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ABSTRACT. The Northwest Forest Plan in the Pacific Northwest, United States includes directives for
survey and site protection of hundreds of rare species across many taxonomic classes. To help direct survey
activities, prioritize sites, and stand conditions for conservation of these species, | developed Bayesian
belief network (BBN) models of habitat relationships and multiple stressors predicting presence of 12 rare
species, and | present an example of predicting presence and absence of arare fungus. The BBN models
are developed along a rigorous process of expert judgment, peer review, reconciliation, accuracy testing,
and incremental updating with known site dataand validation data. Management implications of prediction

errors are discussed.
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INTRODUCTION

The Northwest Forest Plan (NWFP) isan ambitious
regional land management plan instituted in 1994
to guide conservation of old-forest biodiversity on
federal publiclandsinthe Pacific Northwest United
States (USDA and USDI 1994). One of the aims of
theNWFPisto ensure persistence of speciesclosely
associated with late-successional and old-growth
(LSOG) forests.

Toaid thisobjective, as part of the NWFP program,
a series of models were built to predict suitability
of sites for, and presence of, rare and little-known
L SOG-associated species. The modelswere built at
two spatial scales: abroad ecoprovince scale, and a
site-specific scale. The broadscale models were
built in a geographic information system (GIS) to
predict potential environmental suitability of
selected species based on climatic and geophysical
variables and potential natural vegetation across
landscapes (J. Henderson, personal communication;
L esher 2005). | ledtheeffort to devel op site-specific
models using Bayesian belief networks (BBNS).
The site-specific models could be run independent
of the broadscale models. Alternatively, one could
usethebroadscalemodel sfirst to map largepolygon
areas of potentially suitable environments for a
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species, and then apply the site-specific models
within those polygons to refine the predictions,
because many of the species modeled respond as
muchtovery finegrained environmental and habitat
features that are not represented in GIS, asthey do
to broader-scale features. To date, the site-specific
models are of 12 rare and little-known LSOG
species, i.e., two fungi, threelichens, one moss, two
vascular plants, two mollusks, one amphibian, one
mammal. | present the BBN modeling work in this
paper using one of thefungus model sasan example.
This paper explains how BBNs can be used to
produce ecological prediction models, acompanion
paper (Marcot et al. 2006) explainsuse of BBNsfor
producing decision-aiding models also under the
NWFP.

METHODS
What is a Bayesian belief network?

A Bayesian belief network (BBN) is essentiadly a
set of variables, represented as a network of nodes
that arelinked by probabilities. The nodesrepresent
correlates that affect some outcome(s) of interest,
and the links represent how the correlates interact,
that is, the influence among the nodes (Marcot et al.
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2001). At itssimplest, aBBN iswhat is termed an
“influence diagram,” which is afigure of nodes, i.
e, varables, and arrows, i.e, links, with an
underlying probability structure. Nodes without
incoming arrows are predictor variables, nodes
without outgoing arrowsareresponsevariables, and
nodes with both incoming and outgoing arrows are
latent or calculated variables. Formally, a BBN is
anacyclicgraph, that is, anetwork with no feedback
loops, where ideally the predictor variables are not
just correlates but are direct or indirect causes of
response variables.

Throughout this paper, | will use one example
species for which | developed, tested, and updated
BBN modelsin conjunction with species experts. |
used the BBN modeling software Netica (Norsys,
Inc., http://www.norsys.com). These models predict
presence and absence of a rare species of fungus
caled fuzzy sandozi, Bridgeoporus [prev.
Oxyporus] nobilissimus (Basidiomycota, Polyporacese,
Aphyllophorales) (Burdsall etal. 1996). Thisfungus
forms large hard conks, some of the largest fungus
fruiting bodies in the world, on the base of large-
diameter live boles, snags, and stumps mostly of
noble fir (Abies procera) in mature, mesic forests
of the Pacific Northwest (T. O'Dell and T.
Dreisbach, personal communication). Thispaper is
not intended to be a definitive analysis of this
species, but rather an exposition of the BBN
modeling process of a rare species managed under
the NWFP. BBN models, for 11 other speciesunder
NWFP are in various stages of completion.

Use of Bayesian belief networksfor species-
habitat modeling

Inrecent years, BBNshavebecomeapopular means
of modeling species-habitat and stressor relationships.
Rowland et a. (2003) used BBNs to model
landscape use by wolverine (Gulo gulo) in the
interior west United States. Schnute et al. (2000)
used BBN analysis to establish goals for managing
Fraser River sockeye salmon (Oncorhynchus
nerka). Lee (2000) used BBNs to model land-use
effectson bull trout (Salvelinus confluentus). Many
other examples are available (e.g., Raphael et a.
2001, Lehmkuhl et a. 2001).
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Probability structure of a Bayesian belief
networ k model

BBNs are probabilistic models that depict the
frequencies or prior probabilities of various states
of input, i.e., predictor variables, the conditional
probabilities of intermediate variables, and the
posterior probabilities of various states of output, i.
e., response variables (Jensen 1996). In brief, the
statistical structure of a BBN is as follows
(Spiegelhalter et al. 1993).

In BBNs, prior probabilities of input variables are
traditionally represented as being distributed as a
discontinuous Dirichlet function

D(x) = lim lim cos™(m!m)

Fri—3 20—

(Weisstein  2005), which is a multivariate
generalization of the two-state Beta distribution
(Marin et al. 2003) in which state probabilities are
continuous and bounded in the interval [0,1]
(Cadtillo et al. 1997). Conditional probabilities are
presumed independent of one another and are
specified either by the modeler or are calculated
from case data (discussed below).

Posterior probabilities are calculated in BBNs by
using methods of belief updating based on Bayes
Theorem, wherethe posterior probability of species
presence S given habitat conditionsH, iscalcul ated
as the product of the conditional probability of
habitat given species presence and the marginal, i.
e., unconditional probability, of species presence
divided by the margina probability of the habitat
conditions, or:

_P(H| S)P(S)
-~ P(H)

and the posterior probability of species absence

P(S| H)
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given habitat conditionsis:

<\ o PH|S)P(S)

P(S | H) P @

For increasingly rare species and increasingly
incomplete, i.e, uncertain and generalized,
descriptions of habitat,

LS) <] Q)

limP(S|H)—0 ©)

and

HmP(S|H)—>1 @)

Further,

P(S|H)+ P(5|H)=P(S| H)+P(5 | H)=1 ©
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This means that false negatives, i.e., predicting
speciesabsencewhenitisactually present, andfalse
positives, i.e., predicting species present when it is
actually absent, can be greatly influenced by
incorrectly parameterized conditional probabilities
and prior marginal probabilities. This makes
calibration, accuracy testing, and updating of the
model with site data an important step in honing
model accuracy.

There are many reasons for false negatives in
apparently suitable habitat such as elusiveness or
low detectability of the species, eg., some
hypogeous fungi produce aboveground fruiting
bodies only once every few years, lack of training
or experience of the observers, eg., some rare
bryophyte species grow sparsely and hidden among
mats of more common speciesand are easy to miss,
temporary absence in suboptimal habitat, and other
conditions. False positives may be more difficult to
determine but couldincludeextinction debt, i.e., the
organism istemporarily present after a disturbance
stressor but is on its way out, occurrence in sink
habitat that provideslittlecontribution to popul ation
viability, incorrect identification, and other reasons.
Thus, with very rare species, it was desirable to
model and test rates of false negatives and false
positives, that is, the accuracy of predicting
presence and absence.

Further details on BBN structures and underlying
statistical calculations can be found in Jensen ,
O'Haganet al. (2004), Oliver and Smith (1990), and
other references.

Overall Bayesian belief network modeling
process

To develop BBN prediction models of rare species
in the Pacific Northwest, | devised and followed a
specific process (Fig. 1), which proved important to
ensure that the models were rigorously structured,
peer reviewed to reduce or avoid later conflicts
among experts, and scientifically defensible. Inthis
process, | served as what | will term here the
“modeler,” athough in the literature on artificial
intelligence programming and decision modeling
the term “knowledge engineer” is aso used in this
same capacity (Fox 1984).

Alpha-level model

Thefirst stepisfor themanagersto prioritizespecies
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Fig. 1. Overall process of modeling rare species using Bayesian belief networks under the Northwest

Forest Plan.
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of management interest. The modeler then consults
with aspecies expert(s) to develop theinitial alpha-
level model for agiven species. Inameeting or panel
setting, the expert first identifieskey environmental
correlates and stressors for the species, and the
modeler represents this as an influence diagram
representing the main environmental predictor
variables and their links to the species response
variable (Fig. 2). Then, with help and prompting of
the modeler, the influence diagram is converted to
afunctional BBN by specifying appropriate states
or equations and probabilities of each node in the

'SVAN,

3

Accuraey testing
of beta model with
known site data

Field surveys
for validation
data

&~

\aliciation testing
of gamrma model
with walidation data

lIse to predict
species presence
and absence

diagram. Indoing so, the speciesexpert may consult
theliteratureandtheir owndata. What can betermed
the “alpha-level model,” a functional BBN, then
represents the expert’ s knowledge and professional
judgment on the major factors influencing the
likelihood of presence of the species.

Beta-level model
Inthenext step, theal pha-1evel model isthen subject

to strict peer review overseen by the modeler. The
alpha-level model istreated similar to a manuscript
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Fig. 2. A smple influence diagram showing key environmental correlates of presence of arare fungus,
Bridgeoporus nobilissimus (B. nob.). Best used as the basis for further modeling, the correlates should
also express causal relations, so that the diagram becomes a“causal web.” A. p. = Abies procera (noble

fir), pres. = present, doh = diameter at breast height.
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submitted to ajournal, with the modeler serving as
editor. Peer reviewers are selected as other experts
on the speciesof interest, and they provide aformal
critique on the alpha-level model’s structure. As
necessary, one or more competing model structures
may be developed with the reviewers.

Next, the modeler presents the peer reviews to the
initial expert who may choose to accept, modify, or
reject the suggested changes. Rationales for the
results are fully documented by the expert and the
modeler. The model that the expert finalizes at this
stageisthe “beta-level model.” If thereisdeviation
in scientific opinion on the best model to use,
multiple BBN modelsmay beidentified for the next
stages.

Gamma-level model

The beta-level model(s) isthen subject to accuracy
testing with known site data on the species.
Although the datamay also have been consulted by
theinitial expert to help craft the a pha-level model,
they were not used explicitly to create the model; at

—\/

(E nob. Presence )

this stage, the data are more formally used to
determine the degree to which the beta model(s)
correctly predicts species presence and absence.
Results of accuracy testing are presented in a
confusion matrix.

For binary response variables such as species
presence and absence, accuracy results also can be
presented in a receiver operating characteristic
(ROC) diagram, which plots percent correct
predictions of species presence as a function of
percent fal se predictions of species presence (Hand
1997). A ROC curvethat hugsthe upper left corner
of the graph has best predictive power. The area
under the curve, when plotted on normalized axes,
is 1 when the model is error-free, 0.5 aong the
diagonal with fully random errors, and < 0.5 below
the diagonal when the model produces more errors
than correct outcomes. The ROC curve also can be
used to identify cutoff values matching desired
thresholds of error rates. For example, if false
negatives and false positives are equaly
undesirable, a cutoff on the ROC curve would
correspond to the upper left corner of the graph. If
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fal senegativesaremore undesirablethe cutoff point
would be moreto theright on thegraph, and if false
positives are more desirableit would be moreto the
left. Thus, results of competing models can be
plotted on the same ROC graph and their accuracy
performance directly compared to each other and to
desired performance criteria.

The known site data then can be used to update the
prior and conditional probabilitiesin the beta-level
model, or even the model’s overall structure.
Updating from case data is discussed below. This
updated mode! istermed the“gamma-level model.”
The degree of biasin the known site data should be
documented, if they were not based on random
samples.

Dedta-level model

Next, new validation data, if available, can be used
to further test and update the gamma-level model,
to produce a*“ delta-level model.” Thisbecomesthe
final version used to predict species presence and
absence at the project level in the field. Validation
data would be collected through statistically-based
field sampling, where species presence and values
of the predictor variables represented in the gamma
level model are recorded from randomized plots or
from plots on which the results of the model were
being applied by the manager. In the case of very
rare species, there may be no further validation data
available, so thefinal model stage for use would be
the previous gamma level model.

Additional modeling guidelines

More specific guidelines for creating and revising
BBNSs are presented by Marcot et a. (in press).
These guidelines include ways to keep model
structures simple so that conditional probabilities
areeasytoinitially specify. Examplesarespecifying
no more states per node than are necessary, keeping
the number of parent nodesto four or fewer so asto
keep conditional probability tables tractable, and
building models broad rather than deep, that is,
keeping the number of node layersto four or fewer
as much as possible, so as not to unduly swamp out
desired influences of input environmental
parameters.
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Sensitivity testing

Each stage in the model-building process uses
sengitivity analysis in various ways to evaluate
model structure and performance. In genera,
sensitivity analysis determines which inputs, i.e.,
habitat and stressor variables, most affect the
specified response variables, and can be conducted
onportionsof aBBN aswell asontheoverall model.

During development of the alpha-level model,
sensitivity analysis can help the species expert
determine if the model is structured correctly, that
IS, according to their experience. During other
stages in model development, it can be used to
identify and prioritize the main environmental
influences to help guide field validation studies. In
thefinal model, it can help prioritize which stand or
Site attributes are most important for restoration
activities.

With categorical states, as mostly used in the
species-habitat BBNS, sensitivity is calculated in
Netica (B. Boerlange, personal communication) as
the degree of entropy reduction |, which is the
expected difference in information bits H between
avariable Q with q states and afindings variable F
with f states, and is calculated as:

Plg. f)log,[P(g. /)] 9)

j:H(Q)—H(Q|F):Z;Z,-" P(q)P(f)

Formulae used in sensitivity analysis of continuous
variables (variance reduction) are presented by
Marcot et a. (in press). In general, sensitivity
analysis quantifies the degree | to which an input
variable Q influencestheresponsevariable F within
theBBN network. Thegreater thevaluel, thegreater
the influence.

Testing model performance and updating
model structure with case data

One of the major advantages of the BBN approach
isuseof casedatato help update model probabilities
or model structure. This nicely combines expert
knowledge with empirical data (Heckerman et al.
1994). Updating is done using Bayesian learning
and the specific method used is called the
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expectation maximization (EM) algorithm (Appendix
1, Watanabe and Yamaguchi 2003). With an
adequate set of case data, the EM algorithm
essentially compares outcomes predicted by the
model with outcomesfromreal-world observations,
and incrementally adjusts conditional probabilities
of the intermediate nodes to better fit the cases.

The EM agorithm also adjusts the prior
probabilities of input variables according to the
frequencies of the states of each input node in the
case data. With no prior information, | had set all
probabilitiesof input nodesto uniformdistributions,
whichrepresent completeuncertainty. Thecasedata
then helped adjust these probabilities to more
realistic frequencies based on conditions observed
in the field. The overall result of applying the EM
algorithm with case dataisamodel having updated
prior and conditional probabilities, that better fits
actual site data, and that presumably better predicts
Species presence or absence from unknown site
conditions. Advantages over a more traditional
statistical modeling method isthat theEM algorithm
for updating probability tables, and the testing of
BBN model prediction accuracy, can both function
with missing data and can apply user-specified
weights of the case data.

RESULTS

Results will be presented here using the example
Bayesian belief network (BBN) model of the rare
fungus discussed above.

Alpha-level model: expert experience

Initial consultation with the speciesexpertsresulted
in developing a first-round influence diagram and
alpha-level model based on their personal
experience and expectations of the key
environmental correl atesthat determinepresenceor
absence of the species. The alpha-level model, not
shown here, included the same variables, but
different conditional probabilities, as ended up in
the beta-level model (Fig. 3a), except for node B.
In the a pha-level model, this node was specified as
“distance to wet place,” with three distance ranges
specified (0-10 m, > 10-100 m, and > 100 m). This
node was designed to determine the proximity to
forested wetlands, including seeps, as initia
experience of the experts suggested that such
microenvironments might at least correlate with
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presence of the fungus species of interest.

Beta-level model: peer review

In the beta-level model, it was determined through
peer review and reconciliation with the original
experts that node B was better expressed as
“presence of other bole conks’ as more direct
indicatorsof potential adequacy of bolewood decay
and suitable microenvironment for inoculation of
this species. | will use this revised node as an
example of how each variable in each modeling
stage was carefully specified and defined by the
experts.

This revised node was defined specifically as
presence of one or more other fungi species
including Ganoder ma spp. and Fomitopsis spp., but
that some other bole conks, particularly Phellinus
pini should be ignored because they do not serve as
such indicators for the species of interest. The
reviewers and initial experts noted that presence of
Ganoderma is particularly interesting and
potentially an important indicator, and that this
correlation could betreated asaworking hypothesis
to be empirically tested.

Theindicator conks might occur on noblefir (Abies
procera) or on other host tree species such as
western hemlock (Tsuga heterophylla), Douglas-fir
(Pseudotsuga menziesii), and others, of any size.
The two states specified for this node were rare to
absent, and present. “Rare to absent” was defined
as < 1/3 of suitable tree snags and stumps in the
stand having a conk of the indicator genera noted
above, where suitable means that the tree is not
freshly dead or is at least of snag decay class 3 on
a5-class decay scale. “Present” was defined asthe
same but with = 1/3 of the trees with such indicator
conks. It was further noted in the model
documentation that absence of indicator conks may
occur from case hardening of the trees from fire
charring caused by hot burns, i.e., either prescribed
or wild fires, which also creates unsuitable
conditions of the species in question, so this
indicator pertains to post-fire forest environments
aswell.

Note that the definitions and specifications of this
node, like those of each input node, clearly explain
what an observer should measure in the field when
determining the correct state or value for the node.
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Fig. 3. Two stages (see Fig. 1) in the modeling of arare fungus using Bayesian belief networks as
developed from the influence diagram shown in Fig. 2. (a) beta-level model after peer review, (b)
gamma-level model after incorporating known site field data (Table 1). See text for discussion of the
initial alpha-level model. No delta-level model is available as further field validation studies had not

been conducted.
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Such documentation is extremely important to
ensuring that the model is run and validation data
are correctly collected asintended by the experts.

Gamma-level model: accuracy testing and
updating with known site data

The beta-level model was first tested for accuracy
in predicting presence and absence of the species
by using aset of known sitedata (Table 1) provided
by the original species experts. The resulting
confusion matrix (Table 2) showed that, out of 31
known cases of species presence, the beta model
correctly predicted presence as the more likely
outcomein all cases, but out of 14 known cases of
species absence the beta model correctly predicted
absence in only 3 (21%) of the cases. This meant a
0% error rate of predicting presence, a 79% error
rate in predicting absence, and an overall error rate
of 24%, withthisdataset. Managementimplications
of the error rates are discussed below. | then plotted
the error rates on a ROC curve (Fig. 4), which
approaches the upper left corner of the graph,
suggesting overall a fairly accurate predictive
model.

| updated the beta model with the case file data
(Table 1) using the expectation maximization (EM)
algorithm. This changed the probability tables of
the model to better conform to the case data, as
shown in the comparison of thebetamodel (Fig. 3a)
and the gamma model (Fig. 3b). The prior
probabilities of the input nodes (nodes B, C, J2, X,
Y, and Z in Fig. 3) were adjusted by the EM
algorithm from uniform, i.e., complete uncertainty
or complete lack of prior data, to the observed
frequenciesof thestatesfor each node. For example,
in node J2, the frequency of dense (80—100%)
vegetative cover changed from 33% in the beta
model before incorporating the case data, to 73%
after. Adjusting prior probabilities to known
frequencies of statesisan important stepinrefining
the accuracy of the model.

Incorporating case data also served to update the
CPTsof the other nodesin the model. For example,
the probabilities in the outcome node of species
presenceor absence (nodeA inFig. 3) changed most
dramatically for some conditions such as for Abies
procera substrate being adequate, vegetative cover
being 80-100%, and loca mesic habitat being
inadequate; in this example, the probability of
species presence dropped from 80% in the beta

Ecology and Society 11(2): 10
http://www.ecol ogyandsociety.org/vol 11/iss2/art10/

model to about 43% in the gamma model after
incorporating the casefile (Table 3). Thischangein
the CPT better matched the known field conditions
in the case data.

The changes in prior and conditional probabilities
from incorporating the case data slightly increased
the performance accuracy of the gamma model to
about 22% total error rate, down from 24% in the
beta model, because one additional case of known
absence was now correctly predicted as absence.
The gammamode! did not perform perfectly, likely
becausetherearestill unknown predictivevariables
not included in the model.

Incorporating the case data changed the relative
sensitivity structureof themodel rather dramatically
(Fig. 5). In the beta model, three input variables
nearly equally most affected prediction of species
presence and absence: percent vegetative cover,
Abies procera stumps, and A. procera snags. After
incorporating the case data, A. procera stumps
became by far the most influential variable,
followed weakly by presence of other bole conks
and percent vegetative cover. In both models, A.
procera live boles and presence of mesic site plant
indicatorshad very weak influence, and could likely
be dropped from the model, i.e., the nodes can be
“absorbed” intothenetwork structureretainingtheir
influence in the remaining variables, and from
future validation data collection.

DISCUSSION

Efficacy of building Bayesian belief network
species-habitat models

Building Bayesian belief network (BBN) habitat
model sof rare speciescanbedoneinavery efficient
way, using procedures of knowledge engineeringto
solicit expert information. Most species experts
were easy to work with and interested in codifying
their knowledge into working models for further
review, testing, and refinement. A few experts, as
to be expected, balked at the task because they
viewed models as definitive quantitative tools that
should reflect near-perfect understanding of
species ecologies. This, of course, isnot at all the
intent of the modeling done here, which instead is
amed at organizing thinking and structuring of
current knowledge and expertisefor further testing.
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Fig. 4. A receiver operating characteristic (ROC) curve showing results of testing the classification
success of the beta-level model in Fig. 3awith the casefile datain Table 1. A ROC curve plots percent
true positives, sensitivity, against percent false positives, 1-specificity. See text for further explanation.
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The BBN modeling construct servesasan intuitive  that might be targeted for conservation or
picture of what experts know about species-habitat  restoration of the species.

relations. Together with the simpler influence

diagrams, demonstrating a working BBN to

managersisavery effective communication tool to

help them discern the kinds of sites where rare

species may occur and the specific site conditions
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Table 1. Example of a case data table of a species from multiple surveys. Such data can be used to induce
an initial network structure or to refine probabilities of relationsin an existing network. Column headings
refer to case number, andinput and output nodesin themodel for the rarefungus Bridgeopor us nobilissimus
(B. nob.; Fig. 38). * = missing data. (Data sources. T. O’ Dell and T. Dreisbach, personal communication).

Input nodes Output node
Case number Node X: NodeY: Node Z: Node B: Node C: Node J2: Node A: B.
Abiesprocera Abiesprocera Abiesprocera Other bold Mesicindicator Vegetative nob. presence
boles, cm dbh snags, cm dbh stun&%?], cm conks plants cover, %
1 0 0 130 rare to absent sparse 85 present
2 0 0 110 present abundant 85 present
3 0 0 130 present abundant 80 present
4 100 100 0 present abundant 85 present
5 90 0 100 present abundant 45 absent
6 * * * * abundant 95 absent
7 100 * * * abundant 100 absent
8 75 * * * sparse 100 absent
9 75 50 75 * Sparse 100 absent
10 75 * * * absent 70 absent
11 150 150 150 * abundant 100 absent
12 150 * * * Sparse 100 absent
13 150 * * * abundant 100 absent
14 100 100 100 * absent * absent
15 75 50 * * abundant 100 absent
16 100 0 0 * absent 80 absent
17 75 75 75 * sparse 50 absent
18 80 50 50 * abundant 100 absent
19 * * * * abundant 80 present
20 * * 107 * abundant 100 present
21 * * * * abundant 100 present
22 * * 122 * abundant * present
23 * * * * abundant * present

(con'd)
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24 50 100 0

25 100 100 0

26 0 0 100
27 100 0 100
28 100 0 100
29 0 0 100
30 100 100 0

31 0 0 100
32 100 0 100
33 100 100 *

34 100 0 100
35 0 0 100
36 100 0 100
37 100 30 0

38 30 30 100
39 30 0 100
40 100 10 100
41 100 0 100
42 100 30 100
43 10 0 100
44 30 0 100
45 100 0 100

present Sparse 90 present
present abundant 75 present
rare to absent sparse 75 present
present sparse 70 present
present abundant 90 present
rareto absent  abundant 93 present
rareto absent  abundant 85 present
rareto absent  abundant 95 present
rare to absent sparse 70 present
present Sparse 90 present
present sparse 90 present
present abundant 95 present
rareto absent  abundant 95 present
rareto absent  abundant 80 present
present abundant 80 present
present sparse 44 present
rare to absent sparse 85 present
present sparse 95 present
present abundant 85 present
present abundant 75 present
rareto absent  abundant 70 present
present Sparse 58 present

Model reliability and utility

Some 12 rare specieswere modeled using BBNs as
demonstrated in this paper, to varying points along
the modeling path (Fig. 1). Models till in apha
level should not be used with much confidence,
whereas gamma and especially delta-level models
would be released for general use to help with
management decisions. Although they may have
great utility and fulfill a need, the models even at
these later stages of refinement and updating still
carry somedegreeof unreliability becausethey deal

with prediction of rare events, which is always
wrought with uncertainty.

Some of the uncertainties that these simple models
do not directly address are: (1) differential
detectability of species given specific survey
protocols, although detectability can be incorporated
into the BBN model structure, e.g., see the BBN
model predicting capture of northern flying
squirrels, Glaucomys sabrinus, presented in Marcot
et a., in press; (2) measurement error in defining
the input variables and species identification; (3)
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Table 2. Example of a confusion matrix showing the prediction accuracy of the Bayesian belief network
(BBN) betamodel in Fig. 3aused with the casedatafilein Table 1. The confusion matrix showsthe number
of known cases that were correctly classified, here as whether the species was actually present or absent,

given the conditions on each site.

Predicted
Present Absent Actual
31 0 Present
11 3 Absent

uncertainty in how input variables are gathered into
intermediate, i.e, latent variables; and (4)
propagation of error of covariates throughout the
model structure. Also missing are direct
representations of potential reasons for false
negatives and false positives, as listed above, such
as dynamics of metapopulations and source-sink
habitat use.

Although such errors and modeling lapses may be
egregious in models intended to explain biological
systems, they were tolerable in these models
intended to guide prioritiesfor speciessurveys. The
models did represent uncertainty in stressors and
environmental conditions through prior probabilities
of the input variables, and in combinations of such
conditions through conditional probabilities of the
other model variables. The models represented
outcomes as probabilities, which fit well in arisk
analysis and risk management framework. The
models also were fully documented, especially
including peer reviews and reconciliations, which
greatly helped reduce concerns for creating biased
model srepresenting just one expert’ shelief system.

Implications of model predictionsand usein
management

It wasimperativeto makethe potential model users,
e.g., the resource managers and decision makers,
understand that such models should not be used to
definitively dictate management activities based on
model predictions of rare species presence or
absence. The model outcome should not be the

decision. Rather, the stated purpose was to help
guide management decisions on conducting
expensive and intensive species surveys, or on at
least temporarily forgoing site-disturbing activities
until such surveyscouldbedone, by identifyingsites
with higher likelihoods of rare species presence.

Type | and Il errors, i.e., false negatives and false
positives, have very different implications for rare
speciesmanagement. Fal se negatives meant that the
models would predict species absence when it was
indeed present. Thiscould mean that site-disturbing
activities might proceed and could result in local
extirpation of the species. There would be no
specific economic cost directly associated with this
unknown model outcome; the cost instead would be
tolocal persistenceof thespecies. Ontheother hand,
false positives meant that the modelswould predict
species presence when it was indeed absent. This
could mean that site-disturbing activities would be
postponed or halted, thus possibly incurring a high
opportunity cost such asforgoing timber harvest. It
could also mean expenditure of time and money to
conduct expensive species surveys where the
species does not exist. Thus, there would be very
real short-term economic implications associated
with false positives, but no real harm to the species.

The example model presented in this paper
accurately predicted species presence, but incurred
afairly higherror ratein predicting speciesabsence,
that is, false positives. Thus, the manager might use
thismodel with some cautionwhenforestalling site-
disturbing management activities and directing
species surveys, and, depending on cost, may wish
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Fig. 5. Results of sensitivity analyses of the beta- and gamma-level models (Fig. 3). Bars represent the
influence analyzed as entropy reduction. See text for calculation of each predictor variable on predicted
presence or absence of the species; greater bar heights denote greater influence.
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for a “second opinion” from specialists for a site
inspection when the model predicts species
presence, at least in some marginal situations. On
the other hand, in using this particular model, the
manager would have far less concern over
inadvertently doinglocal harmto the species. There
isgreater assurance of accuracy when results of this
model would suggest species absence, implying not
conducting species surveys, and not forgoing site-
disturbing activities. Also, false positives could be
interpreted a different way. Areas with false
positives located adjacent to known locations, i.e.,
true positives, could be considered good potential
habitat for conservation.

Other speciesmodel smay bemorebalancedinerror
structure or may be tipped the other way. Thus, the
modeler should inform the manager as to the error
structureof themodel anditspotential implications.
The manager would then assert their risk attitude
toward appropriate interpretations and use of each
model.

Using the model for site conservation and
restoration

The manager could use sensitivity results of the
model to prioritize which site attributes or stand
conditionsto conserve or restoreto help providefor
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the species. For example, the sensitivity analysis
outcome of the gamma-level model (Fig. 5) would
suggest that retaining large (= 100 cm diameter)
legacy stumps and snags of Abies procera in stands
with other bole conks as specified above, and
fostering moderately dense (50-80%) cover of tall
shrubs or trees, i.e., the more optimal condition for
this species, could be useful to provide suitable
habitat for this fungus species. Such conservation
or restoration activities could be treated as testable
management hypothesesand response of the species
could bestudiedinthefield. Datacould be compiled
into a validation database and, in the spirit of
adaptivelearning, used to further test and refine the
model.

As multiple models become available on other rare
species, it may be possible to link them with
common stand attributes. In this way, multispecies
predictions could be made with common databases
on site conditions.

CONCLUSIONS

Bayesian belief models (BBN) of rare species-
habitat relationships arerelatively easy to build and
can serve well to represent experts experience.
They aso are solid tools for combining empirical
data with expert judgment, and for helping to
organize current knowledge and to communicate
with and advise habitat managers.

Itisimportant that the BBN model-building process
include peer review, reconciliation, and testing and
updating with unbiased, known site data on the
species of interest. Although the error rates of false
negative and false positive model predictions of
species presence and absence might not be greatly
altered by incorporating some case data, model
sensitivity, and even model structure, e.g., inclusion
of exclusion of nodes, the states represented in
nodes, and how the nodes are linked, can change a
great deal with new data. This has implications for
using such models to guide activities including
prioritizing sites for species surveys, prioritizing
stand conditions for habitat conservation or
restoration, and revealing gaps in knowledge.
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Appendix 1. Overview of the expectation maximization (EM) algorithm used to update conditional
probabilities.

Please click here to download file ‘ appendix1.pdf’.
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