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Characterizing Species at Risk I: Modeling Rare Species Under the
Northwest Forest Plan
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ABSTRACT. The Northwest Forest Plan in the Pacific Northwest, United States includes directives for
survey and site protection of hundreds of rare species across many taxonomic classes. To help direct survey
activities, prioritize sites, and stand conditions for conservation of these species, I developed Bayesian
belief network (BBN) models of habitat relationships and multiple stressors predicting presence of 12 rare
species, and I present an example of predicting presence and absence of a rare fungus. The BBN models
are developed along a rigorous process of expert judgment, peer review, reconciliation, accuracy testing,
and incremental updating with known site data and validation data. Management implications of prediction
errors are discussed.
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INTRODUCTION

The Northwest Forest Plan (NWFP) is an ambitious
regional land management plan instituted in 1994
to guide conservation of old-forest biodiversity on
federal public lands in the Pacific Northwest United
States (USDA and USDI 1994). One of the aims of
the NWFP is to ensure persistence of species closely
associated with late-successional and old-growth
(LSOG) forests.

To aid this objective, as part of the NWFP program,
a series of models were built to predict suitability
of sites for, and presence of, rare and little-known
LSOG-associated species. The models were built at
two spatial scales: a broad ecoprovince scale, and a
site-specific scale. The broadscale models were
built in a geographic information system (GIS) to
predict potential environmental suitability of
selected species based on climatic and geophysical
variables and potential natural vegetation across
landscapes (J. Henderson, personal communication; 
Lesher 2005). I led the effort to develop site-specific
models using Bayesian belief networks (BBNs).
The site-specific models could be run independent
of the broadscale models. Alternatively, one could
use the broadscale models first to map large polygon
areas of potentially suitable environments for a

species, and then apply the site-specific models
within those polygons to refine the predictions,
because many of the species modeled respond as
much to very fine grained environmental and habitat
features that are not represented in GIS, as they do
to broader-scale features. To date, the site-specific
models are of 12 rare and little-known LSOG
species, i.e., two fungi, three lichens, one moss, two
vascular plants, two mollusks, one amphibian, one
mammal. I present the BBN modeling work in this
paper using one of the fungus models as an example.
This paper explains how BBNs can be used to
produce ecological prediction models; a companion
paper (Marcot et al. 2006) explains use of BBNs for
producing decision-aiding models also under the
NWFP.

METHODS

What is a Bayesian belief network?

A Bayesian belief network (BBN) is essentially a
set of variables, represented as a network of nodes
that are linked by probabilities. The nodes represent
correlates that affect some outcome(s) of interest,
and the links represent how the correlates interact,
that is, the influence among the nodes (Marcot et al.
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2001). At its simplest, a BBN is what is termed an
“influence diagram,” which is a figure of nodes, i.
e., variables, and arrows, i.e., links, with an
underlying probability structure. Nodes without
incoming arrows are predictor variables, nodes
without outgoing arrows are response variables, and
nodes with both incoming and outgoing arrows are
latent or calculated variables. Formally, a BBN is
an acyclic graph, that is, a network with no feedback
loops, where ideally the predictor variables are not
just correlates but are direct or indirect causes of
response variables.

Throughout this paper, I will use one example
species for which I developed, tested, and updated
BBN models in conjunction with species experts. I
used the BBN modeling software Netica (Norsys,
Inc., http://www.norsys.com). These models predict
presence and absence of a rare species of fungus
called fuzzy sandozi, Bridgeoporus [prev.
Oxyporus] nobilissimus (Basidiomycota, Polyporaceae,
Aphyllophorales) (Burdsall et al. 1996). This fungus
forms large hard conks, some of the largest fungus
fruiting bodies in the world, on the base of large-
diameter live boles, snags, and stumps mostly of
noble fir (Abies procera) in mature, mesic forests
of the Pacific Northwest (T. O’Dell and T.
Dreisbach, personal communication). This paper is
not intended to be a definitive analysis of this
species, but rather an exposition of the BBN
modeling process of a rare species managed under
the NWFP. BBN models, for 11 other species under
NWFP are in various stages of completion.

Use of Bayesian belief networks for species-
habitat modeling

In recent years, BBNs have become a popular means
of modeling species-habitat and stressor relationships.
Rowland et al. (2003) used BBNs to model
landscape use by wolverine (Gulo gulo) in the
interior west United States. Schnute et al. (2000)
used BBN analysis to establish goals for managing
Fraser River sockeye salmon (Oncorhynchus
nerka). Lee (2000) used BBNs to model land-use
effects on bull trout (Salvelinus confluentus). Many
other examples are available (e.g., Raphael et al.
2001, Lehmkuhl et al. 2001).

Probability structure of a Bayesian belief
network model

BBNs are probabilistic models that depict the
frequencies or prior probabilities of various states
of input, i.e., predictor variables, the conditional
probabilities of intermediate variables, and the
posterior probabilities of various states of output, i.
e., response variables (Jensen 1996). In brief, the
statistical structure of a BBN is as follows
(Spiegelhalter et al. 1993).

In BBNs, prior probabilities of input variables are
traditionally represented as being distributed as a
discontinuous Dirichlet function

(1)

 

(Weisstein 2005), which is a multivariate
generalization of the two-state Beta distribution
(Marin et al. 2003) in which state probabilities are
continuous and bounded in the interval [0,1]
(Castillo et al. 1997). Conditional probabilities are
presumed independent of one another and are
specified either by the modeler or are calculated
from case data (discussed below).

Posterior probabilities are calculated in BBNs by
using methods of belief updating based on Bayes’
Theorem, where the posterior probability of species
presence S, given habitat conditions H, is calculated
as the product of the conditional probability of
habitat given species presence and the marginal, i.
e., unconditional probability, of species presence
divided by the marginal probability of the habitat
conditions, or:

(2)

and the posterior probability of species absence
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(3)

 

given habitat conditions is:

(4)

 

For increasingly rare species and increasingly
incomplete, i.e., uncertain and generalized,
descriptions of habitat,

(5)

 

so that

(6)

 

and

(7)

 

Further,

(8)

 

This means that false negatives, i.e., predicting
species absence when it is actually present, and false
positives, i.e., predicting species present when it is
actually absent, can be greatly influenced by
incorrectly parameterized conditional probabilities
and prior marginal probabilities. This makes
calibration, accuracy testing, and updating of the
model with site data an important step in honing
model accuracy.

There are many reasons for false negatives in
apparently suitable habitat such as elusiveness or
low detectability of the species, e.g., some
hypogeous fungi produce aboveground fruiting
bodies only once every few years, lack of training
or experience of the observers, e.g., some rare
bryophyte species grow sparsely and hidden among
mats of more common species and are easy to miss,
temporary absence in suboptimal habitat, and other
conditions. False positives may be more difficult to
determine but could include extinction debt, i.e., the
organism is temporarily present after a disturbance
stressor but is on its way out, occurrence in sink
habitat that provides little contribution to population
viability, incorrect identification, and other reasons.
Thus, with very rare species, it was desirable to
model and test rates of false negatives and false
positives, that is, the accuracy of predicting
presence and absence.

Further details on BBN structures and underlying
statistical calculations can be found in Jensen ,
O’Hagan et al. (2004), Oliver and Smith (1990), and
other references.

Overall Bayesian belief network modeling
process

To develop BBN prediction models of rare species
in the Pacific Northwest, I devised and followed a
specific process (Fig. 1), which proved important to
ensure that the models were rigorously structured,
peer reviewed to reduce or avoid later conflicts
among experts, and scientifically defensible. In this
process, I served as what I will term here the
“modeler,” although in the literature on artificial
intelligence programming and decision modeling
the term “knowledge engineer” is also used in this
same capacity (Fox 1984).

 Alpha-level model

The first step is for the managers to prioritize species
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Fig. 1. Overall process of modeling rare species using Bayesian belief networks under the Northwest
Forest Plan.

of management interest. The modeler then consults
with a species expert(s) to develop the initial alpha-
level model for a given species. In a meeting or panel
setting, the expert first identifies key environmental
correlates and stressors for the species, and the
modeler represents this as an influence diagram
representing the main environmental predictor
variables and their links to the species response
variable (Fig. 2). Then, with help and prompting of
the modeler, the influence diagram is converted to
a functional BBN by specifying appropriate states
or equations and probabilities of each node in the

diagram. In doing so, the species expert may consult
the literature and their own data. What can be termed
the “alpha-level model,” a functional BBN, then
represents the expert’s knowledge and professional
judgment on the major factors influencing the
likelihood of presence of the species.

 Beta-level model

In the next step, the alpha-level model is then subject
to strict peer review overseen by the modeler. The
alpha-level model is treated similar to a manuscript
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Fig. 2. A simple influence diagram showing key environmental correlates of presence of a rare fungus,
Bridgeoporus nobilissimus (B. nob.). Best used as the basis for further modeling, the correlates should
also express causal relations, so that the diagram becomes a “causal web.” A. p. = Abies procera (noble
fir), pres. = present, dbh = diameter at breast height.

submitted to a journal, with the modeler serving as
editor. Peer reviewers are selected as other experts
on the species of interest, and they provide a formal
critique on the alpha-level model’s structure. As
necessary, one or more competing model structures
may be developed with the reviewers.

Next, the modeler presents the peer reviews to the
initial expert who may choose to accept, modify, or
reject the suggested changes. Rationales for the
results are fully documented by the expert and the
modeler. The model that the expert finalizes at this
stage is the “beta-level model.” If there is deviation
in scientific opinion on the best model to use,
multiple BBN models may be identified for the next
stages.

 Gamma-level model

The beta-level model(s) is then subject to accuracy
testing with known site data on the species.
Although the data may also have been consulted by
the initial expert to help craft the alpha-level model,
they were not used explicitly to create the model; at

this stage, the data are more formally used to
determine the degree to which the beta model(s)
correctly predicts species presence and absence.
Results of accuracy testing are presented in a
confusion matrix.

For binary response variables such as species
presence and absence, accuracy results also can be
presented in a receiver operating characteristic
(ROC) diagram, which plots percent correct
predictions of species presence as a function of
percent false predictions of species presence (Hand
1997). A ROC curve that hugs the upper left corner
of the graph has best predictive power. The area
under the curve, when plotted on normalized axes,
is 1 when the model is error-free, 0.5 along the
diagonal with fully random errors, and < 0.5 below
the diagonal when the model produces more errors
than correct outcomes. The ROC curve also can be
used to identify cutoff values matching desired
thresholds of error rates. For example, if false
negatives and false positives are equally
undesirable, a cutoff on the ROC curve would
correspond to the upper left corner of the graph. If
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false negatives are more undesirable the cutoff point
would be more to the right on the graph, and if false
positives are more desirable it would be more to the
left. Thus, results of competing models can be
plotted on the same ROC graph and their accuracy
performance directly compared to each other and to
desired performance criteria.

The known site data then can be used to update the
prior and conditional probabilities in the beta-level
model, or even the model’s overall structure.
Updating from case data is discussed below. This
updated model is termed the “gamma-level model.”
The degree of bias in the known site data should be
documented, if they were not based on random
samples.

 Delta-level model

Next, new validation data, if available, can be used
to further test and update the gamma-level model,
to produce a “delta-level model.” This becomes the
final version used to predict species presence and
absence at the project level in the field. Validation
data would be collected through statistically-based
field sampling, where species presence and values
of the predictor variables represented in the gamma
level model are recorded from randomized plots or
from plots on which the results of the model were
being applied by the manager. In the case of very
rare species, there may be no further validation data
available, so the final model stage for use would be
the previous gamma level model.

Additional modeling guidelines

More specific guidelines for creating and revising
BBNs are presented by Marcot et al. (in press).
These guidelines include ways to keep model
structures simple so that conditional probabilities
are easy to initially specify. Examples are specifying
no more states per node than are necessary, keeping
the number of parent nodes to four or fewer so as to
keep conditional probability tables tractable, and
building models broad rather than deep, that is,
keeping the number of node layers to four or fewer
as much as possible, so as not to unduly swamp out
desired influences of input environmental
parameters.

Sensitivity testing

Each stage in the model-building process uses
sensitivity analysis in various ways to evaluate
model structure and performance. In general,
sensitivity analysis determines which inputs, i.e.,
habitat and stressor variables, most affect the
specified response variables, and can be conducted
on portions of a BBN as well as on the overall model.

During development of the alpha-level model,
sensitivity analysis can help the species expert
determine if the model is structured correctly, that
is, according to their experience. During other
stages in model development, it can be used to
identify and prioritize the main environmental
influences to help guide field validation studies. In
the final model, it can help prioritize which stand or
site attributes are most important for restoration
activities.

With categorical states, as mostly used in the
species-habitat BBNs, sensitivity is calculated in
Netica (B. Boerlange, personal communication) as
the degree of entropy reduction I, which is the
expected difference in information bits H between
a variable Q with q states and a findings variable F 
with f states, and is calculated as:

(9)

 

Formulae used in sensitivity analysis of continuous
variables (variance reduction) are presented by
Marcot et al. (in press). In general, sensitivity
analysis quantifies the degree I to which an input
variable Q influences the response variable F within
the BBN network. The greater the value I, the greater
the influence.

Testing model performance and updating
model structure with case data

One of the major advantages of the BBN approach
is use of case data to help update model probabilities
or model structure. This nicely combines expert
knowledge with empirical data (Heckerman et al.
1994). Updating is done using Bayesian learning
and the specific method used is called the
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expectation maximization (EM) algorithm (Appendix
1; Watanabe and Yamaguchi 2003). With an
adequate set of case data, the EM algorithm
essentially compares outcomes predicted by the
model with outcomes from real-world observations,
and incrementally adjusts conditional probabilities
of the intermediate nodes to better fit the cases.

The EM algorithm also adjusts the prior
probabilities of input variables according to the
frequencies of the states of each input node in the
case data. With no prior information, I had set all
probabilities of input nodes to uniform distributions,
which represent complete uncertainty. The case data
then helped adjust these probabilities to more
realistic frequencies based on conditions observed
in the field. The overall result of applying the EM
algorithm with case data is a model having updated
prior and conditional probabilities, that better fits
actual site data, and that presumably better predicts
species presence or absence from unknown site
conditions. Advantages over a more traditional
statistical modeling method is that the EM algorithm
for updating probability tables, and the testing of
BBN model prediction accuracy, can both function
with missing data and can apply user-specified
weights of the case data.

RESULTS

Results will be presented here using the example
Bayesian belief network (BBN) model of the rare
fungus discussed above.

Alpha-level model: expert experience

Initial consultation with the species experts resulted
in developing a first-round influence diagram and
alpha-level model based on their personal
experience and expectations of the key
environmental correlates that determine presence or
absence of the species. The alpha-level model, not
shown here, included the same variables, but
different conditional probabilities, as ended up in
the beta-level model (Fig. 3a), except for node B.
In the alpha-level model, this node was specified as
“distance to wet place,” with three distance ranges
specified (0–10 m, > 10–100 m, and > 100 m). This
node was designed to determine the proximity to
forested wetlands, including seeps, as initial
experience of the experts suggested that such
microenvironments might at least correlate with

presence of the fungus species of interest.

Beta-level model: peer review

In the beta-level model, it was determined through
peer review and reconciliation with the original
experts that node B was better expressed as
“presence of other bole conks” as more direct
indicators of potential adequacy of bole wood decay
and suitable microenvironment for inoculation of
this species. I will use this revised node as an
example of how each variable in each modeling
stage was carefully specified and defined by the
experts.

This revised node was defined specifically as
presence of one or more other fungi species
including Ganoderma spp. and Fomitopsis spp., but
that some other bole conks, particularly Phellinus
pini should be ignored because they do not serve as
such indicators for the species of interest. The
reviewers and initial experts noted that presence of
Ganoderma is particularly interesting and
potentially an important indicator, and that this
correlation could be treated as a working hypothesis
to be empirically tested.

The indicator conks might occur on noble fir (Abies
procera) or on other host tree species such as
western hemlock (Tsuga heterophylla), Douglas-fir
(Pseudotsuga menziesii), and others, of any size.
The two states specified for this node were rare to
absent, and present. “Rare to absent” was defined
as < 1/3 of suitable tree snags and stumps in the
stand having a conk of the indicator genera noted
above, where suitable means that the tree is not
freshly dead or is at least of snag decay class 3 on
a 5-class decay scale. “Present” was defined as the
same but with ≥ 1/3 of the trees with such indicator
conks. It was further noted in the model
documentation that absence of indicator conks may
occur from case hardening of the trees from fire
charring caused by hot burns, i.e., either prescribed
or wild fires, which also creates unsuitable
conditions of the species in question, so this
indicator pertains to post-fire forest environments
as well.

Note that the definitions and specifications of this
node, like those of each input node, clearly explain
what an observer should measure in the field when
determining the correct state or value for the node.
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Fig. 3. Two stages (see Fig. 1) in the modeling of a rare fungus using Bayesian belief networks as
developed from the influence diagram shown in Fig. 2. (a) beta-level model after peer review, (b)
gamma-level model after incorporating known site field data (Table 1). See text for discussion of the
initial alpha-level model. No delta-level model is available as further field validation studies had not
been conducted.
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Such documentation is extremely important to
ensuring that the model is run and validation data
are correctly collected as intended by the experts.

Gamma-level model: accuracy testing and
updating with known site data

The beta-level model was first tested for accuracy
in predicting presence and absence of the species
by using a set of known site data (Table 1) provided
by the original species experts. The resulting
confusion matrix (Table 2) showed that, out of 31
known cases of species presence, the beta model
correctly predicted presence as the more likely
outcome in all cases, but out of 14 known cases of
species absence the beta model correctly predicted
absence in only 3 (21%) of the cases. This meant a
0% error rate of predicting presence, a 79% error
rate in predicting absence, and an overall error rate
of 24%, with this data set. Management implications
of the error rates are discussed below. I then plotted
the error rates on a ROC curve (Fig. 4), which
approaches the upper left corner of the graph,
suggesting overall a fairly accurate predictive
model.

I updated the beta model with the case file data
(Table 1) using the expectation maximization (EM)
algorithm. This changed the probability tables of
the model to better conform to the case data, as
shown in the comparison of the beta model (Fig. 3a)
and the gamma model (Fig. 3b). The prior
probabilities of the input nodes (nodes B, C, J2, X,
Y, and Z in Fig. 3) were adjusted by the EM
algorithm from uniform, i.e., complete uncertainty
or complete lack of prior data, to the observed
frequencies of the states for each node. For example,
in node J2, the frequency of dense (80–100%)
vegetative cover changed from 33% in the beta
model before incorporating the case data, to 73%
after. Adjusting prior probabilities to known
frequencies of states is an important step in refining
the accuracy of the model.

Incorporating case data also served to update the
CPTs of the other nodes in the model. For example,
the probabilities in the outcome node of species
presence or absence (node A in Fig. 3) changed most
dramatically for some conditions such as for Abies
procera substrate being adequate, vegetative cover
being 80-100%, and local mesic habitat being
inadequate; in this example, the probability of
species presence dropped from 80% in the beta

model to about 43% in the gamma model after
incorporating the case file (Table 3). This change in
the CPT better matched the known field conditions
in the case data.

The changes in prior and conditional probabilities
from incorporating the case data slightly increased
the performance accuracy of the gamma model to
about 22% total error rate, down from 24% in the
beta model, because one additional case of known
absence was now correctly predicted as absence.
The gamma model did not perform perfectly, likely
because there are still unknown predictive variables
not included in the model.

Incorporating the case data changed the relative
sensitivity structure of the model rather dramatically
(Fig. 5). In the beta model, three input variables
nearly equally most affected prediction of species
presence and absence: percent vegetative cover,
Abies procera stumps, and A. procera snags. After
incorporating the case data, A. procera stumps
became by far the most influential variable,
followed weakly by presence of other bole conks
and percent vegetative cover. In both models, A.
procera live boles and presence of mesic site plant
indicators had very weak influence, and could likely
be dropped from the model, i.e., the nodes can be
“absorbed” into the network structure retaining their
influence in the remaining variables, and from
future validation data collection.

DISCUSSION

Efficacy of building Bayesian belief network
species-habitat models

Building Bayesian belief network (BBN) habitat
models of rare species can be done in a very efficient
way, using procedures of knowledge engineering to
solicit expert information. Most species experts
were easy to work with and interested in codifying
their knowledge into working models for further
review, testing, and refinement. A few experts, as
to be expected, balked at the task because they
viewed models as definitive quantitative tools that
should reflect near-perfect understanding of
species’ ecologies. This, of course, is not at all the
intent of the modeling done here, which instead is
aimed at organizing thinking and structuring of
current knowledge and expertise for further testing.
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Fig. 4. A receiver operating characteristic (ROC) curve showing results of testing the classification
success of the beta-level model in Fig. 3a with the case file data in Table 1. A ROC curve plots percent
true positives, sensitivity, against percent false positives, 1-specificity. See text for further explanation.

The BBN modeling construct serves as an intuitive
picture of what experts know about species-habitat
relations. Together with the simpler influence
diagrams, demonstrating a working BBN to
managers is a very effective communication tool to
help them discern the kinds of sites where rare
species may occur and the specific site conditions

that might be targeted for conservation or
restoration of the species.
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Table 1. Example of a case data table of a species from multiple surveys. Such data can be used to induce
an initial network structure or to refine probabilities of relations in an existing network. Column headings
refer to case number, and input and output nodes in the model for the rare fungus Bridgeoporus nobilissimus 
(B. nob.; Fig. 3a). * = missing data. (Data sources: T. O’Dell and T. Dreisbach, personal communication).

Input nodes Output node

Case number Node X:
Abies procera 
boles, cm dbh

Node Y:
Abies procera 
snags, cm dbh

Node Z:
Abies procera 

stumps, cm
dbh

Node B:
Other bold

conks

Node C:
Mesic indicator

plants

Node J2:
Vegetative
cover, %

Node A: B.
nob. presence

1 0 0 130 rare to absent sparse 85 present

2 0 0 110 present abundant 85 present

3 0 0 130 present abundant 80 present

4 100 100 0 present abundant 85 present

5 90 0 100 present abundant 45 absent

6 * * * * abundant 95 absent

7 100 * * * abundant 100 absent

8 75 * * * sparse 100 absent

9 75 50 75 * sparse 100 absent

10 75 * * * absent 70 absent

11 150 150 150 * abundant 100 absent

12 150 * * * sparse 100 absent

13 150 * * * abundant 100 absent

14 100 100 100 * absent * absent

15 75 50 * * abundant 100 absent

16 100 0 0 * absent 80 absent

17 75 75 75 * sparse 50 absent

18 80 50 50 * abundant 100 absent

19 * * * * abundant 80 present

20 * * 107 * abundant 100 present

21 * * * * abundant 100 present

22 * * 122 * abundant * present

23 * * * * abundant * present

(con'd)
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24 50 100 0 present sparse 90 present

25 100 100 0 present abundant 75 present

26 0 0 100 rare to absent sparse 75 present

27 100 0 100 present sparse 70 present

28 100 0 100 present abundant 90 present

29 0 0 100 rare to absent abundant 93 present

30 100 100 0 rare to absent abundant 85 present

31 0 0 100 rare to absent abundant 95 present

32 100 0 100 rare to absent sparse 70 present

33 100 100 * present sparse 90 present

34 100 0 100 present sparse 90 present

35 0 0 100 present abundant 95 present

36 100 0 100 rare to absent abundant 95 present

37 100 30 0 rare to absent abundant 80 present

38 30 30 100 present abundant 80 present

39 30 0 100 present sparse 44 present

40 100 10 100 rare to absent sparse 85 present

41 100 0 100 present sparse 95 present

42 100 30 100 present abundant 85 present

43 10 0 100 present abundant 75 present

44 30 0 100 rare to absent abundant 70 present

45 100 0 100 present sparse 58 present

Model reliability and utility

Some 12 rare species were modeled using BBNs as
demonstrated in this paper, to varying points along
the modeling path (Fig. 1). Models still in alpha
level should not be used with much confidence,
whereas gamma and especially delta-level models
would be released for general use to help with
management decisions. Although they may have
great utility and fulfill a need, the models even at
these later stages of refinement and updating still
carry some degree of unreliability because they deal

with prediction of rare events, which is always
wrought with uncertainty.

Some of the uncertainties that these simple models
do not directly address are: (1) differential
detectability of species given specific survey
protocols, although detectability can be incorporated
into the BBN model structure, e.g., see the BBN
model predicting capture of northern flying
squirrels, Glaucomys sabrinus, presented in Marcot
et al., in press; (2) measurement error in defining
the input variables and species identification; (3)
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Table 2. Example of a confusion matrix showing the prediction accuracy of the Bayesian belief network
(BBN) beta model in Fig. 3a used with the case data file in Table 1. The confusion matrix shows the number
of known cases that were correctly classified, here as whether the species was actually present or absent,
given the conditions on each site.

Predicted

Present Absent Actual

31 0 Present

11 3 Absent

uncertainty in how input variables are gathered into
intermediate, i.e., latent variables; and (4)
propagation of error of covariates throughout the
model structure. Also missing are direct
representations of potential reasons for false
negatives and false positives, as listed above, such
as dynamics of metapopulations and source-sink
habitat use.

Although such errors and modeling lapses may be
egregious in models intended to explain biological
systems, they were tolerable in these models
intended to guide priorities for species surveys. The
models did represent uncertainty in stressors and
environmental conditions through prior probabilities
of the input variables, and in combinations of such
conditions through conditional probabilities of the
other model variables. The models represented
outcomes as probabilities, which fit well in a risk
analysis and risk management framework. The
models also were fully documented, especially
including peer reviews and reconciliations, which
greatly helped reduce concerns for creating biased
models representing just one expert’s belief system.

Implications of model predictions and use in
management

It was imperative to make the potential model users,
e.g., the resource managers and decision makers,
understand that such models should not be used to
definitively dictate management activities based on
model predictions of rare species presence or
absence. The model outcome should not be the

decision. Rather, the stated purpose was to help
guide management decisions on conducting
expensive and intensive species surveys, or on at
least temporarily forgoing site-disturbing activities
until such surveys could be done, by identifying sites
with higher likelihoods of rare species presence.

Type I and II errors, i.e., false negatives and false
positives, have very different implications for rare
species management. False negatives meant that the
models would predict species absence when it was
indeed present. This could mean that site-disturbing
activities might proceed and could result in local
extirpation of the species. There would be no
specific economic cost directly associated with this
unknown model outcome; the cost instead would be
to local persistence of the species. On the other hand,
false positives meant that the models would predict
species presence when it was indeed absent. This
could mean that site-disturbing activities would be
postponed or halted, thus possibly incurring a high
opportunity cost such as forgoing timber harvest. It
could also mean expenditure of time and money to
conduct expensive species surveys where the
species does not exist. Thus, there would be very
real short-term economic implications associated
with false positives, but no real harm to the species.

The example model presented in this paper
accurately predicted species presence, but incurred
a fairly high error rate in predicting species absence,
that is, false positives. Thus, the manager might use
this model with some caution when forestalling site-
disturbing management activities and directing
species surveys, and, depending on cost, may wish

http://www.ecologyandsociety.org/vol11/iss2/art10/
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Fig. 5. Results of sensitivity analyses of the beta- and gamma-level models (Fig. 3). Bars represent the
influence analyzed as entropy reduction. See text for calculation of each predictor variable on predicted
presence or absence of the species; greater bar heights denote greater influence.

for a “second opinion” from specialists for a site
inspection when the model predicts species
presence, at least in some marginal situations. On
the other hand, in using this particular model, the
manager would have far less concern over
inadvertently doing local harm to the species. There
is greater assurance of accuracy when results of this
model would suggest species absence, implying not
conducting species surveys, and not forgoing site-
disturbing activities. Also, false positives could be
interpreted a different way. Areas with false
positives located adjacent to known locations, i.e.,
true positives, could be considered good potential
habitat for conservation.

Other species models may be more balanced in error
structure or may be tipped the other way. Thus, the
modeler should inform the manager as to the error
structure of the model and its potential implications.
The manager would then assert their risk attitude
toward appropriate interpretations and use of each
model.

Using the model for site conservation and
restoration

The manager could use sensitivity results of the
model to prioritize which site attributes or stand
conditions to conserve or restore to help provide for
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the species. For example, the sensitivity analysis
outcome of the gamma-level model (Fig. 5) would
suggest that retaining large (≥ 100 cm diameter)
legacy stumps and snags of Abies procera in stands
with other bole conks as specified above, and
fostering moderately dense (50–80%) cover of tall
shrubs or trees, i.e., the more optimal condition for
this species, could be useful to provide suitable
habitat for this fungus species. Such conservation
or restoration activities could be treated as testable
management hypotheses and response of the species
could be studied in the field. Data could be compiled
into a validation database and, in the spirit of
adaptive learning, used to further test and refine the
model.

As multiple models become available on other rare
species, it may be possible to link them with
common stand attributes. In this way, multispecies
predictions could be made with common databases
on site conditions.

CONCLUSIONS

Bayesian belief models (BBN) of rare species-
habitat relationships are relatively easy to build and
can serve well to represent experts’ experience.
They also are solid tools for combining empirical
data with expert judgment, and for helping to
organize current knowledge and to communicate
with and advise habitat managers.

It is important that the BBN model-building process
include peer review, reconciliation, and testing and
updating with unbiased, known site data on the
species of interest. Although the error rates of false
negative and false positive model predictions of
species presence and absence might not be greatly
altered by incorporating some case data, model
sensitivity, and even model structure, e.g., inclusion
of exclusion of nodes, the states represented in
nodes, and how the nodes are linked, can change a
great deal with new data. This has implications for
using such models to guide activities including
prioritizing sites for species surveys, prioritizing
stand conditions for habitat conservation or
restoration, and revealing gaps in knowledge.

Responses to this article can be read online at:
http://www.ecologyandsociety.org/vol11/iss2/art10/responses/
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Appendix 1. Overview of the expectation maximization (EM) algorithm used to update conditional
probabilities.

Please click here to download file ‘appendix1.pdf’.
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