions of Ethiopian
livelihoods are generally consistent with this assertion (Shete and
Rutten 2015, Nalepa et al. 2017).

Across all sites, the majority (62%) of the transacted area
remained unconverted to large-scale agriculture in the Post-LSLT
period. This suggests that any benefits to surrounding smallholder
populations that might come from regional investments or
employment may not be realized (Keeley et al. 2014, Shete and
Rutten 2015, Agrawal et al. 2019, Ali et al. 2019) because of
reasons such as land speculation or unanticipated logistical
challenges. Of the land developed into large-scale agriculture over
the analysis period, 53% originated from smallholder agriculture.
This result sets Ethiopia apart from many other countries
undergoing LSLTs, where other forms of land and livelihood
dispossession, including deforestation, can dominate (Jiao et al.
2015). The prominence of smallholder agriculture within our
sample of LSLTs highlights the potential importance of LSLTs
in affecting smallholder livelihood transitions in Ethiopia,
affecting such conditions as capitalization of agriculture, tenure
insecurity, loss of livelihood assets, and population displacement
(Keeley et al. 2014, Moreda 2015, Oberlack et al. 2016, Hajjar et
al. 2019, Nanhthavong et al. 2021).

Indirect LULC change

That LSLTs can lead to highly divergent spillover effects suggests
that LSLT contexts and implementation have important
implications for surrounding land systems. The first outcome we
assessed, agricultural expansion, replaces uncultivated land cover
and therefore implies reductions in biodiversity and natural
ecosystem function. We found two distinct conditions under
which LSLTs led to increased smallholder expansion. The first
represented sites with low proportions of existing smallholder
agricultural land (BG3 and BG4). In these sites, which are likely
closer to the agricultural frontier, the LSLTs may have employed
migrant workers who established their own farms in the vicinity
(Foxetal. 2018, Zaehringer et al. 2018), or triggered demographic
shifts away from traditional hunter-gatherer livelihoods.
Although we cannot derive measures of land-use intensity from
our data, the relative role that intensification may have played in
comparison to the measured land-use extensification is an
important factor worth pursuing further (Meyfroidt et al. 2018).
The second context with increased smallholder expansion was in
sites that consisted primarily of smallholder agricultural land in
both the buffer and the transacted area (OR1 and ORY). Here,
the observed effects may be due to households claiming new land
to compensate for agricultural land lost through the transaction
(Zaehringer et al. 2018). Whether or not this sufficiently
compensated for lost smallholder agricultural land remains a
question, though evidence from other countries has shown it
frequently does not (Oberlack et al. 2016, Nanhthavong et al.
2021).
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LSLTs led to decreased smallholder expansion in sites with both
moderate levels of smallholder agriculture in the buffer area and
lower amounts of smallholder agriculture in the transacted area
(OR2 and OR4). There are several potential explanations for this
outcome: (1) increased employment opportunities for local
populations, reducing their reliance on smallholder agriculture;
(2) spillover productivity increases, reducing the need for
smallholders to expand their cultivated land; (3) out-migration
from the treatment site; or (4) constraints on smallholder
expansionin the treatment sites. There is little evidence supporting
the first two mechanisms in Ethiopia (Shete and Rutten 2015,
Teklemariam et al. 2016, Wendimu et al. 2016, Ali et al. 2019).
The possible effects of LSLTs on displacement, migration, and
land tenure are important mechanisms worth exploring further.

LSLTs also led to both increased and decreased rates of
smallholder abandonment. The smallholder abandonment
outcomes were generally smaller in magnitude, and again our
estimates were mostly statistically insignificant. Nevertheless, the
LSLTs may have increased out-migration of existing smallholder
populations or even contributed to land degradation (Shete et al.
2016, Debonne et al. 2021). Smallholder abandonment co-
occurred with both increased and decreased rates of smallholder
expansion (OR4 versus ORY), and further work is needed to
understand the mechanisms contributing to this divergence.

Two-stage approach and meso-level LULC change analysis

We employed a novel, two-stage treatment-control approach to
estimate the indirect LULC change effects. This approach has
both pragmatic and conceptual advantages. Pragmatically, our
approach allowed us to collect and classify VHR imagery, which
would have been impractical had we used more extensive regions
from which to sample control points (requiring eight times the
volume of data). This enabled us to have greater confidence in
our data and to explore both land use and land cover in our
assessments. Conceptually, our design explicitly controlled for
site- and situation-level conditions, yielding counterfactuals that
are more theoretically justified; compared to traditional point-
based matching, our approach results in entire control polygons
that retain landscape-level characteristics of treatment sites,
which more accurately describes the LSLT treatment assignment
mechanism.

However, our control sites did not contain better covariate
balance than the wider donut regions (Fig. 5A), making sampling
from the control sites similar to a donut-based approach. It is
possible that the limited bias reduction in the first stage is specific
to our case, and the generalizability of this two-stage approach
to other contexts merits further scrutiny. Nevertheless, the
dramatic differences between the 0-stage and 1-stage indirect
LULC change estimates (Fig. 6) demonstrate the importance of
counterfactual-based analysis. Further, there are several instances
in which the second-stage estimates differed from the first stage,
indicating that the improved covariate balance achieved through
the point-based analysis can have substantive implications.

The divergence of outcomes that we observed between our sites
highlights the importance of a site-based approach to impact
evaluation. Large-scale studies typically focus on estimating an
average effect across an entire region (e.g., Davis et al. 2015). This
gives important information about overall trends but may fail to
represent the diversity of lived experiences. Future large-scale
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studies could therefore use methods of analysis that investigate
both mean and variability in effects, or identify archetypical
pathways toward different kinds of impacts (Magliocca et al.
2019a).

CONCLUSIONS

Our research quantifies the direct and indirect effects of LSLTs
on LULC changes across a variety of socio-environmental
contexts in Ethiopia. Our study makes both substantive and
methodological contributions to understanding the effects of
LSLTs on LULC. It thus constitutes an important step toward
further understanding the implementation of LSLTs and their
implications for surrounding landscapes and populations in
smallholder agricultural contexts.

The LSLTs directly displaced a mix of existing LULC types, with
the majority occurring in woodland-shrubland (35%) and
smallholder agricultural land (32%). However, only 38% of the
transacted area was actually developed into large-scale
agriculture. This conforms with the widely observed tendency for
actual levels of development to be lower than initially anticipated,
possibly suggesting speculative investments or problems with
financing the developments. Of the land that did transition into
large-scale agriculture, the majority of this originated from
smallholder agriculture (53%), with smaller amounts originating
from woodland-shrubland (35%) and forest (9%). The result that
LSLTs have displaced large amounts of smallholder agriculture
sets Ethiopia apart from other studied contexts in which the focus
has been primarily on deforestation outcomes, which may miss
these kinds of LULC transitions. Hence, future studies
investigating LULC change in similar contexts should not solely
use forest cover to assess effects.

Each LSLT targeted a unique landscape and involved different
extents of large-scale conversion, leading to divergent indirect
LULC change outcomes. In general, the effects on smallholder
expansion were stronger than those on smallholder
abandonment, with LSLTs associated with both increased and
decreased smallholder expansion. Increased smallholder
expansion occurred in sites with low levels of existing smallholder
agriculture, as well as sites that contained high levels of existing
smallholder agriculture both inside and outside the LSLT. These
divergent effects demonstrate that large-scale studies focusing on
the average effect may fail to reveal the true range of lived
experiences. In reality, individual land deals are unique; hence, a
site-level focus is appropriate and it may be difficult to generalize
or predict outcomes in different contexts.

To estimate indirect LULC change we employed a novel, two-
stage treatment-control comparison procedure. We first generated
counterfactual control sites to adjust for bias in the treatment-
assignment mechanism, i.e., the location of the LSLT, which is
influenced by site-level conditions. Second, we reweighted points
sampled from within these control sites to adjust for situation-
level conditions driving LULC change outcomes. Together, this
procedure produced more robust counterfactual observations for
causal effect estimation than a non-comparative land-use change
study or a single-stage matching procedure. Further, because
appropriate wall-to-wall LULC data do not exist in this context,
it required significantly less LULC data classification than the
standard, donut-based approach. Our results reveal discrepancies
between the indirect LULC change estimates calculated with and
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without the matching procedure, demonstrating its added value
and highlighting the potential for traditional land change
assessments, i.e., without a counterfactual, to mis-estimate LULC
changes. Future studies seeking to estimate land cover changes
could therefore adopt treatment-control designs similar to ours.

Responses to this article can be read online at:
https://www.ecologyandsociety.org/issues/responses.

php/12825
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Appendix 1. LSLT Site Information

Table A1.1: LSLT characteristics.

Site Code Region Farm ID Ownership Start Size (ha) LULC before | LULC after

BG3 Beneshangul Gumuz | Asosa Germany 2008 1000 Forests Maize

BG4 Beneshangul Gumuz | Bambasi Domestic 2012 500 Forests Soybean

GM1 Gambella Saudi Star 1 | Saudi Arabia 2005 3000 State Farm Rice

GM5 Gambella Nuer Domestic 2013 800 Forests Mung bean, cotton
OR1 Oromiya Adama Domestic 2012 1200 Smallholder Sugarcane

OR2 Oromiya Ziway USA 2012 500 State ranch Maize

OR4 Oromiya Sibu Sire India 2003 3500 State ranch Sugarcane, maize
OR5 Oromiya Gutin Domestic 2005 700 Forests Maize




Appendix 2. LULC Imagery and Classification Details

A2.1. Imagery Availability
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Fig. A2.1: Dates of satellite imagery in relation to the LSLT implementation years

2018



A2.2. LULC Classification Process
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Fig. A2.2: Image classification pipeline.

1. Raw Images: 30,643 images, dating from 2004-201, obtained from: IKONOS (1-4m); GeoEye-1
(0.5 - 2m); WorldView-1, 2, and 3 (0.3-2m); and Sentinel-2 (10m)

2. Sort by Site: sorted to each site (BG3, BG4, GM1, GM2, OR1, OR2, OR4, and ORS5), then by
Treatment or Control, and then by Pre- or Post- transaction date. Resulting in 4 sets of images per
site (e.g. BG3-Treatment-Pre, BG3-Treatment-Post, BG3-Control-Pre, BG3-Control-Post)

3. Segmentation - an object based classification was used to partition the landscape into polygons by
distinct spectral and textural characteristics

4. Data Organization - to help keep assign and keep track of analysts’ progress, a hexagon grid (each
hex = 15 km2) was overlaid on each site. A geodatabase was created for each site as well.

5. ArcGIS: In Arc, analysts edited the attribute tables to assign a LULC to each polygon created in
the Segmentation (3) process. If adjacent polygons appeared to be the same they were combined
using the Merge tool. After an entire site was completed, any polygons that were split when
gridding the sites into hexagons were merged if of the same LULC.

6. Analyst Classification - User and Producer’s Accuracy was used to evaluate the agreement between
raters of each LULC. Each rater was asked to classify the same set of three hexagons (that each
contained all LULC types/choices). Then, the Tabulate Intersection tool was used to identify areas
of disagreement in LULC assignment between raters. User’s and Producer’s matrices were
computed in Excel to find percent agreement between individual raters and individual classes
(Appendix D)

7. Classified Site - For each site, Treatment and Control, Pre- and Post- classifications were overlaid
and the Tabulate Intersection tool was used again to find the transition of LULC types from before
and after a transaction date.



A2.3: LULC Examples

Descriptions and examples were used to train analysts. We note that the examples presented here are from
Tanzania (another country in our project), but they demonstrate the relevant LULC characteristics.

Smallholder Agriculture - cultivated areas (<10ha) with a mosaic of different subsistence crops (primarily
cereals), fallow area, and cycle of crop maturity; some settlements and sparse tree cover.

Intensive Agriculture - cultivated fields (>10ha) with vegetation pattern indicating uniform planting
(monocrop) and harvest cycles; may include tree crops and is clearly visible from satellite imagery.




Forest - Densely forested area with 70-100% closed canopy cover

Woodland/Shrubland - mixed area of small trees, short bushes, shrubs and open grassland; 10-70% ground
coverage, small trees (<10%)




Bare/Exposed Soil - land with very sparse grass or completely no vegetation cover.




Development - major roads and urban or industrial infrastructure with a minimum mapping unit of 30
meters.




Wetland - swampy and waterlogged in the wet season (June-August), dry in the dry season (December -
February)




A2.4. Inter-Rater Reliability

We conducted an inter-rater reliability test to account for work completed by multiple analysts. We divided
the sites into sets of 15km? hexagons and asked each analyst to independently classify the same three areas
to compare their LULC decisions. User's and Producer's Accuracy was calculated to assess agreement
between individual raters and each LULC. Agreement between analysts ranged from 53 — 69%.

Table A2.1: Rater agreement

Rater Percent agreement
XW 52.7
PN 56.4
NC 61.2
DW 59.9
CL 60.0
AB 69.4

Table A2.2: Inter-rater class agreement

LULC Class IRR (%) | Aggregated class IRR (%)

Smallholder agriculture 80.7 80.7
Smallholder

Rural settlement n/a

Large-scale agriculture 55.4 Large-scale agriculture 55.4

Forest 73.9 Forest 73.9

Woodland/ shrubland 78.9 Woodland/ shrubland 78.9

Bare/exposed soil 19.6 Bare/exposed soil 19.6

Development 81.7 36.9

Water 4.6 Other

Wetland n/a




Appendix 3. Covariate Data Sources

Table A3.1: Sources and brief justification for covariate data. Where possible, covariate information was
drawn from data that pre-dated the implementation of the LSLTSs.

Covariate Resolution | Year | Source Notes / justification
(m)
Elevation 30 nla SRTM 30m ! Elevation varies widely over Ethiopia and is associated with

climate and agricultural suitability and productivity. As such,
elevation may influence both LULCC and the location of a land
transaction. For example, areas with more favorable climatic
conditions (proxied by elevation) are both more likely to be
converted into smallholder agriculture and sold to an investor
(LSLT).

Slope 30 n/a SRTM 30m ! Areas of low slope are more suitable for agriculture, so are
more likely to be developed for agriculture, whether as a part
of an LSLT or not.

Soil productivity 250 n/a Schaetzl et al 2012 Similar to above, areas of high potential productivity are more
likely to be developed for agriculture.

Method: Soil Productivity Index introduced by Schaetzl et al
(2012). This methodology was introduced for the United
States and was simplified to apply to data available for
Ethiopia. Values range from 1 to 18 with higher values
representing high productivity.

Population density 100 2010 | AfriPop (Linard et al. | Population density can influence LULCC (e.g., population
2012) pressure can lead to agricultural expansion) as well as the

selection of sites for transaction (Messerli et al., 2014).
Forest cover 30 2010 GlobCover 2009 2 Land transactions are known to occur in forested areas

(Dell’Angelo et al., 2017; Magliocca et al., 2019; Messerli et
al., 2014) and initial forest cover will also influence rates of
agricultural expansion and abandonment.

Method: Global Forest Cover “forestcover2000" and
"lossyear" layers were combined to create a 2010 forest cover.
It was assumed anywhere where loss occurred up to 2010 was
a complete reduction of forest cover (i.e. value of 0). Finally,
a 25% tree cover threshold was applied to provide a forest
cover estimate.

Distance to road 3 30 2017 OpenStreetMap * LSLTs often occur in more accessible regions (Messerli et al.,
2014). Additionally, points closer to roads are more suitable
for agriculture as products can be more easily transported to
market.

Method: Selected OSM roads of type: ['motorway', ‘primary’,
‘primary_link', ‘residential’, ‘secondary’, ‘secondary_link',
‘tertiary’, ‘tertiary_link"] and applied Euclidean Distance.
Snapped to forest cover estimate.

Night-time lights 467 2015 | VIIRS Nighttime lights | Night-time lights are used as a proxy for development.
(Elvidge et al. 2017) Method: VIIRS Nigthtime Lights product, avg_rad
(nanoWatts/cm2/sr)
1 (USGS, n.d.)

2 http://due.esrin.esa.int/page_globcover.php

3 We excluded this covariate in the second stage matching for BG4, GM1, OR2, and OR4 because of limited overlap in these covariate
distributions between the Treatment and Control sites.

4 https://www.openstreetmap.org/
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Appendix 4. Additional Matching and Rebalancing Results
A4.1. Control Site Selection

The selected control sites generally a have similar levels of bias to the wider buffer regions from which
they were sampled (Fig. A4.1). A notable exception, however, is in GM1, where it was not possible to find

a Control site with comparable population density and elevation characteristics to the Treatment site (Fig.
A4.2).

OR1 OR2 QR4 OR5 BG3 BG4 GM1 GM5

Night lights -

Forest cover -

Population density +

Elevation 1
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—8— Buffer —@— Control Site Acceptable range

Fig. A4.1: Covariate bias for each covariate used in the first-stage Control site selection. The horizontal
axes plot the absolute standardized mean difference (AMSD; Equation 1 in the main manuscript).
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Fig. A4.2: Boxplots of the covariate distributions in each Treatment site, selected Control site, and 30km
buffer from which the Control site was selected. The whiskers represent 5% and 95% percentiles of the
data. Outliers are not shown. Note that the first stage only used four of these covariates (elevation,
population, density, forest cover, and night lights) and the second stage used five (population density,
forest cover, soil productivity, slope, and distance to road).



A4.2. Point Sampling and Reweighting
A4.2.1. Sample Size

The spatial correlation of the sampled points generally increased with larger sample sizes (Table A4.1). We
chose to progress with sampling 75 points from each site; beyond this level, statistically significant spatial
autocorrelation is observed. We believe this achieves an appropriate balance between statistical power and
spatial independence.

Table A4.1: P-values from Moran's | tests of spatial correlation in the residuals of logistic regressions
with dependent variables Y1 (smallholder expansion) and Y, (smallholder abandonment) for different
sample sizes. Shaded cells indicate instances in which the spatial correlation is significant at the 5% level.

N=20 N=50 N=75 N=100
Site Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2
BG3 0.38 0.50 0.41 0.51 0.29 0.39 0.16 0.24
BG4 T 0.11 - 0.10 - 0.10* - 0.10* -
GML1 0.30 - 0.41 - 0.36 - 0.28
GMS + 0.12 - 0.13 - 0.21 - 0.21 -
OR1 0.36 0.43 0.37 0.29 0.34 0.15 0.23 0.08*
OR2 0.52 0.41 0.28 0.48 0.16 0.47 0.03* 0.42
OR4 0.54 0.44 0.32 0.50 0.13 0.50 0.06* 0.47
OR5 0.51 0.44 0.36 0.46 0.06* 0.46 0.01* 0.42

*p<0.1; **p<0.01; ***p<0.001

T We did not assess this site's Y2 outcome because it initially contained less than 10% smallholder agriculture.

A4.2.2 Covariate Balance

In most cases, entropy balancing successfully removed all bias in the weighted Control data (Fig. A4.3).
For covariates containing high levels of bias between the Treatment and unbalanced Control site (e.g.,
BG4), the entropy balancing successfully reduced bias to within acceptable levels (Austin, 2009). The
rebalanced data for GM5 did contain some residual bias, however the rebalancing provided a substantial
improvement and the levels of residual bias are not drastically high for any covariate.

We note that the original presentation of the entropy balancing algorithm was designed to yield a weighted
set of Control observations with zero bias (Hainmueller, 2012). Specifically, the optimization formulation
specifies balance in first (and potentially higher order) moments as constraints. However, our data
unfortunately contained limited overlap in some covariates (Fig. A4.2), meaning that the algorithm did not
always converge with the original balance constraint specification. We therefore modified the source code
for the ebal R package to exit the algorithm’s iteration when instabilities were detected. With this
modification, we were able to calibrate a set of weights for each site and outcome that substantially reduced
the bias across all covariates (Fig. A4.3). However, for some sites (e.g., GM5 for Y1), these weights were
highly skewed, i.e., most points received almost no weight with several points receiving large weights (Fig.
A4.4). We note this issue but for the purposes of this article do not delve more deeply into modifying or
developing methods for entropy balancing. Some recent research is beginning to generalize entropy
balancing to achieve approximate balance (rather than exact) (Xu and Yang, 2021), but the R
implementations are still in development.
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plot the absolute standardized mean difference (AMSD; Equation 1 in the main manuscript). BG4, GM1,
and GM5 were excluded from the smallholder abandonment analysis (Y2). The distance to road covariate
was excluded in four sites (BG4, GM1, OR2, and OR4) due to limited overlap in these data between the
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Treatment and Control sites (Fig. A4.2).
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Fig. A4.4: Median and variance of resulting sample weights.



A4.3. Robustness of Indirect LULCC Estimates

A: Smallholder expansion (Y1)
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Fig. A4.5: Indirect LULCC estimates under different second-stage approaches. Matching (N=75) used
genetic matching with 75 points sampled from each Treatment and Control Site. Balancing (N=75) used
entropy balancing with 75 points and is the approach presented in the main manuscript. Balancing
(N=1000) used entropy balancing with 1000 points, which violate assumptions of spatial independence
and consequently lead to lower variability in the estimated outcome.
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