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An integrated social and ecological modeling framework—impacts of
agricultural conservation practices on water quality
Irem Daloğlu 1, Joan Iverson Nassauer 1, Rick Riolo 2 and Donald Scavia 1,3

ABSTRACT. We present a modeling framework that synthesizes social, economic, and ecological aspects of landscape change to
evaluate how different agricultural policy and land tenure scenarios and land management preferences affect landscape pattern and
downstream water quality. We linked a stylized agent-based model (ABM) of farmers’ conservation practice adoption decisions with
a water quality model, the Soil and Water Assessment Tool (SWAT), to simulate the water quality effects of changing land tenure
dynamics and different policies for crop revenue insurance in lieu of commodity payments over 41 years (1970–2010) for a predominantly
agricultural watershed of Lake Erie. Results show that non-operator owner involvement in land management decisions yields the highest
reduction in sediment and nutrient loads, and crop revenue insurance leads to more homogeneous farmer decisions and a slight increase
in sediment and nutrient loads unless cross compliance with expanded conservation requirements is implemented.
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INTRODUCTION
Agricultural policy in the USA strongly impacts the land use and
land management decisions of farmers and indirectly, but
profoundly, impacts water quality (Broussard et al. 2012). An
overall goal of conservation policies with regard to water quality
is to reduce sediment and nutrient load from agricultural
landscapes by promoting nutrient efficiency and managing
nutrient and sediment runoff through conservation best
management practices (Sharpley et al. 1994). Thus, detailed
studies of the connections between agricultural policies and water
quality can help identify more effective strategies to reduce
agricultural pollution. 

High surface water concentrations of nitrogen and phosphorus
are correlated with inputs from fertilizers used for crops (Ribaudo
and Smith 2000, Boyer et al. 2002, Galloway et al. 2004). For
example, the current resurgence of eutrophication symptoms in
the Great Lakes is attributed to the intensification in agricultural
production and concomitant soil erosion and nutrient runoff
from nonpoint sources (Dolan and Chapra 2012). To address
these issues, conservation practices, such as conservation tillage,
filter strips, land retirement, and nutrient management—the focus
of this research—are employed to mitigate sediment and
nonpoint source nutrient delivery, enhance water quality, and
improve sustainability in agricultural production by increasing
resilience (National Research Council 2010). 

The focus of this study is the impact of plausible future policy
and land tenure scenarios on the delivery of bioavailable dissolved
reactive phosphorus (DRP) and total phosphorus (TP) to Lake
Erie by exploring links between human and environmental
systems. We describe a social–ecological system (SES) that links
farmer decisions and actions to ecological responses in reciprocal
feedbacks. Social–ecological systems are affected by complex
relationships arising from the biophysical, institutional,
infrastructural, demographic, economic, and sociopolitical
contexts. Hence, SESs exhibit emergent properties—unique

properties not belonging to human or natural systems separately
but emerging from their interactions (Janssen 1998, Monticino et
al. 2007, Rammel et al. 2007, Levin et al. 2012). Understanding
the complexities of SESs may affect the success or failure of their
management (Liu et al. 2007). Unforeseen and undesirable
consequences can result if  biophysical and human systems are
not examined together (Veldkamp and Verburg 2004, Levin et al.
2012). 

We describe an SES model to investigate the impact of different
plausible future policy and land tenure scenarios on farmer
adoption of conservation practices intended to enhance water
quality. We link a social agent-based model (ABM) of farmer
adoption of conservation practices with a biophysical water
quality model, the Soil and Water Assessment Tool (SWAT),
which integrates land management decisions with soil properties,
climate information, and land topography to estimate water
quality metrics (Arnold et al. 1998). We define farmers as owners
or renters of land on which cash crops are grown, who make
decisions about land management based on policy scenarios
involving economic, institutional, and environmental information.
This ABM incorporates the heterogeneity and complexity of
Corn Belt farmers through a typology (Daloğlu et al. in review)
that simulates farmer decisions in terms of their tendency toward
adoption of conservation practices.

THE MODELING FRAMEWORK
The study area is the Sandusky watershed of Lake Erie, which
represents a typical watershed of the Corn Belt region (Fig. 1).
Lake Erie has experienced significant eutrophication because of
excessive phosphorus loading, primarily from agricultural runoff
and point-source discharges (Dolan and Chapra 2012); however,
non-point sources, particularly from agriculture, are currently the
major causes of nutrient pollution (Forster 2000). Agricultural
runoff has resulted in algal blooms (Michalak et al. 2013), poor
water clarity, and summer hypoxia (low oxygen) (Hawley et al.
2006, Zhou et al. 2013, Scavia et al. 2014) that impact fisheries,
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recreation, and drinking water throughout many aquatic and
coastal systems (Carpenter 2008). To address these issues,
effective adoption of conservation practices is essential.

Fig. 1. Locator map for the Sandusky Watershed, Ohio. The
study watershed is representative of Corn Belt watersheds
(striped region).

With our linked ABM–SWAT framework, we investigate how
policy and farmer characteristics influence conservation practice
selection and, in turn, their effects on water quality. The
framework—the ABM is implemented in Java using Repast J
agent-based libraries within the Eclipse integrated environment
and linked to SWAT using MatLab—includes the landscape,
agents (farmers, in a typology that represents their heterogeneity),
conservation practice adoption, and ecosystem responses
(sediment, DRP, and TP loading) to changes in land management
(Fig. 2). The farmer typology (Daloğlu et al. 2014) represents the
heterogeneity among Corn Belt farmers and provides the
necessary pillar for the ABM. An existing fully calibrated and
verified SWAT model of the Sandusky watershed (Daloğlu et al.
2012) is used to simulate nutrient load responses.

Fig. 2. The coupled human and natural system of an
agricultural landscape in the Corn Belt.

The ABM is constructed at the individual decision-making level,
and so we use our farmer typology to represent farmer behavior
and decisions. In the model, farmer agents of different types make
adoption decisions every year based on decision algorithms. If
farmer decisions include the adoption of conservation practices,
the landscape is altered, which eventually changes the land
management strategy. Through this model, we explore possible
changes in the structure of U.S. agriculture through land tenure
dynamics and the influence of crop revenue insurance on farmers’
conservation practice adoption decisions. 

The output from the ABM, in the form of updated land
management maps (Fig. 2), is used to examine the impacts of
these changes as presented in plausible future scenarios. To
understand the impacts of these scenarios, SWAT is used to
simulate sediment and phosphorus loss from the landscape over
a 41-year period (1970–2010).

The Model Landscape
The model landscape consists of a two-dimensional grid, built
within the ABM, abstractly representing the agricultural
landscape of the Sandusky watershed. Because the ABM is linked
with the SWAT, the specifics of the water quality model are taken
into consideration during ABM setup. The SWAT uses hydrologic
response units (HRU) as its fundamental computational unit.
Runoff flow, sediment, and nutrient loads are calculated
separately for each HRU and then summed to determine the total
load contribution from each subwatershed (Neitsch et al. 2011).
Land management decisions are represented at the HRU scale;
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Table 1. Farmer typology (from Daloğlu et al., unpublished manuscript)
 
Farmer Type Land tenure, income and information network properties Land Management Preferences

Traditional Full-owner, small operations, dependent on on-farm income,
moderately connected to information networks

- favor nonstructural practices because of potential reduction
in labor requirements
- financial investment requirement leads to lower adoption
rates for structural practices
- secure income provided by land retirement programs is
appealing

Supplementary Full/Part-owner, small operations, has off-farm income,
moderately connected to information networks

- favor nonstructural practices because of potential reduction
in labor requirements
- substantial off-farm income leads to higher adoption rates
for structural practices.
- secure income provided by land retirement programs is
appealing

Business-oriented Part-owner, medium to large operations, dependent on on-
farm income, highly connected to information networks

- favor nonstructural practices because of potential reduction
in labor requirements
- long-term plans and dependence on soil quality leads to
higher structural practice adoption
- focused on profitability, leading to low enrollment rates in
land retirement programs

Nonoperator owner Nonoperator owner, medium to large operations, has off-
farm income, least connected to information networks

- have less control on land management strategies but positive
attitudes toward conservation practices

we used an HRU size corresponding to the average farm size in
the Sandusky basin (258 acres; United States Department of
Agriculture (USDA) 2009, Daloğlu et al. 2012). This strategy
resulted in 147 subbasins and 351 agricultural HRUs. Therefore,
351 farmers are represented as agents in the ABM.

Agents as Farmers
Farmers are exceptionally diverse, particularly with regard to
farm size, land tenure, education, age, sources of income, and
socioeconomic attributes. To represent this heterogeneity in the
ABM, we used a typology (Table 1; Daloğlu et al. 2014) derived
from an extensive literature review and previous surveys
conducted in the Corn Belt region. Because ABMs require
simplicity (Axelrod 1997), like others (Valbuena et al. 2008,
Robinson et al. 2012), our typology represents diversity and
heterogeneity in simple terms based on four farmer types:
traditional, supplementary, business-oriented, and nonoperator
owners (Table 1) (Daloğlu et al. 2014). 

Because of limited data, it is not possible to identify exact
locations of farms and management decisions. Therefore, we
chose to represent the study area in a more stylized model, as
described in Appendix 1, using the “overview, design concepts,
and details” (ODD) protocol (Grimm et al. 2010).

Conservation Practices
We define land management as driven by four conservation
practices and government programs that are widely used and
could be represented in SWAT (Table 2). In the model, farmers
can adopt combinations of conservation practices to control
pollution sources (nutrient management), trap soil and nutrients
before they reach water bodies (structural practices, i.e., filter
strips), promote long-term conservation covers (land retirement,
i.e., Conservation Reserve Program (CRP)), and reduce soil
disturbance (nonstructural practices, i.e., conservation tillage and
no-till). Farmers’ annual adoption decisions are then explored
under the influence of different future scenarios.

Table 2. Conservation practice categories applicable in SWAT
models (modified and adapted from Daloğlu et al., unpublished
manuscript).
 
Conservation
Practice Categories

Conservation
Practices

Economic and Environmental
Benefits

Nonstructural Conservation
tillage, no-till

Reduces soil erosion from both
water and wind, increases organic
matter, and enhances water
quality. Reduces labor, saves time
and fuel, reduces machine wear

Structural Filter strips,
grassed
waterways

Enhances water quality by
trapping soil particles, nutrients,
and pesticides; improves water
infiltration; enhances wildlife
habitat. Eligible for cost-share
programs

Land retirement Conservation
Reserve
Program
(CRP)

Plants long-term, resource
conserving covers. Reduces soil
erosion from highly erodible lands
(HEL), restores wetlands.
Enhances water quality and
wildlife. Annual payment for
enrollment.

Nutrient
management

Reducing
fertilizer
application
rate

Reduces nutrient application on
agricultural landscape and
eventually reduces nutrient runoff.

Agricultural programs in the USA generally allow farmers to
choose which programs to participate in, with flexibility to select
practices that fit their climate, soils, and, most importantly,
management skills (Bernstein et al. 2004). So, in our model,
adoption of structural practices, nonstructural practices, nutrient
management plans, and enrollment in land retirement are
voluntary (Table 2). Each farmer determines whether to
participate in land retirement or adopt certain practices
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depending on policy drivers and the farmer’s overall objectives.
Land retirement programs such as the CRP generally remove land
from agricultural production for a long period (at least 10 years)
or, in some cases, permanently, for an annual rental fee. Structural
practices are eligible for cost-share where farmers receive 50% of
the implementation cost from the federal government as an
economic incentive in return for multi-year commitments. When
farmers receive economic incentives for structural practice
adoption and land retirement enrollment, penalties are levied for
noncompliance (Claassen 2012). Because economic incentives are
not provided for nonstructural practices and enrollment in
nutrient management plans, noncompliance does not incur
penalties.

Conservation Practice Adoption Decisions in the Model
This model focuses on helping understand why some farmers
adopt conservation practices and others do not, and how spatial
relationships among farmers impact those decisions, with special
emphasis on their heterogeneity. At each annual time-step in the
model, every farmer agent decides on a land management strategy
for conservation practice adoption (Table 2). The decision-
making algorithm includes net income generated from
government programs and agricultural production, the farmers’
preferences and land tenure, and influences of their neighbors
(summarized below and detailed in Appendix 1). 

Every farmer agent in the model uses the same decision algorithm
but with different parameters based on the preferences associated
with their type. Given these differences, individual agents react
differently to the same agricultural policies, including their
decision to adopt none or combinations of available practices. A
critical variable in the model is land tenure: whether farmers are
owners or operators, and whether owners or operators make
adoption decisions. Most empirical research concludes that
operators control decisions regarding production and adoption
of conservation practices on farmland owned by nonoperators
(Constance et al. 1996, Soule et al. 2000, Arbuckle 2010); however,
we also investigate land tenure dynamics, the possible impact of
the growing proportion of farmland owned by nonoperators, and
their influence on adoption decisions. 

In the ABM, farmers calculate their agricultural income
generated from production and collect financial incentives by
enrolling in government programs. For agricultural income,
farmer agents use Bayesian inference for the expected price and
yield from a probability distribution. We represent farmer
heterogeneity by setting different parameters for Bayesian
updating for different farmer types (Table 1). For example,
traditional farmers have more stable price and yield expectations,
and business-oriented farmers more likely follow fluctuations in
the market because we assume they are more connected to
information networks. Farmers’ perceptions of crop prices and
yields change from year to year. Thus, at the beginning of each
year, farmer agents use publicly available price and yield
information, their experiences, and their type characteristics to
form future price and yield expectations. 

Farmer agents also use their social and spatial information
networks to evaluate which practices their neighbors adopt. In
the model, nonoperators are not initially connected to the
information networks, whereas operators (traditional, supplementary,
and business-oriented farmers) are connected to both spatial and

social networks, and business-oriented farmers have higher
network connectedness compared with traditional and
supplementary farmers (Daloğlu et al. 2014). As described below,
we also test a case in which nonoperator owners increase
involvement. Farmer agents’ intrinsic environmental attitudes
toward each available conservation practice, as reflected by their
type (Table 1), also influence their adoption decisions. Based on
these variables, the model uses the farmers’ decision algorithm to
decide which conservation practice to adopt (see Appendix 1).

Land Tenure Changes
Agricultural land tenure in the USA has undergone critical
changes; especially through increases in nonoperator ownership
followed by increases in part ownership or full renting
(Wunderlich 1993, Duffy 2008). Our study site, the Sandusky
watershed, followed these national trends, especially in relation
to increased nonoperator ownership (Daloğlu et al. 2014). Studies
of the impact of these increases in the Corn Belt region have
shown that structural practices are appealing to nonoperators
(Petrzelka et al. 2009, Nassauer et al. 2011). However,
nonoperator ownership is not defined consistently across studies.
Nearly half  of Corn Belt farmers are absentee landowners,
defined as owners living more than 50 miles from their land
(Petrzelka et al. 2009), and land retirement enrollment is lower
among absentee landowners compared with other farmers in the
Great Lakes Basin (Petrzelka et al. 2009). However, Nassauer et
al. (2011) found that one type of nonoperator, investors (defined
as landowners who have never farmed), has higher land retirement
enrollment rates than other Iowa farmers. 

We exploit the difference between these two different studies of
different, overlapping subsets of nonoperators as we investigate
the impact of changing land tenure dynamics on conservation
practice adoption and water quality. In our model, we define
absentee landowners and investors as mutually exclusive subtypes
of nonoperator owners. Over time, our simulations assume
increased involvement of nonoperator owners in conservation
decisions (from 0% to 50% by the end of the simulation) as they
become increasingly connected to information networks over
time.

Changes in Agricultural Policy: Crop Revenue Insurance
Current agricultural policies have numerous drivers for farmers
to adopt conservation practices; however, policy incentives
frequently outweigh these, resulting in a patchwork of adoption
that is not sufficiently effective in improving water quality
(Doering et al. 2007). Current Farm Bill discussions include
replacement of commodity payments with subsidized crop
insurance. Starting in 1985, participation in subsidized crop
insurance programs required conservation compliance, i.e.,
refraining from draining wetlands and implementing a whole
farm conservation plan to reduce erosion to acceptable levels.
However, in the 1996 Farm Bill, the conservation compliance
requirement was removed from the insurance program (Smith and
Glauber 1997). 

Currently, farmers can choose between two insurance policies,
crop yield or revenue insurance, where the USDA provides
subsidies for two-thirds of the cost of farmers’ premiums (Coble
and Barnett 2013). Crop yield insurance protects farmers from
the income effects of reduced yield due to weather and other
factors, whereas revenue insurance protects farmers’ income from
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both yield changes and market fluctuations and indirectly
encourages farmers to increase their production area. To evaluate
potential impacts of crop insurance replacing commodity
payments, we concentrate on revenue insurance (Coble and
Barnett 2013). 

Numerous studies have investigated the role of risk aversion in
adoption of nonstructural practices (conservation tillage and no
till) and have consistently found a negative relationship between
risk aversion and practice adoption (Bultena and Hoiberg 1983,
Belknap and Saupe 1988). Similarly, when farmers consider
implementing a nutrient management plan (fertilizer reduction),
they generally assume increased yield uncertainty. Providing
revenue insurance for farmers reduces the risks involved with
nutrient management plan implementation and nonstructural
practice adoption (Bosch and Pease 2000).

Plausible Future Scenarios
The primary goal of this analysis is to understand the drivers of
conservation practice adoption and subsequent water quality
impacts under plausible futures. For this purpose, we constructed
four scenarios by crossing two policy futures with two
assumptions about nonoperator owners (Table 3). These
scenarios are intended to be prospective and informative rather
than projective or prescriptive of the future (Nassauer and Corry
2004).

Table 3. Land management strategies tested under different
agricultural policy and structure scenarios
 

Nonoperator Involvement

No Yes

No
1 Baseline 
Simplified representation
of existing land tenure
and policy context

2 Nonoperator owners
involvement
Increased nonoperator
involvement in land
management decisions
 

Yes
3 Crop revenue insurance
Only operators are
decision makers and crop
revenue insurance is
available as a risk
management tool

4 Crop revenue insurance
with nonoperator owner
involvement
Both operators and
nonoperators owners are
decision makers and crop
revenue insurance is
available as a risk
management tool

Crop
Revenue
Insurance

The “Baseline scenario” (1) represents existing land tenure where
operators (traditional, supplementary, and business-oriented
farmers) are responsible for conservation practice adoption
decisions, and nonoperator owners have no involvement in
production and conservation decisions. In this scenario, existing
crop insurance programs are not included. The “Nonoperator
owner involvement scenario” (2) simulates the potential impact
of increased involvement of nonoperator owners on the baseline
scenario. In this scenario, we assume natural resource agencies
and nongovernmental organizations (NGOs) reach out to
nonoperator owners and effectively inform them about existing
and available conservation practices (Table 4). The “Crop revenue
insurance scenario” (3) follows recent U.S. Farm Bill discussions
about providing federally subsidized crop revenue insurance

rather than commodity production subsidies. This scenario does
not assume conservation compliance is required; however, we do
explore the alternative below. Here, we assume only operators are
decision makers, that they purchase crop revenue insurance at
75% coverage level for all the land that they manage including the
rented land, and that the reduced risk encourages them to increase
production area (Table 4). The “Crop revenue insurance with
nonoperator owner involvement scenario” (4) explores the impact
of increased nonowner involvement on the crop insurance
scenario (3). Crop revenue insurance provides a safety net and
indirectly motivates both operators and nonoperator owners to
increase their production area (Table 4). Cross compliance with
conservation programs is also not included in this scenario.

Table 4. Assumptions embedded in scenario simulations
 

Assumptions in the model

Nonoperator
owner
involvement

• When nonoperator owners are involved in the decision
making, the rate of involvement increases from 0% to
eventually reach 50% at the end of the simulation
 • Absentee landowners are connected only to the social
network but not to the spatial network because they live
out of the county in which they own land
 • Investors who are not absentee landowners are
connected both to the spatial and social network
 

Crop
revenue
insurance

• Farmers buy subsidized crop revenue insurance premium
with 75% coverage level
 • Buying crop revenue insurance changes farmers’ land
management preferences
 • Both nonoperator owners and operators buy crop
revenue insurance for both the land they own and rent.
 • Conservation compliance is not linked to crop revenue
insurance
 • Rental rates of nonoperator owners reflect the revenue
risk reduction represented by crop revenue insurance
 

Water Quality Model—SWAT
The SWAT is a distributed and spatially explicit continuous-time
water quality model at the scale of river basins or watersheds.
This model divides watersheds into subbasins with HRUs that
represent areas with common land cover and slope and soil
properties (Arnold et al. 1998). It is a process-based model of
surface hydrology, weather, sedimentation, soil temperature, crop
growth, nutrients, pesticides, and groundwater that can simulate
the effects of climate and land-use changes on nutrient and
sediment delivery from watersheds and is used widely for
evaluating and predicting impacts of conservation practices
(Arabi et al. 2008). Models created using SWAT have been
developed and applied for Lake Erie watersheds to predict
potential impacts of conservation practice adoption on water
quality (Bosch et al. 2011). More recent SWAT applications
indicate that more aggressive strategies than currently employed
are needed to substantially reduce nutrient and sediment delivery
(Bosch et al. 2013), especially under anticipated future climates
(Bosch et al. 2014). . 

For this study, we used an existing, higher spatial resolution SWAT
model developed for the Sandusky watershed (Daloğlu et al.
2012). The model is employed at a spatial scale in which the
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smallest computational unit of SWAT, average HRU size,
corresponds to the average farm size in the Sandusky basin (258
acres; USDA 2009). The model was calibrated and validated with
extensive daily observed flow and water quality data for the
simulation period (1970–2010) and can be used for future scenario
testing. Our previous modeling efforts indicated the importance
of weather and farmer management decisions on nutrient delivery
especially on DRP runoff (Daloğlu et al. 2012).

Water Quality Impacts of Land Management Strategies
This modeling framework evaluates impacts of farm-scale
decisions at the watershed scale. Farmers update their adoption
decisions annually during each 41-year simulation; however,
because decision-relevant model parameters are sampled from
distributions in the decision-making algorithms, each scenario
consists of 25 runs, each representing a sampling from the
distribution. 

We ran the ABM for the 41-year simulation period (1970–2010)
to get the landscape management data for the simulation period.
We then used that output from the ABM as input to the SWAT
and report water quality model output as the average of the 25
SWAT runs over the simulation period (1970–2010) (Figs. 3, 4).
Regarding the linkage of ABM and SWAT, for each year, farmers’
decisions on conservation practice adoption are used to modify
several SWAT input files. Once information on all farmer
adoption statuses is updated, the ABM output in the abstract grid
file provides the adoption status for every farmer in every period
and is used to make the necessary updates in relevant input files
of the SWAT in the Sandusky watershed file. Abstract grid cell
characteristics are assigned to Sandusky watershed locations by
the smallest computational unit of the SWAT, HRUs. The SWAT
is then run for the whole simulation period (1970–2010) to provide
water quality metrics such as sediment and phosphorus loads.
The input files for the SWAT are all in ASCII text format, making
it easy to interface with the ABM, and this link is supported with
the MatLab programming language. Because ABM results
represent adoption statuses for each individual farmer in every
period, it is not appropriate to represent the result as averages
across multiple simulations. For that reason, results (Figs. 3, 4)
are reported as simulation envelopes that contain the results from
all 25 simulations. Appendix 2 has further details on how we link
ABM with the SWAT.

RESULTS

Impacts of Land Tenure Change
Model results are consistent with observed trends in land tenure
(Appendix 1). For example, U.S. agriculture has undergone a
structural change of land tenure with a decline in full ownership
and an increase in nonoperator ownership and large-scale
operations (Wunderlich 1993, Duffy 2008). To represent this, we
assume that, after age 65, traditional farmers switch to be
nonoperator owners or sell their land to business-oriented or
supplementary farmers. This leads to an increase in the percentage
of large business-oriented farms and smaller supplementary
farms, at the expense of traditional farms (Fig. 3A). We assume
supplementary and business-oriented farmers to not change their
types as they age. This obviously also leads to an increase in the

Fig. 3. Percentage of farmer types in the total farmer
population (A), percentage of nonoperator owners in the total
farmer population throughout the simulation period (B).
Twenty-five ABM simulation runs fall between two lines of the
same color.

percentage of nonoperator owners among the farmer population
(Fig. 3B), as well as production area under their control
(Appendix 1 for details). 

Because different farmer types have different tendencies toward
adoption decisions, as the composition of types changes, the
emergent adoption pattern evolves. For example, when
nonoperator owners are not involved in decision making and crop
revenue insurance is not available (Scenario 1), the percentage of
farmers who adopt nutrient management and structural practices
shows a significant increase over time, with a more pronounced
increase in nutrient management adoption (Fig. 4). Because
nonstructural practices, such as no-till technologies were not
available until the mid-1980s, these practices were not present in
the model until then. Coupled with evolved composition of
farmer types, this resulted in a significant increase in adoption
over the next 10 years. Land retirement, on the other hand, was
minimally adopted, due mostly to the requirement for enrolled
land to be retired for 10 years, with penalties for noncompliance
(Fig. 4). In Scenario 2, when nonoperator owners take a more
active role, they tend to have higher adoption rates for structural
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Fig. 4. Comparison of conservation practice adoption rates under the plausible scenarios such as crop revenue insurance and
nonoperator owner involvement in decision making. Twenty-five ABM simulation runs fall between two lines of the same color.

practices and land retirement. Average adoption rate for
structural practices increased from 17% to 23% when
nonoperators are active decision makers (Fig. 4).

Impacts on Water Quality
In Scenario 2, by the end of the simulation period, 50% of the
nonoperator owners are the decision makers for conservation
practice adoption (Table 4). The positive attitudes of non-
operator owners toward conservation practices results in higher
adoption rates for structural practices and enrollment in land
retirement programs reducing TP loads (Figs. 5, 6). In Scenario
2, results for sediment, organic P (OrgP), and DRP load are
similar, with the improvement more pronounced for sediment
because nonoperator owners favor structural practices, which are
more effective in reducing the sediment load.

Impacts of Agricultural Policy Change
Options under consideration for the U.S. Farm Bill include
replacing commodity payments with subsidized crop revenue
insurance premiums to create stronger incentives for farmers to
enroll in crop revenue insurance. In these simulations,
conservation

Fig. 5. Comparison of average annual total phosphorus (TP)
load in kilograms for Scenarios 1–4 representing the average of
25 ABM simulations linked to SWAT. Whiskers show minimum
and maximum values, whereas the box shows 25, 50, and 75
percentiles.
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Fig. 6. Comparison of Baseline, Scenario 1, with Scenarios 2, 3,
and 4 in terms of sediment, organic phosphorus (OrgP),
dissolved reactive phosphorus (DRP), and total phosphorus
(TP) loads, representing the average of 25 ABM simulations
linked to SWAT.

compliance is not required for crop revenue insurance enrollment.
The effects of the insurance program can be seen by comparing
Scenarios 1 and 3 (Table 3). The insurance protects farmers from
both market and crop yield fluctuations, and because the
payments are based on production area, farmers appear
encouraged to increase their production area. Under this scenario,
nutrient management plans increase, followed by a steep increase
in nonstructural practices when these practices become available
(Fig. 4). When crop revenue insurance premiums are subsidized,
structural practice adoption and land retirement enrollment rates
decrease both for operators and nonoperator owners, whereas
enrollment in nutrient management plans increase. The ABM
results also indicate a decrease in land retirement and structural
practices regardless of the nonoperator owner involvement
(Scenarios 3 and 4), which leads to a more homogenous
conservation landscape (Fig. 4). With subsidized crop revenue
insurance, average TP, OrgP, DRP, and sediment loads are higher
(Figs. 5, 6), primarily due to the reduction in structural practices
and land retirement. 

However, a moral hazard can result if  farmers use crop insurance
as an incentive to underfertilize their crops to receive indemnities
(Sheriff  2005) or to introduce practices or enterprises that they
might avoid without crop insurance, i.e., planting corn or
soybeans where adequate seasonal rainfall is uncertain. Goodwin
and Smith (2003) also raised concerns about crop insurance and
other disaster relief  programs discouraging land retirement.
Another criticism is the potential of supporting an increase in
production on erodible land (Keeton et al. 2000).

Modifications in Agricultural Policy: Closing the SES Model
Loop
In our modeling framework, we built plausible scenarios that
follow the latest U.S. Farm Bill discussions of providing federally
subsidized crop revenue insurance rather than commodity
production subsidies (Scenario 3) and assumed conservation
compliance is not tied to crop revenue insurance (Stubbs 2012).

The model results suggest slightly higher TP, OrgP, DRP, and
sediment yields (Fig. 6) under this scenario compared with the
baseline (Scenario 1), attributed to the reduction in structural
practice and land retirement enrollment (Fig. 4). 

To close the loop in the SES model where social and environmental
systems have reciprocal feedbacks, we add a policy modification
step and allow farmer agents to respond to the new set of
incentives, sanctions, and regulations. For this purpose, we linked
conservation compliance to crop revenue insurance and evaluated
different conservation compliance definitions. There have been
discussions of strengthening and expanding conservation
compliance requirements (Perez 2007, American Farmland Trust
2011, Cox et al. 2011). So, in our framework, we tested three
conservation compliance definitions where farmers can; (a) adopt
nonstructural practices; (b) implement structural practices; or (c)
choose either nonstructural or structural practices (Table 5).
Although the U.S. General Accounting Office (GAO 2003) has
emphasized that compliance enforcement needs updating and
upgrading, we assume 100% adherence to conservation
compliance. 

We observe higher nutrient runoff; especially the bioavailable
DRP when farmers choose nonstructural practices as
conservation compliance requirements (Fig. 7), a common
practice for economic reasons. However, if  conservation
compliance requirements are expanded to include nutrient
management with a focus on promoting structural practices,
linked model results indicate the effectiveness of structural
practices in reducing nutrient delivery from agricultural
landscapes (Fig. 7).

POLICY IMPLICATIONS
This framework provides a powerful tool to explore the impacts
of plausible futures such as changes in the agricultural land tenure
and policy on adoption of conservation practices. Our linked
model distinguishes among nutrient management plans that
reduce fertilizer application, nonstructural practices such as
conservation and no-till, structural practices such as filter strips
to trap soil particles and nutrients, and land retirement programs.
Importantly, this model shows that changes in land tenure and
crop insurance policy affect adoption of these practices, altering
the agricultural landscape and affecting water quality. 

Sandusky Watershed represents a typical watershed of the Corn
Belt region. Therefore, the conclusions of the study are relevant
for other Corn Belt watersheds. However, differences in location-
specific environmental drivers and processes such as land cover,
soil type, and climatic conditions, and their effects on the
transformation of N and P need consideration. 

By investigating the water quality impacts of four plausible
scenarios, we demonstrate the importance of the understudied
nonoperator owners and the possible effects of new policies
related to crop revenue insurance. Our results indicate maximum
load reductions, especially sediment load reductions, occur when
nonoperator owners are involved in the decision-making process
and when crop revenue insurance is not offered in lieu of
commodity payments tied to compliance (Scenario 2). This
improvement is mainly attributed to the increase in the percentage
of farmers who favor structural practices, which are more effective
in reducing sediment and nutrient load. Our results also point to
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Fig. 7. Change in water quality metrics when conservation compliance is linked to crop revenue insurance
programs as a requirement.

the positive influence of nonoperator owner involvement and
highlight the importance of devising innovative policies to reach
out and inform nonoperator owners about the existing water
quality problems, possible solutions, and their role in
implementing them. 

When subsidized crop revenue insurance is promoted as a risk
management program, in the absence of conservation
compliance, it incentivizes farmers, regardless of type, to increase
production area, even including areas that are highly erodible or
wetlands. This then results in a more homogenous conservation
landscape that yields slightly higher loads (Scenarios 3 and 4) due
to a decrease in structural practices and land retirement
enrollment. In contrast, our results show that if  crop revenue
insurance is tied to conservation, particularly structural practices,
sediment and nutrient loads decrease. A recent survey of Iowa
farmers reveals support for expanding conservation compliance
requirements to include nutrient management as well as erosion
control (Arbuckle 2010). Moreover, because structural practices
are visible by remote sensing, compliance enforcement would
require fewer NRCS personnel and less federal budget. 

Our analyses show only modest load reduction (1–6%) under the
plausible future scenarios, which is comparable to other relevant
applications of the SWAT that assume feasible levels of
implementation (Arabi et al. 2008, Bosch et al. 2013). The
adoption rates of conservation practices are also consistent with
the observations (Smith and Goodwin 1996, Bosch and Pease
2000, Goodwin and Smith 2003, Duffy 2008, Petrzelka et al. 2009,
Nassauer et al. 2011) and feasible levels of implementation used
by other SWAT models (Arabi et al. 2008, Bosch et al. 2013).
Collectively, these results point to the need for innovative policies
that promote greater adoption of conservation practices and for

attaching conservation compliance to crop revenue insurance
with perhaps new definitions of conservation compliance. Indeed,
previous SWAT models implemented in the Lake Erie Basin
indicate up to 30–40% yield reduction effectiveness with
significantly increased adoption rates (Bosch et al. 2013).

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/6597
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Appendix 1:Model parameters for the agent-based model of farmer adoption of 1 
conservation practices 2 

 3 
The following sections present the model used in this study following the ODD (Overview, 4 

Design concepts and Details) protocol (Grimm et al. 2006; Grimm et al., 2010). 5 

Purpose 6 

This model is designed to investigate the impact of alternative policy approaches and 7 
changing land tenure dynamics on farmer adoption of conservation practices intended to increase 8 
the water quality.  9 

State variables and scales 10 
The modeled environment consists of a two-dimensional grid space representing the abstract 11 

agricultural landscape of the Sandusky watershed. The ABM is coupled with a water quality 12 
model; therefore the specifics of the water quality model are taken into consideration during the 13 
setup phase of the ABM. For a better match with the water quality model, there are 351 farmers 14 
in the ABM. The model is run for annual steps of 41 years (1970-2010). Figure 1-1 shows the 15 
class diagram of the model. 16 
 17 

 18 

 19 

Figure 1-1: Class diagram of the ABM model 20 

In the model, every farmer owns a farm and each has utility functions with bounded 21 
rationality. The farmers specialize in cash-crops such as corn, soybean or winter wheat. They 22 
have cash earnings from crop production or from enrollment in government programs. The 23 
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farmers have different land areas, crop yields, and future crop price and yield expectations. The 24 
farmers also maintain network connections to other farmers and government agencies with 25 
varying strengths.  In most ABMs, agents are defined by their spatial location (Brown et al. 26 
2005); however, in this model the farmer agents do not change their location as time progresses. 27 
A farmer’s location on the grid determines the spatial neighbors of that farmer. Some of the 28 
farmer attributes do not change during the simulations, such as the percentage of income derived 29 
from farming and connectedness to the network. However, as farmers age in every simulation 30 
run, some of them change their types. For example, after age 65 some of the traditional farmers 31 
leave the farming business and switch to be non-operator owners, or sell/rent their land to 32 
business-oriented or supplementary farmers. We assume supplementary and business-oriented 33 
farmers to not change their types as they age. This obviously also leads to an increase in the 34 
percentage of non-operator owners among the farmer population (Figure 3B, main text), as well 35 
as production area under their control (Figure 1-2). 36 

 37 

Figure 1-2: Percentage of land under non-operator owners’ control increases. 25 ABM 38 
simulation runs fall between two lines of the same color. 39 

 40 

Process overview and scheduling 41 
The diagram in Figure 1-3 gives the process overview and scheduling of the model. For each 42 

simulation, farmers annually update their adoption decisions under the influence of agricultural 43 
policy, changing land tenure dynamics, their preferences, and their neighbors’ decisions. The 44 
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agent loop is equally important as the landscape update, which is the key mechanism that affects 45 
the water quality component of the coupled system (Figure 1-3).  46 

 47 
During the simulation phase, each farmer agent is provided with a behavioral model that 48 

guides the decision-making process. With the behavioral model and farmer attributes, the farmer 49 
agents decide whether to adopt a specific conservation practice or not. The results from the 50 
farmer agent decision update the management landscape. 51 

 52 

Figure 1-3: Process overview and scheduling for a model run. 53 

The decision-making algorithm consists of inputs from profit generated from the agricultural 54 
activity, enrollment in government programs, the farmer preferences for conservation practices 55 
depending on farmer type, and sometimes information from their spatial neighbors and other 56 
farmers in their social network. Every agent in the model uses the same decision algorithm with 57 
different parameters due to the heterogeneity of agents’ preferences. Depending on their tenure 58 
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arrangements, decision makers could either be the owner or the tenant. Because of this 59 
flexibility, this model is also used to investigate the possible impact of growing proportions of 60 
farmland owned by non-operator owners and their influence on conservation decisions.  61 

Design Concepts 62 

• Emergence: The agricultural landscape of conservation practices emerges from the 63 
individual decisions of farmers, which are informed by their economic activities, social 64 
and spatial networks, preferences, and policies that they follow. 65 

• Adaptation: Farmers adapt and update their decisions depending on price and yield 66 
expectations for future years. Depending on their types, farmers have differing network 67 
connectivity, which influences their conservation decisions. Farmers update their 68 
conservation practice adoption decisions by interacting and observing other farmers and 69 
due to changes in the agri-environmental policies and markets.  70 

• Prediction: Farmers have expectations for future yields, crop prices, and rental rates 71 
offered for land retirement programs by using the historic information. Farmers use these 72 
forecasts for their adoption decisions every year. 73 

• Sensing: Farmers know their production yields every year and their profit from that 74 
year’s production. Farmers also know whether their neighbors, both in their spatial and 75 
social networks, adopted a practice. 76 

• Interaction: Farmers interact to exchange information on adoption of conservation 77 
practices. Every farmer type has varying network strength and connectivity.  78 

• Stochasticity: The model has stochasticity built in several ways. Conservation practice 79 
selection decision is stochastic, as the farmers are most likely to select the highest ranked 80 
practice. However, as the farmers are not modeled as purely rational decision makers, the 81 
highest ranking conservation practice is not always chosen. Moreover, to better represent 82 
the decision environment, the submodels also have stochastic parameters to represent the 83 
uncertainty and variability observed in nature. By using the agent decision-making 84 
algorithm over the model run of 41 years, each agent has a sequence of conservation 85 
practices adopted and resultant landscape changes. 86 

• Collectives: Farmers are connected in two ways. In the spatial networks, farmers are 87 
connected to their immediate spatial neighbors. In social networks, farmers are connected 88 
to other farmers with varying strengths and connectivity. Network connections allow 89 
farmers to observe whether other farmers in their network have adopted a conservation 90 
practice.  91 

• Observation: The model produces the conservation adoption patterns at the end of each 92 
simulation.  93 

• Learning: Bayesian inference used for updating price and yield expectations of farmers 94 
is a form of learning.  95 

Initialization 96 
At the beginning of each model simulation, 351 farmers are created to represent the total of 97 

approximately 7500 farmers in the Sandusky watershed. Because the ABM is linked to SWAT, 98 
properties of SWAT are decisive. In SWAT, there are 351 agricultural HRUs, smallest 99 
computation components; therefore in ABM we have 351 agents. The initial agent characteristics 100 
are given in Table 1-1. The farmer typology built in Daloğlu et al. (2014) informs the farmer 101 
preferences for conservation practices typologically.  102 
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 103 
The agricultural structure of the study area is defined by the number of farmers and their 104 

production areas. The parameters defining each farmer such as age, ownership of the land, 105 
percentage of income generated by agricultural activity, and land tenure arrangements are 106 
assigned from a normal distribution within a range that is informed by regional statistics 107 
provided by National Agricultural Statistics Service (NASS). Then, each farmer agent is 108 
associated with its appropriate type (Table 1-2).  109 
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 110 
Property Meaning The Model  
Reactive Responds to changes in the environment Yes 
Autonomous  Have control over its own actions Yes 
Temporally continuous Continuous agent behavior Yes 
Communicative Communicates with other agents Yes 
Mobile Changes location from one to another No 
Flexible/Learning Actions are not scripted, can change Yes 
Character Believable personality with emotions No 
Interactive physically Decisions affect other agents Yes 
Interactive socially Decisions affect other agents Yes 
Goal oriented Responsive to the environment Yes 

Table 1-1: Farmer agent properties 111 

Farmer types 

Policy-relevant  
farmer characteristics Traditional Supplement

ary 
Business

-oriented 

Non-
operator 
owners 

Land Tenure Full owner Full/Part 
owner 

Part 
owner 

Non-
operator owner 

Farm Size Small Small Medium 
to Large N/A 

Primary Source of 
Income On-farm  Off-farm On-farm Off-farm  

Information 
Networks 

Moderately 
connected 

Moderately 
connected 

Most 
connected 

Least 
connected 

Table 1-2: Farmer types constructed by using policy-relevant farmer characteristics. 112 

Input 113 

In every simulation run, the model reflects changes in the political and economic 114 
environment such as changes in agricultural policy and crop prices.  115 

Submodels 116 
Farmers are autonomous decision makers regarding conservation practice adoption. Below 117 

are the sub-model explanations that control farmers’ adoption decisions. The algorithm includes 118 
subcomponents that model the profitability of the farm business, influence of farmer preferences, 119 
and connectedness of the farmers, both socially and spatially. A special attention is given to 120 
agricultural profit calculations and the social connectedness of the agents, as they play significant 121 
roles in agents’ decision-making.  122 

 123 
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At each time step, which can be interpreted as a year, every farmer makes decisions 124 
regarding conservation practice adoption. Farmers can choose to adopt none or a combination of 125 
the practices. The practices available to farmers tackle the non-point source pollution by 126 
controlling the pollution source (nutrient management), trapping the soil particles before they 127 
reach water bodies (structural practices, i.e, filter strips), promoting long-term conservation 128 
covers (land retirement, CRP), and reducing soil disturbance (non-structural practices, i.e., 129 
conservation tillage and no-till systems) (Table 1-3).  130 

 131 
Farmers’ adoption decisions have temporal consequences. That is, if a farmer enrolls in land 132 

retirement programs and signs a CRP contract, the commitment is a multi-year commitment, 133 
where in case of contract breach a penalty has to be paid. Similarly, adoption of structural 134 
practices such as filter strips requires a multi-year commitment as well because farmers receive 135 
economic incentives from the government. Adoption decisions of non-structural practices and 136 
nutrient management plans, however, are made on a yearly basis, and do not entail a penalty. In 137 
this model, we assume every farmer to be eligible for land retirement enrollment and every 138 
farmer who adopts structural practices to be eligible for 50% cost share incentive provided by the 139 
government. 140 

 141 
Adoption of structural and non-structural practices, land retirement enrollment, and 142 

participation in nutrient management plans are voluntary decisions.  Each farmer determines 143 
whether to enroll in land retirement programs (such as CRP), to adopt certain conservation 144 
practices, or choose not to adopt any practice, depending on their farm’s overall objective. The 145 
overall objective is a combination of multiple objectives that include the profitability of the 146 
business, attitudes towards different conservation practices depending on farmer type, and 147 
influences of the spatial and social network. These objectives, each represented by a specific 148 
function, are combined in a single function that represents the overall utility of the farmer 149 
(Equation 1.1).  150 

 151 
Every period, the overall utility to a farmer for every conservation practice adoption option 152 

(e.g., no conservation practice at all, single conservation practice adoption or a combination of 153 
conservation practices) is calculated. The list of conservation practices and their combinations 154 
are given in Table 1-3.   155 

 156 
i Conservation practice 
0 None 
1 Non-structural practices (no-till) 
2 Structural practices (filter strips) 
3 Land retirement programs (CRP) 
4 Nutrient management plans 
5 Non-structural practices (no-till) & Structural practices (filter strips) 
6 Non-structural practices (no-till) &  Nutrient management plans 
7 Structural practices (filter strips) & Nutrient management plans 
8 Non-structural practices (no-till) & Structural practices (filter strips) 

& Nutrient management plans 

Table 1-3: Available conservation practices and their combinations to farmers. 157 
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The decision algorithm combines all of the available information to the farmer and integrates 158 
for the adoption decision. This mechanism includes the profit generated from agricultural 159 
production, availability of government programs and policies, influence of the farmers’ 160 
neighbors and farmers’ intrinsic attributes. These are all combined within a utility function, 161 
Fdecide(i,j) for the conservation practice combination i and farmer j, which is a combination of 4 162 
sub-functions (Equation 1.1).  163 

 164 
Once the farmer calculates utility of each conservation practice, the values of utility are 165 

transformed into choice probability using logit model. Logit framework allows us to incorporate 166 
both uncertainty in decision-making and the bounded rationality of the farmers as it assigns 167 
probabilities to different options, where the probability of an inferior option could be non-zero 168 
(Equation 1.2). 169 

 170 
Fdecide(i,j) = b1Fecon(i,j) + b 2 Fprofile(i,j) + b 3 Fsocial(i,j) + b 4 Fspatial(i,j)    (1.1) 171 
 172 
Selection_probability (i,j) = e Fdecide(i,j) / Σe Fdecide(i,j)

      (1.2) 173 
 174 
In every period, for every farmer (j), Fdecide(i,j) is calculated for all possible combinations of 175 

the conservation practices (i). In this function Fecon(i,j) represents the agricultural profit generated 176 
with production, Fprofile(i,j), the intrinsic attributes of the farmer towards the given conservation 177 
practice combination, which is determined by its type, Fsocial(i,j), the influence of the farmer’s 178 
social network and Fspatial(i,j), the influence of the spatial network, i.e. the farmer’s neighbors. 179 
Fsocial(i,j) and Fspatial(i,j) are also influenced by the farmer typology. The weights (b) for each 180 
component are informed by the farmer typology and determined using a matrix method 181 
(Appendix C). One of the important modeling choices that incorporate the differences between 182 
the different farmer types is the assignment of the weights (b). These weights are assigned in 183 
such a way that the farmer types whose income source is solely farming, and the types with 184 
profit maximizing mindset (i.e., business-oriented farmers) put more emphasis to Fecon(i,j), while 185 
farmers with more connection to the landscape (i.e., traditional farmers) put more emphasis on 186 
Fprofile(i,j). Because non-operators do not live in the county in which they own land, or they do 187 
not have a farming background, they are not connected to the information networks have no b 188 
values for Fspatial and Fsocial.  More details on each component of the Fdecide(i,j) function is given in 189 
subsequent sections. 190 

 191 
1. Agricultural Profit Dynamics, Fecon(i,j) 192 

Farmers generate revenue by enrolling in land retirement programs and allocating land to the 193 
CRP or by crop production. If the farmer enrolls in land retirement programs, a fixed payment 194 
depending on the farm size and CRP rental rate is paid at the beginning of each year the farmer 195 
allocates land for retirement programs. There will be no further agricultural revenue generated 196 
from production for the farmer in that case, and that payment will be equal to Fecon(i). Otherwise, 197 
the farmer’s expected earning is calculated using the farm size, the price and yield of the crop 198 
that the farmer expects to get, governmental support for enrolling agricultural programs, and 199 
costs associated with production and conservation practice adoption. Single period profit 200 
function of a farmer producing a single crop is written below in two forms representing policy 201 
scenarios of with crop revenue insurance and without crop revenue insurance. In our models, the 202 
commodity payments such as direct payments are not represented explicitly.  203 
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Fecon(i,j)= p(A-F)Y (z) + gF + rA – c        (1.3) 204 
without crop revenue insurance program   205 
  206 
Fecon(i,j)= p(A-F)Y (l, z) + gF + rA – c – p(l)      (1.4) 207 
with crop revenue insurance program 208 
 209 
where Fecon(i,j) is profit, p is farmer’s expected crop price (corn, soybean or winter wheat), A 210 

is the production area (acres), Y is the farm's expected effective yield per acre, g denotes per acre 211 
economic incentive associated with structural practice adoption, F is total land allocated for 212 
structural practices, r is the CRP per acre payment to the farmer, z is a measure of fertilizer input 213 
on the farm, c is the total cost of production including cost of conservation practice adoption, p is 214 
the per acre premium rate for crop revenue insurance, and l is the level of insurance purchased. 215 
In this model we assume 75% coverage level for revenue insurance. 216 

 217 
Agricultural crop production generates revenue (market price multiplied by production size 218 

and expected yield). Agricultural profit dynamics also include government payments (such as 219 
payments to incentivize structural practice adoption), insurance indemnities if enrolled in crop 220 
revenue insurance program, and cost production including maintenance, input, and labor costs as 221 
well. To represent the agricultural production cost, a current farm budgeting model developed by 222 
Ohio and Iowa State Universities is adopted and adjusted to previous years using historic 223 
consumer price index. 224 

 225 
Practices that farmers adopt influence the size of the production area and expected yield; 226 

therefore they affect the expected agricultural profit. For example, when a farmer implements 227 
structural practices, the size of the filter strip is subtracted from the total size of the farm. 228 
Moreover, with nutrient management plans the expected yield decreases. Therefore, Fecon value 229 
for each conservation practice available in Table 1-3 is calculated separately.  230 

 231 
Expected Price and Yield: Expected prices and yield values heavily influence the resulting 232 

farm profit. These parameters are based on previous year’s price and yield values and updated by 233 
each farmer influenced by their farmer type.  234 

 235 
In the model, for actual crop yields and prices historical values are used (available at 236 

http://usda.mannlib.cornell.edu and http://www.farmdoc.illinois.edu). In any given time, based 237 
on the actual previous crop yields and prices, farmers use Bayesian inference to form price and 238 
yield expectations. While a farmer’s yield expectation is in the form of a point prediction, a 239 
probability distribution is formed for crop prices by taking the price expectation as the mean. 240 
Bayesian inference is a statistical approach used to update farmer’s existing expectations against 241 
observed values of crop price and yield. The Bayesian inference allows farmers to be connected 242 
to agricultural markets and at the same time ‘learn’ with experience. Moreover, with Bayesian 243 
inference, we can represent the heterogeneity of farmers by setting different parameters for 244 
updating their priors for crop prices and yields depending on the farmer type. For example, 245 
traditional farmers are more anchored so that realization of outliers do not affect their 246 
expectations much while business-oriented farmers are better at following the fluctuations in the 247 
market.   248 
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Bayesian inference algorithm is run every year, hence farmers’ perceptions for crop prices 249 
and yields change annually.  At the beginning of each year, farmers use publicly available price 250 
and yield information from the previous year, their experiences and personalities to form future 251 
price and yield expectations.  252 

 253 
2. Intrinsic typology attributes, Fprofile (i,j) 254 

Farmer typology developed informs Fprofile values for each farmer type and conservation 255 
practice (Daloğlu et al. 2014). F profile (i,j) lets farmers to adopt economically infeasible practices 256 
because of their attitudes and preferences such as being a good citizen of the environment (Table 257 
1-4). The synthesis of the adoption literature supports the F profile values, which change for every 258 
practice and every farmer type. In other words, F profile is the variable representing the socio-259 
economic attributes of the agents including the source of income, impact of farm size and land 260 
tenure arrangements in adoption decisions (Table 1-5).    261 
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 262 
 263 

Farmer Type Land Management Attitudes 

Traditional 

- favor non-structural practices because of potential 
reduction in labor requirements ! high F profile 
values 
- financial investment requirement leads to lower 
adoption rates for structural practices ! low F profile 
values 
- secure income provided by land retirement 
programs is appealing ! high F profile values 

Supplementary 

- favor non-structural practices because of potential 
reduction in labor requirements ! high F profile 
values 
- substantial off-farm income leads to higher 
adoption rates for structural practices ! high F 
profile values 
- secure income provided by land retirement 
programs is appealing ! high F profile values 

Business-oriented 

- favor non-structural practices because of potential 
reduction in labor requirements ! high F profile 
values 
- long-term plans and dependence on soil quality 
leads to higher structural practice adoption ! high 
F profile values 
- focused on profitability, leading to low 
enrollment rates in land retirement programs ! 
low F profile values 

Non-operator owner 
Absentee landowners: own the 
land but do not reside on or 
operate it (Petrzelka et al., 
2011)  
Investors: describe themselves 
as never having farmed 
(Nassauer et al., 2011). 
 Mutually exclusive subtypes. 

- favor non-structural and structural practices 
because of potential contribution to increased water 
quality  ! high F profile values 
- absentee landowners favor land retirement 
programs ! high F profile values 
- investors have lower enrollment rates for land 
retirement programs  ! low F profile values 
 

Table 1-4: Farmer typology and its influence on F profile values (adapted from Daloğlu et 264 
al. 2014) 265 
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The F profile value for each farmer type and conservation practice is determined using 266 
prioritization matrix method and the synthesis of the adoption literature (Table 1-4, Daloğlu et al. 267 
2014). The prioritization matrix, also known as criteria matrix, provides a way of sorting a 268 
diverse set of items into an order of importance. It also enables their relative importance to be 269 
identified deriving a numerical value of the importance of each variable.  270 

 271 
 
i 

F profile 
 
Traditional 

 
Supplementary 

 
Business-
oriented 

 
 
Investor 

 
Absentee 
Landowner 

0 0.90 0.36 0.28 0.00 0.00 
1 0.68 0.49 0.74 1.00 1.00 
2 0.00 0.06 0.20 0.37 0.60 
3 1.00 1.00 0.00 0.48 0.17 
4 0.43 0.17 0.43 0.13 0.12 
5 0.10 0.22 0.36 0.55 0.72 
6 0.51 0.17 1.00 0.30 0.31 
7 0.08 0.17 0.28 0.55 0.62 
8 0.07 0 0.31 0.86 0.63 

Table 1-5: F profile values  272 

3. Social and spatial network, Fsocial(i,j) and Fspatial(i,j) 273 
To represent interactions between agents, there are several artificial social network structures 274 

such as lattice, small-world, scale-free and random networks. As little to no data is available for 275 
the historical and current social network structure of the farmers we chose to rely on artificial 276 
network structures. After a comparison of widely used social network structures, Hamill and 277 
Gilbert (2009) suggest a simple but at the same time sociologically realistic network structure.  278 
To represent the varying network connectedness of agents displayed in the farmer typology, this 279 
social network is suitable.  280 

 281 
Hamill and Gilbert (2009) base their network structure on the analogy of social circles.  In 282 

the social network, agents are permitted to have links with other agents who can reciprocate. The 283 
agent population is divided into two circles with small and large social reaches. This network 284 
structure allows representing individuals who are more connected than rest of the population by 285 
placing them in the social circle that has larger social reach. When the social reach is larger, the 286 
size of the personal network would be larger as well. In our model, business-oriented agents are 287 
located in a social circle that has larger social reach than supplementary and traditional farmer 288 
agents which results in increased number of connections for business-oriented farmers. This 289 
network structure also allows us to connect business-oriented farmers more to other business-290 
oriented farmers. Non-operator owners (investors and absentee landowners) are initially not 291 
connected to the social network. However, to demonstrate the potential impacts of information 292 
networks on non-operator owner decision, we simulate a scenario that assumes absentee 293 
landowners connect to the social network whereas investors connect to both spatial and social 294 
networks as they live close to the farmland that they own. Through the information networks 295 
(spatial and social networks), farmers observe their neighbors’ adoption decisions.   296 
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 297 
Both Fspatial(i,j) and Fsocial(i,j) are calculated for every farmer for every possible conservation 298 

practice given in Table 1-2.  Fspatial represents the percentage of Moore neighbors (the eight cells 299 
surrounding a central cell on a two-dimensional square lattice) adopting a certain conservation 300 
practice. Moore neighbors of a farmer comprise the immediate eight spatial neighbors that every 301 
farmer has, except the farmers on the edge if two-dimension grid space.  302 

 303 
Fspatial (i,j) = Neighbors(i,j) /  ΣNeighbors(i,j)     (1.5) 304 
 305 
where Neighbors(i,j) is the number of Moore neighbors that adopted the conservation 306 

practice combination j. That is, Fspatial (i) is a measure of popularity of conservation practice 307 
combination i in the immediate neighborhood of the given farmer. Higher the popularity of a 308 
conservation practice in spatial sense, higher the probability of the farmer adopting that 309 
conservation practice. 310 

 311 
Fsocial represents the percentage of neighbors adopting a certain conservation practice. 312 

Similarly, Fsocial is calculated for every possible conservation practice listed in Table 1-3. 313 
Connectedness in the social network is not uniform among the farmers. The number of 314 
connections of a farmer depends on its type. Moreover, among the farmers of a given type, the 315 
number of connections may differ, representing the heterogeneity of the farmers within the same 316 
type. However, the variation in the number of connections among the farmers of the same type is 317 
smaller than the variation between farmers of different types. For example, business-oriented 318 
farmers have higher number of social connections than the other farmers on average, while the 319 
connections of the business-oriented farmers are mostly to other business-oriented farmers.  320 
Traditional and supplementary farmers have lower number of connections. In a similar manner 321 
as F spatial (i,j), Fsocial (i,j) measures the popularity of the conservation practice combination i 322 
among the parts of the social network that are connected to the given farmer. Fsocial (i,j) can be 323 
written as follows: 324 

 325 
Fsocial (i,j) =  Network (i,j) /  ΣNetwork (i,j)      (1.6) 326 
 327 
where Network(i,j) is the number of farmers that selected the conservation practice adoption i 328 

within the farmer j’s social network.   329 
        330 
Non-operator owners (investors and absentee landowners) are not initially connected to 331 

spatial and social networks. Therefore, initially they have no influence of information networks 332 
on their conservation adoption decisions. When increased involvement of non-operator owners in 333 
decision-making is simulated, absentee-landowners are only connected to the social network and 334 
investors are connected to both spatial and social networks. For non-operator owners, social 335 
networks are assumed to be NGOs and government agencies leading to a positive influence.  336 
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Policy Scenarios 337 
We simulated four scenarios intended to form a bridge between the science of land 338 

management and policy development (Table 1-6). The primary goal of these plausible policy 339 
scenarios is to be prospective and informative rather than projective or prescriptive of the future 340 
(Nassauer and Corry, 2004).  341 

 342 
 NON-OPERATOR INVOLVEMENT 

C
R

O
P 

R
E

V
E

N
U

E
 

IN
SU

R
A

N
C

E
 

 NO YES 
NO 1 Baseline  

Simplified representation 
of existing land tenure and 

policy context 

2 Non-operator owners involvement 
Increased non-operator involvement in 

land management decisions 

YES 3 Crop revenue insurance 
Only operators are decision 

makers and crop revenue 
insurance is available as a 

risk management tool  

4 Crop revenue insurance with non-
operator owner involvement 

Both operators and non-operators owners 
are decision makers and crop revenue 

insurance is available as a risk 
management tool 

Table 1-6: Land management strategies tested under different agricultural policy and 343 
structure scenarios 344 

The Baseline scenario (1) represents a simplified version of existing land tenure where operators 345 
(traditional, supplementary and business-oriented farmers) are responsible for conservation 346 
practice adoption decisions and non-operator owners have no involvement in production and 347 
conservation decisions. In this scenario existing crop insurance programs are not represented and 348 
crop revenue insurance is not offered in lieu of commodity payments.   349 
 350 
The Non-operator owner involvement scenario (2) simulates the potential impact of non-operator 351 
owners being more involved in decisions about conservation practice adoption. This premise 352 
follows recent research that demonstrated positive attitudes of non-operator owners for certain 353 
conservation practices (Petrzelka et al., 2009; Nassauer et al., 2011). In this scenario, we assume 354 
natural resource agencies and NGOs reach out to non-operator owners and effectively inform 355 
them about existing and available conservation practices.  356 
 357 
The Crop revenue insurance scenario (3) follows the latest US Farm Bill discussions about 358 
providing federally subsidized crop revenue insurance rather than commodity production 359 
subsidies. This scenario does not assume that conservation compliance is required for land to be 360 
eligible for crop revenue insurance. In this scenario, only operators are decision makers and they 361 
purchase crop revenue insurance at 75% coverage level for all the land that they manage 362 
including the rented land. Crop revenue insurance provides an accessible risk management tool 363 
to operators and at the same time encourages an increased production area. 364 
 365 
The Crop revenue insurance with non-operator owner involvement scenario (4) presents the 366 
plausible changes both in land tenure and policy by assuming non-operators owners as active 367 
decision makers when crop revenue insurance is offered in lieu of commodity payments. Crop 368 
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revenue insurance provides a safety net and indirectly motivates both operators and non-operator 369 
owners to increase their production area. 370 

 371 
Certain model parameters are changed depending on the policy scenario being investigated. 372 

Appendix 3 has initial model parameter values and how we change these values for different 373 
scenarios.  374 

Verification and Validation 375 
ABMs are informative rather than predictive and useful in investigating plausible scenarios 376 

and their potential consequences. Model verification and validation are important steps that 377 
contribute to the validity of the developed ABM. Model verification is the process of 378 
determining whether the software implementation correctly represent model processes (Ormerod 379 
and Rosewell, 2009).  As the ABMs are powerful in illustrating the phenomena of emergence, it 380 
is particularly difficult to determine whether an unexpected result is due to an error in the model 381 
implementation and execution (Galan et al., 2009). Therefore the verification stage of the model 382 
is particularly important. For the verification of the model, where the general aim is to make sure 383 
that the model does not have programming errors, we built the model in several levels with 384 
increasing complexity following unit testing approach (Linck and Frohlick, 2003) (Figure 1-4). 385 
The unit testing approach suggests writing some test code to exercise the program 386 
simultaneously writing the complete model code. The purpose is to construct the model in small, 387 
self-contained units and check the results and make sure they align with expected results.  388 
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 389 

Figure 1-4: Levels of ABM as a verification tool 390 

 Model validation is the process of assessing the degree of which the model is accurately 391 
representing the real world interactions and dynamics (Ormerod and Rosewell, 2009). For the 392 
farmer typology, we synthesized the literature of conservation practice adoption (Daloğlu et al., 393 
2014). Therefore, for model validation we used the documented trends in the Corn Belt. 394 
Synthesis of numerous studies conducted in the Corn Belt provides spatially and temporally 395 
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generalizable trends to compare and validate model results. Comparison of documented adoption 396 
rates for non-structural practices (CTIC, 2012) and enrollment rates for land retirement programs 397 
such as CRP (USDA, 2013) are within the simulated adoption rates (Figures 1-5 and 1-6). For 398 
structural practices, we refer to empirical studies conducted in Ohio, which indicate 20-25% 399 
adoption rates similar to ABM results (Napier et al., 2000; Napier and Bridges, 2003).  400 

 401 

Figure 1-5: Observed and simulated enrollment rates for land retirement programs 402 
such as CRP in Sandusky watershed, OH (USDA, 2013). 25 ABM simulation runs fall 403 

between two lines of the same color. 404 



18	  
	  

 405 

Figure 1-6: Observed and simulated adoption rates for non-structural practices such as 406 
conservation tillage and no-till in Sandusky watershed, OH (CTIC, 2012). 25 ABM 407 

simulation runs fall between two lines of the same color.  408 
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Appendix 2: Linking ABM with SWAT 1 
Once all farmer adoption status is updated, the ABM output in the abstract grid file provides 2 

the adoption status for every farmer in every period and is used to make the necessary updates in 3 
relevant input files of SWAT in the Sandusky watershed file. Abstract grid cell characteristics 4 
are assigned to Sandusky watershed locations by the smallest computational unit of SWAT, 5 
HRUs. SWAT is then run for the whole simulation period (1970-2010) to provide water quality 6 
metrics such as sediment and phosphorus loads.  The input files for SWAT are all in ASCII text 7 
format, making it easy to interface with the ABM and this linkage is supported with the MatLab 8 
programming language.  9 

 10 
For each year, farmers’ decisions regarding conservation practice adoption are used to 11 

modify several SWAT input files. For example, if a farmer adopts non-structural practices such 12 
as no-till instead of conventional tillage, the land management input file (.mgt) in SWAT is 13 
modified to reflect this change. Similarly, if a farmer adopts structural practices such as filter 14 
strips, the operations input file (.ops) is updated with a filter strip of 10 m width. Because 15 
farmers receive economic incentives to adopt structural practices, their continued use of filter 16 
strips is expected. For enrollment in land retirement programs, we change the land cover type in 17 
the input file (.mgt) to be one of the perennial covers such as big bluestem without fertilizer 18 
application. Once a farmer enrolls in land retirement programs, adherence to the contract is 19 
mandatory for at least 10 years as a requirement of the program. If a farmer adopts nutrient 20 
management plan, then a 20% reduction in fertilizer application rate is assumed. This change is 21 
also reflected in the management input file of SWAT (.mgt).  22 

 23 
The decision algorithm used by our farmers includes social and spatial networks, which 24 

influence their adoption decisions. Throughout the simulation period, farmers are programmed to 25 
observe their neighbors and the conservation practices they adopt. Therefore, in our model, the 26 
process of conservation practice adoption has the necessary spatial component and shows 27 
variance in each simulation. For the purposes of illustration, we reported the average load 28 
reductions from numerous simulations but also included the variability in error bars (Figures 5-6, 29 
main text). Due to the stochasticity built-in the model, in each ABM initialization, different 30 
farmer types are assigned to each farmer, which results in different decision-making 31 
characteristics. Each ABM run result has different spatial locations for conservation practices. 32 
The initial spatial distribution of farmer types affects the social and spatial network structure and 33 
has thus an impact on the final spatial distribution of adopted practices. For example, if a farmer 34 
located in the downstream part of the watershed adopts a conservation practice, its impact on 35 
water quality would be different than adopting a practice in the upstream part of the watershed. 36 
To eliminate this initial condition bias, we perform numerous ABM runs and link those to 37 
SWAT, which yields differences in water quality metrics as well; hence the bars demonstrate this 38 
impact of the different implementation locations of the conservation practices.  39 
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Challenges of Linking Agent-based Models with Biophysical Models 40 
This framework is designed to investigate the impact of alternative policy approaches and 41 

changing land tenure dynamics on farmer adoption of conservation practices intended to increase 42 
the water quality. For this purpose, we chose to link SWAT with ABM for farmer adoption of 43 
conservation practices. Because SWAT is a river basin scale water quality model developed to 44 
assess the water quality benefits of conservation practices (Gassman et al. 2007; Osmond 2010), 45 
linking it with ABM aligns with the purpose of our framework.  46 

  47 
For this framework, we chose a loose integration method, which uses the state variables from 48 

one model as a driving variable in the other model (Antle et al., 2001). ABM determines the land 49 
management pattern for the Sandusky watershed and SWAT estimates water quality metrics as a 50 
function of the updated land management pattern. One of the disadvantages of using loosely 51 
coupled models is the computational overhead associated extracting output files and modifying 52 
input files. We used MatLab programming language to link ABM output and modify necessary 53 
SWAT input files.  Single SWAT run including the modification of input files for 41 years 54 
(1970-2010) averaged about 55 minutes when run on quad-core Windows machine. Because of 55 
the stochasticity built in the model, we performed 25 simulations and reported the averages of 56 
these runs for water quality metrics, which resulted in approximately 1,375 minutes or 0.95 days.  57 

 58 
In this framework, we aimed to represent the farm-scale decision-making regarding 59 

conservation practice adoption. However, due to limited data, representation of the exact location 60 
of farms and long-term management decisions is not possible. Therefore, we constructed an 61 
abstract ABM without the spatial representation of decision-making process which could affect 62 
the farmers’ conservation decisions because soil properties and slope of their land are not 63 
influential in their adoption decisions.  64 

 65 
The capabilities of SWAT were the determining factor for the scale of the linked model. We 66 

developed a fine-scale SWAT model to match the average farm size in the Sandusky basin 67 
(Daloğlu et al., 2012). However, SWAT is not developed on grid cells and the smallest 68 
computational unit of SWAT, HRU cannot be manually delineated which complicates the 69 
representation of farm level decision making.  70 

 71 
Linking social and biophysical models for social-ecological system representation is 72 

profoundly valuable, especially in evaluating plausible policy scenarios. While the recent land 73 
use and land change research has contributed to this endeavor, this study goes one step further by 74 
linking a widely used water quality model to ABM to better represent the dynamic interactions 75 
of farmers.   76 
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Appendix 3: Model parameters for the agent-based model of farmer adoption of 1 
conservation practices 2 

 3 
 4 
Name Parameter description Value 
percentBus percentage of business-oriented farmers 0.1 
percentSuppl percentage of supplementary farmers 0.2 
percentTrad percentage of traditional farmers 0.7 

initialAdopted0 
percentage of farmers that adopted none of 
the practices 0.8 

initialAdopted1 
percentage of farmers that adopted non-
structural practices 0.0 

initialAdopted2 
percentage of farmers that adopted structural 
practices 0.1 

initialAdopted3 
percentage of farmers that enrolled in land 
retirement programs 0.0 

initialAdopted4 
percentage of farmers that adopted nutrient 
management plan 0.1 

initialAdopted5 
percentage of farmers that adopted non-
structural and structural practices 0.0 

initialAdopted6 

percentage of farmers that adopted non-
structural practices and nutrient management 
plan 0.0 

initialAdopted7 
percentage of farmers that adopted structural 
practices and nutrient management plan 0.0 

ownerInterference 
percentage of non-operator owners  initially 
giving decisions 0.0 

ownerMaxInterference 
percentage of non-operator owners giving 
decisions at the end of the simulation 0.8 

farmerAgeToLeave 
age at which traditional farmers consider 
leaving business 65 

farmerProbToLeave 
probability that traditional farmers leave 
business 0.8 

farmerProbNonoperator 
probability that traditional farmers leaving the 
business become non-operator owners 0.6 

farmerProbAbsentee 
probability that traditional farmers leaving the 
business become absentee landowners.  0.6 

ciLevel level of crop revenue insurance coverage 0.8 
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simpleCiPlusMinusBus 
level of business farmers' uncertainty about 
their price expectation 0.3 

simpleCiPlusMinusTrad 
level of traditional farmers' uncertainty about 
their price expectation 0.4 

simpleCiPlusMinusSupp 
level of supplementary farmers' uncertainty 
about their price expectation 0.3 

Table 3-1: Initial model parameters 5 

Farmer type Name  Parameter description 

Value 
(without 
crop 
revenue 
insurance) 

Value 
(with crop 
revenue 
insurance) 

Traditional  

b1 
weight of agricultural profit on 
decision algorithm 0.34 0.30 

b2 
weight of farmer profile on 
decision algorithm 0.40 0.52 

b3 
weight of social network on 
decision algorithm 0.09 0.05 

b4 
weight of spatial network on 
decision algorithm 0.17 0.13 

Supplementary 

b1 
weight of agricultural profit on 
decision algorithm 0.27 0.23 

b2 
weight of farmer profile on 
decision algorithm 0.46 0.58 

b3 
weight of social network on 
decision algorithm 0.17 0.13 

b4 
weight of spatial network on 
decision algorithm 0.10 0.06 

Business-
oriented 

b1 
weight of agricultural profit on 
decision algorithm 0.49 0.45 

b2 
weight of farmer profile on 
decision algorithm 0.19 0.31 

b3 
weight of social network on 
decision algorithm 0.24 0.20 

b4 
weight of spatial network on 
decision algorithm 0.08 0.04 

Absentee 
landowners 

b1 
weight of agricultural profit on 
decision algorithm 0.09 0.05 

b2 
weight of farmer profile on 
decision algorithm 0.61 0.69 

b3 
weight of social network on 
decision algorithm 0.30 0.26 
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b4 
weight of spatial network on 
decision algorithm 0.00 0.00 

Investor 

b1 
weight of agricultural profit on 
decision algorithm 0.08 0.04 

b2 
weight of farmer profile on 
decision algorithm 0.45 0.57 

b3 
weight of social network on 
decision algorithm 0.29 0.25 

b4 
weight of spatial network on 
decision algorithm 0.18 0.14 

Traditional 

Fprofile0 
farmer attributes for adopting none 
of the practices 0.90 1.00 

Fprofile1 
farmer attributes for adopting non-
structural practices 0.68 0.96 

Fprofile2 
farmer attributes for adopting 
structural practices 0.00 0.02 

Fprofile3 
farmer attributes for adopting land 
retirement programs 1.00 0.00 

Fprofile4 
farmer attributes for adopting 
nutrient management plans 0.43 0.35 

Fprofile5 

farmer attributes for adopting both 
non-structural and structural 
practices 0.10 0.10 

Fprofile6 

farmer attributes for adopting both 
non-structural practices and 
nutrient management plans 0.51 0.42 

Fprofile7 

farmer attributes for adopting both 
structural practices and nutrient 
management plans 0.08 0.07 

Supplementary 

Fprofile0 
farmer attributes for adopting none 
of the practices 0.36 0.48 

Fprofile1 
farmer attributes for adopting non-
structural practices 0.49 1.00 

Fprofile2 
farmer attributes for adopting 
structural practices 0.06 0.08 

Fprofile3 
farmer attributes for adopting land 
retirement programs 1.00 0.00 

Fprofile4 
farmer attributes for adopting 
nutrient management plans 0.17 0.77 

Fprofile5 

farmer attributes for adopting both 
non-structural and structural 
practices 0.22 0.06 
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Fprofile6 

farmer attributes for adopting both 
non-structural practices and 
nutrient management plans 0.17 0.82 

Fprofile7 

farmer attributes for adopting both 
structural practices and nutrient 
management plans 0.17 0.09 

Business-
oriented 

Fprofile0 
farmer attributes for adopting none 
of the practices 0.28 0.50 

Fprofile1 
farmer attributes for adopting non-
structural practices 0.74 0.65 

Fprofile2 
farmer attributes for adopting 
structural practices 0.20 0.03 

Fprofile3 
farmer attributes for adopting land 
retirement programs 0.00 0.00 

Fprofile4 
farmer attributes for adopting 
nutrient management plans 0.43 1.00 

Fprofile5 

farmer attributes for adopting both 
non-structural and structural 
practices 0.36 0.08 

Fprofile6 

farmer attributes for adopting both 
non-structural practices and 
nutrient management plans 1.00 0.66 

Fprofile7 

farmer attributes for adopting both 
structural practices and nutrient 
management plans 0.28 0.08 

Absentee 
landowner 

Fprofile0 
farmer attributes for adopting none 
of the practices 0.00 0.38 

Fprofile1 
farmer attributes for adopting non-
structural practices 1.00 0.74 

Fprofile2 
farmer attributes for adopting 
structural practices 0.60 0.02 

Fprofile3 
farmer attributes for adopting land 
retirement programs 0.17 0.00 

Fprofile4 
farmer attributes for adopting 
nutrient management plans 0.12 0.49 

Fprofile5 

farmer attributes for adopting both 
non-structural and structural 
practices 0.72 0.03 

Fprofile6 

farmer attributes for adopting both 
non-structural practices and 
nutrient management plans 0.31 1.00 
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Fprofile7 

farmer attributes for adopting both 
structural practices and nutrient 
management plans 0.62 0.02 

Investor 

Fprofile0 
farmer attributes for adopting none 
of the practices 0.00 0.38 

Fprofile1 
farmer attributes for adopting non-
structural practices 1.00 0.74 

Fprofile2 
farmer attributes for adopting 
structural practices 0.37 0.02 

Fprofile3 
farmer attributes for adopting land 
retirement programs 0.48 0.00 

Fprofile4 
farmer attributes for adopting 
nutrient management plans 0.13 0.49 

Fprofile5 

farmer attributes for adopting both 
non-structural and structural 
practices 0.55 0.03 

Fprofile6 

farmer attributes for adopting both 
non-structural practices and 
nutrient management plans 0.30 1.00 

Fprofile7 

farmer attributes for adopting both 
structural practices and nutrient 
management plans 0.55 0.02 

     
Table 3-2: Model parameters comparison for crop revenue insurance scenario. 6 
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