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Modeling urban expansion policy scenarios using an agent-based approach
for Guangzhou Metropolitan Region of China
Guangjin Tian 1 and Zhi Qiao 1

ABSTRACT. Policy makers and the human decision processes of urban planning have an impact on urban expansion. The behaviors
and decision modes of regional authority, real estate developer, resident, and farmer agents and their interactions can be simulated by
the analytical hierarchy process (AHP) method. The driving factors are regressed with urban dynamics instead of static land-use types.
Agents’ behaviors and decision modes have an impact on the urban dynamic pattern by adjusting parameter weights. We integrate an
agent-based model) (ABM) with AHP to investigate a complex decision-making process and future urban dynamic processes. Three
policy scenarios for baseline development, rapid development, and green land protection have been applied to predict the future
development patterns of the Guangzhou metropolitan region. A future policy scenario analysis can help policy makers to understand
the possible results. These individuals can adjust their policies and decisions according to their different objectives.
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INTRODUCTION
China’s rapid urbanization has attracted worldwide attention.
According to the Urban and Rural Planning Law of the People’s
Republic of China issued in 2007, the objective of urban planning
is to strengthen the management of urban areas and to improve
the human living environment. Urban planning in China is
considered to be important, and a legislative authority for urban
development has been established. Strategic spatial development
policy is a major component of urban planning, and it determines
the spatial pattern of urban development. Its objective is to
change the organization of the spatial environment to meet
societal demands. Urban planning has a big impact on the
urbanization process. For example, a strategic spatial
development policy will have an impact on the overall pattern of
urban expansion, whereas the construction of an economic
development zone will stimulate urban growth in specific urban
areas.  

Modeling urban systems can improve our understanding of the
mechanisms of urban expansion (Li and Liu 2007, Tian et al.
2011a, b). Social and economic factors are the main driving forces
behind urban expansion and land-use dynamics (Verburg et al.
1999, 2002, Tian et al. 2011a, b). Urban dynamic simulations and
landscape dynamics in Chinese urban areas have been studied
extensively (Tian et al. 2005, 2007a, b, 2011a, b, Li and Liu 2007,
Xie et al. 2007, He et al. 2008, Li and Liu 2008). Land-use dynamic
models have been used to study land use and the factors driving
changes in land use using empirically quantified relationships
(Verburg et al. 1999, 2002, Seto and Kaufmann 2003), but they
cannot reflect the behavior of decision makers. The drawbacks of
traditional spatial interactions and discrete choice models are
their poor representation of spatial and socioeconomic details as
well as urban simulation dynamics (Parker et al. 2003, An et al.
2005). Moreover, these interactions have apparent limitations in
simulating the decisions and behavior of agents (Xie et al. 2007,
Li and Liu 2007, Li and Liu 2008, Tian et al. 2011b).  

The cellular automata (CA) method has been widely used to
simulate urban dynamics, but it is not suitable for reflecting the

behavior of individuals and capturing the macroscale political,
social, cultural, and economic driving forces behind urban
expansion (Xie et al. 2007, Li and Liu 2008, Gong et al. 2009,
Tian et al. 2011b). However, the behavior of individuals and their
interactions with the environment are important for
understanding and modeling urban ecosystems (Bousquet and
Page 2004). The agent-based model (ABM) paradigm has
emerged from the fields of complexity, chaos, cybernetics, and
CA, and has been widely used to simulate complex systems
ranging from engineering to mathematics, social science, and
economics in the 1990s (Heath et al. 2009). It has also been applied
to urban expansion and land-use dynamics as a powerful
simulation technique (Janssen 1998, 2000, Ligtenberg 2001, 2004,
Lempert 2002, Parker et al. 2003, Sengupta and Bennet 2003,
Bousquet and Page 2004, An et al. 2005, Xie et al. 2007, Li and
Liu 2008). Although CA and ABM are limited in terms of their
geographic analysis, when they are used as an isolated tool, the
integration of CA with ABM produces better simulation results
(Torrens and Benenson 2005, Li and Liu 2007). This integration
combines urban dynamics and social processes and incorporates
human decision making into land use in a mechanistic and
spatially explicit way (Lempert 2002, Matthews et al. 2007). It
offers a conceptual framework for incorporating multiple actors
into dynamic spatial decision-making models and has been
employed to simulate human-environment interactions and
ecosystem management (Parker et al. 2003, Sengupta and Bennet
2003, Torrens 2003, Bousquet and Le Page 2004, Ligtenberg et
al. 2004, An et al. 2005). The advantages of integration are
apparent at not only the spatial neighborhood, or cell states of
CA, scale but also in the interactions between the driving factors
of urban development and their environment, which must be
considered to forecast urban sprawl with a high level of accuracy
(Loibl and Toetzer 2003).  

The urbanization process is influenced by a number of
autonomous entities such as the regional authority, urban
planners, real estate developers, residents, and farmers. During a
complex social process, these agents will interact with each other
directly and indirectly. Rather than study them as individuals, the
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agents are typically classified into organizations and interest
groups (Tian et al. 2011b). Their behavior, i.e., actions and
interactions, determines urban policy and the evolution of the
whole process. The ABM model provides a compelling account
of group pattern formation, contagion, and cooperation, and can
be used to predict, manipulate, and improve upon collective
behavior (Goldston and Janssen 2005). A major problem with
ABM is how to define agent properties using empirical data (Li
and Liu 2007). The analytical hierarchy process (AHP) has been
used to derive behavior-oriented transition rules for CA (Wu
1998), but it has not been used to extract agent preferences and
policies. How to avoid unfair or human factors in determining
agent preferences and behavior needs to be considered. The main
objective of our study was to extract important parameters
through a regression model and to adjust their weightings for
different policies and objectives using ABM and AHP techniques.
The combination of AHP and ABM is suitable for the simulation
of different agent interactions and negotiations. Scenario analysis
is a useful spatial exploratory tool for evaluating the potential
impacts of implementing different land-use policies.  

As the capital city of Guangdong Province, Guangzhou is the
political, economic, scientific, educational, and cultural center of
the Pearl River Delta in China. Because of its rapid economic
development, Guangzhou has become one of the fastest growing
cities in China. Unprecedented urban dynamics have been
witnessed in the region following the implementation of ‘reform
and opening-up’ policies. The reform and opening-up policies
refer to the program of economic reforms called ‘socialism with
Chinese characteristics’ in the People’s Republic of China, which
were initiated in December 1978 by reformists within the
Communist Party of China led by Deng Xiaoping. The rapid
urbanization process has resulted in traffic congestion,
unaffordable housing, loss of open space, water pollution, urban
heat islands, and loss of agricultural land (Turner 1994, Yeh and
Li 1998, Lambin et al. 2000, Ligtenberg et al. 2001, Waddell 2002,
Tian et al. 2002, 2005, 2007a, b, 2010, 2011a, b, Li and Liu 2007,
Li and Liu 2008). Urbanization processes are complex, and the
physical, ecological, and social components of the entire system
must be considered (Zipperer et al. 2000). The future pattern of
urban development of the Guangzhou metropolitan region has
been predicted using a combination of ABM with logistic
regression. This projection of the urban dynamic process will help
managers to understand its environmental impact and to create
sustainable development policies for the Guangzhou
metropolitan region.

STUDY AREA AND DATA SOURCES

Study area
Guangzhou is located in southern China between 112° 57′-114°
3′ E and 22° 26′-23° 56′ N. It is the geometric center of the Pearl
River Delta and is bounded by the Pearl River to the east and
south. The Pearl River is China’s third largest river and it runs
through Guangzhou. Guangzhou is called ‘China's South Gate’
because of its geographical location. Its northern and
northeastern areas are hilly or mountainous and the center is also
mountainous. The alluvial plain of the Pearl River Delta is located
south of the city.  

Covering an area of appropriately 7434.4 km², Guangzhou is
home to more than 11 million people, including a registered
population of 7.38 million and a transient population of 3.7
million (Guangdong Statistics Bureau 2006). In June 2000, two
former cities at the county level, Panyu and Huadu, became two
administrative districts under Guangzhou’s jurisdiction.
Guangzhou consists of 10 administrative districts and 2 cities at
the county level (Fig. 1).

Fig. 1. The administrative districts and counties of Guangzhou
metropolitan region.

Data sources and processing
Landsat Enhanced Thematic Mapper (ETM) images from 2000
and 2005 were interpreted to obtain land-use data from the
Guangzhou metropolitan area. We used cloud-free images taken
during the winter when there was less vegetation. After
radiometric correction, the 5, 4, and 3 bands of the chosen images
were RGB false-color composed.  

There are several methods for detecting changes, such as image
differencing, principal components transformation, tasseled cap
transformation, Gramm-Schmidt transformation, image classification,
and post-classification comparison (Fung and LeDrew 1988,
Quarmby and Cushnie 1989, Wang 1993, Collins and Woodcock
1994, Ji et al. 2001). Post-classification comparison was used to
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Fig. 2. Agent-based model framework.

identify the number and location of changes. A prior classification
was performed before making a comparison. For the first grade,
the land use was classified as cropland, forest, grassland, water
body, built-up land, or unused land. For the second grade, built-
up land was reclassified into urban land, rural residential land,
construction, or mining land (Liu et al. 2003, 2005a, b). A
comparison between two images from 2000 and 2005 decreased
the errors originating from the misclassification of independently
classified images (Fung 1990). Enhanced Thematic Mapper image
interpretation was undertaken using a 1:100,000 topographical
map, river and soil maps, and other available maps. Land-use
vector data were projected onto a uniform Gauss-Kruger
coordinate system. The central longitude of the projection system
was 105° E, and the double standard latitudes were 25° N and 47°
N.  

The land cover data sets covered the Guangzhou administrative
district. The vector land-use data were converted into a 100 × 100
m grid. Land cover was classified as cropland, forest, grassland,
water body, urban land, rural residential land, industrial and
mining land, or unused land (Tian et al. 2005, 2007a, b, 2010).
Using this classification, the seven land-use types, i.e., cropland,
forest, grassland, water body, rural residential land, industrial and
mining land, and bare land, were converted into urban land. We
outlined the cropland, forest land, rural residential land, and
other land that were converted into urban land for this model.

METHODOLOGY
The ABM supports the study and analysis of decision making,
local-global interactions, self-organization, emergence, and the
effects of heterogeneity in a simulated system (Heath et al. 2009).
The main components of an ABM can be defined as agents, their
environment, and the mechanisms between them. An agent is an
entity with a set of characteristics relating to autonomy, social

ability, reactivity, and proactiveness (Wooldridge and Jennings
1995, Triantakonstantis and Mountrakis 2012). The environment
enables agents to have perceptions and actions. The interaction
mechanism includes both a direct and indirect exchange of
information between the entities, which is realized through the
perception by an agent of the effects of another agent’s action
(Bandini et al. 2009). The interdependencies and feedback
between agents and the environment are integrated (Parker et al.
2003, An et al. 2005).  

The model used in this study integrated ABM with AHP to
simulate policy scenarios (see Online Resource 1, Fig. 2). ArcGIS
9.3 was used to provide inputs for the simulation and calibration
of urban development. The ABM and AHP components enabled
urban policies and the interactions among the different agents,
which affect urban development, to be assessed (Fig. 2). The
geographic information system and regression models were used
to simulate the spatial urban development process. Urban
planning and policies were used to help project urban land
expansion into different regions.

Projecting urban land demand

Urban planning and policy
Urban planning plays a key role in urban expansion. The urban
plan for Guangzhou has been revised several times. The General
Strategic Conceptual Plan’s outline of Guangzhou Urban
Construction, from 2000, states that the spatial development
strategy is, “To expand in the southern area, optimize in the
northern area, develop in the eastern area, and link to the western
area” (Guangzhou Urban Planning Bureau 2000). The General
Plan of Guangzhou (2001-2010) was revised in 2005. The
southern and eastern regions of Guangzhou are destined for
development. Government policy and market forces have led to
rapid growth in the southern areas (Yu and Ng 2007). According
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to the spatial development strategy, urban land consumption in
the Panyu and Nansha districts is projected for the future. In our
model, urban planning determined the urban land demand in
different districts and cities.

Linear regression and Markov matrix
Urban development depends on urban land demand. The key
drivers of urban development at the regional level are economic
development and population growth. There are large spatial
variances in the multiple development nuclei of the different
districts of the Guangzhou metropolitan area. The five districts,
i.e., Liwan, Yuexiu, Haizhu, Tianhe, and Huangpu, were
combined into the central district (Fig. 1). The urban development
of these districts was individually simulated in the following order:
Baiyun, Luogang, Panyu, Nansha, and Huadu, and the cities of
Zengcheng and Conghua. Urban land from each district was
regressed against the independent variables in Equation 1. 
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Where ULi(t) is the urban land in the ith district and county, Pi
(t) is the population in i district and county, Gi(t) is the Gross
Domestic Product (GDP) in i district and county, α is the
population parameter, β is the GDP parameter, and ε is random
error.  

This projection cannot extract urban land area from cropland,
forest, rural residential land, and other land. We used the Markov
matrix to project urban land sources.

The spatial regression model and its driving factors
ArcGIS 9.3 was used to calculate the local interactions between
physical factors. Each cell in a geographic space was defined by
(x, y) coordinates. The environment was represented as a two-
dimensional grid and each cell had attributes and states. The
environmental layers included spatial data for land use, the
surrounding environment, general public facilities, and
education. In this model, we considered the distance to railways,
roads, schools, hospitals, and other factors. The constraining
factors included water bodies and large patches of forest (Fig. 2).
Roads and railways are important factors because they represent
a location characteristic, which permits access to a place. If  a site
is close to roads and railways, it is more likely to be developed.
The presence of a railway will decrease the transportation costs
for factories. The distance to schools, hospitals, and
entertainment centers are environmental factors that influence
urban expansion. Sites will be more attractive for residents if  they
are close to schools, hospitals, and entertainment centers. The
presence of a hospital within a neighborhood encourages
individuals to buy houses within that neighborhood. Schools,
hospitals, and entertainment centers will encourage urban
expansion.  

Land use is one of the most important factors in urban
simulations. This factor provides the basic environment for agents
to make decisions. Agents will display different decision-making
behavior in relation to different types of land use. In the data sets,
there were eight land-use types: cropland, forest, grassland, water
bodies, rural residential land, industrial and mining land, bare
land, and urban land.  

The relationship between the probability of urban expansion and
its driving factors has been evaluated by the use of logistic
regression models (Geoghegan et al. 2001, Gobin et al. 2001,
Serneels and Lambin 2001, Verburg et al. 2002, Tian et al. 2011
a, b). Our model took a number of proximity variables into
account (Wu 2002, Li and Liu 2007).  

Various factors, such as the distance to roads, railways, schools,
hospitals, and entertainment centers were estimated using a
logistical regression model. The following equation was used: 
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Where Pt
ij,A is the urban development probability by physical

factors using the regression model, β0 is a constant, and Xt
ij,k is

the coefficient of driving factor k in cell ij at time t.  

In the previous study, the probability of land use occurrence was
regressed with the driving factors (Verburg et al. 2002, Tian et al.
2011b). In our study, the urban expansion occurrence is regressed.  

The physical constraints of urban development and the
percentage of urban cells in the neighborhood will influence the
probability of urban development, which was expressed as
follows: 
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Where Pt
ij is the urban development probability for the cell in ij;

Pt
ij,con is the urban development probability by the constraint

factors, the value of zero will be assigned to all the water and large
forest patch cells; and Pt

ij,Ω is the urban development probability
of neighborhood factors.

The agent-based model (ABM)
Urban expansion is the result of a combination of human
behavior, decisions, and policies (Tian et al. 2011b). Interactions
among agents are the disaggregated results of negotiation and
communication between agents (Parker et al. 2003). The behavior
of agents is based on their preferences, knowledge, and the
environment (Tian et al. 2011b). All agents observe and perceive
the spatial environment, then judge its spatial suitability
according to their preferences, and decide if  the cells will be
urbanized. Hence, the preferences of the agents are the key factors
influencing their behavior.  

As agents, regional authorities, real estate developers, residents,
and farmers have different preferences. The preferences of the
regional authority are to make maximum use of land resources
and stimulate economic development. These agents want to
stimulate economic development that is concentrated around
existing urban conglomerates, but prohibit development on large
patches of forest and water bodies. They prefer that urban
expansion occurs on agricultural land.  

The regional authorities will decide if  an application for urban
development is approved. The real estate developer builds houses
to meet residential demand. The regional authority allocates land
for the development of residential districts.  

The preference of the real estate developer is to maximize their
profit (Li and Liu 2008). Real estate developers prefer to utilize
major roads and infrastructure such as schools, hospitals, and
entertainment centers.  
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The objective of residents is to locate the best place to live with
the lowest price and best environment. The residents will prefer
a site that is close to hospitals, schools, and entertainment centers.  

The preference of farmers is to protect high-production cropland.
These agents hope to keep a specific amount of cropland for
cultivation and prefer urban development to occur far away from
highly productive cropland. These agents will interact with each
other (Fig. 2). There are some conflicts between agent objectives.
For example, the farmer agents will protect cropland whereas the
real estate developers and regional authorities hope to use the
cropland for urban development. These conflicts were manifested
through the different objectives. They were resolved by adjusting
the weighting of the parameters.  

Agent behavior influences the rate and quantity of urban
development. Agent preference influences urban expansion
through the adjustment of the weightings of the various driving
factors (Tian et al. 2011b). The final driving factor preferences
were decided by a combined interaction process. Each group of
agents has a unique set of preferences for selecting specific sites
for urban expansion.  

The AHP was used to extract agent preferences, and can be
considered to be a decision-aiding method (Saaty 1980). The
different preferences of the regional authority, real estate
developer, resident, and farmer agents present different policy
scenarios. A decision maker bases their judgment on preference,
knowledge, and experience, and then makes decisions. The
strength of this model is that it organizes the driving factors in a
systematic way and provides a simple solution for the decision-
making process (Skibniewski 1992). Pairwise comparisons have
been applied to acquire agent preferences for the driving factors
(Saaty 1980, Wu 1998, Al-S. Al-Harbi 2001). Weighting
calculations and consistency measurements were studied and
implemented in a GIS environment (Saaty 1980, Wu 1998).  

The probability of urban development is the combination of
behaviors on the part of the regional authority, real estate
developer, resident, and farmer agents.  

The combined preferences PRk of  these agents for driving factor
i are as follows: 

 

 1

( ) ( ) ( )i i i iiUL t Gt tP β εα += +  (1) 

  

0

,
,1 ,2 ,1 2

,

log( )
1

t
ij A t t t

ij ij ij knt
ij A

P
X X X

P
β β β β= + + + +

−
L

 

(2) 

  

, , ,
t t t t
ij ij A ij con ijP P P P Ω= ⋅ ⋅  (3) 

  

1 1 1
3 3 3( ) ( ) ( )k k k

k RA RE RD
k
FA

PR PR PR
PR

PR

⋅ ⋅=  (4) 

  

0

,
1 ,2 ,21 2,1

,

log( )
1

t
tij A t t

ij ij kn nijt
ij A

P
XW W WX X

P
ββ β β= + + + +

−
L

 
(5) 

  
2( ) 0.1894 753.23 749132kP t t t= − +  

2R =0.9855. 

 
(6) 

  

( ) 217.92 434562kG t t= −  

2R =0.7555. 
 

(7) 

  

( )2.9365 0.0162 ( ) 748.8519( ) k kk P Gt tUL t = − −  

2R =0.9853. 

 

(8) 

  

( ) ( ) ( 1)k k kUL t UL t UL t∆ = − −  (9) 

  

 

  

Where PRk is the combined preferences of the regional authority,
real estate developer, resident, and farmer for driving factor k.
PRk

RA, PRk
RE, PRk

RD, PRk
FA are the preferences of the regional

authority, real estate developer, resident, and farmer for factor k,
respectively. One-third of the preference of the regional authority,
real estate developer, resident, and farmer can eliminate the
productive effect of the three factors considered by decision
makers. The farmer’s preference is negative in relation to the
preference of the regional authority, real estate developer, and
resident. Hence, the farmer’s preference is the denominator of
Equation 4.

Integrated agent-based model (ABM) and logistic regression
Agent behavior will influence the probability of urban
development by adjusting the parameter weightings of the driving
factors (Tian et al. 2011b). 
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The combined behavior of the different agents determines the
weightings of the parameters in Equation 5. Using Eqation 3, we
calculated the probability of urban development for every cell.
The Monte Carlo method was used to determine the final
selection of a location for urban development (Wu and Webster
1998, Li and Liu 2007).  

The cells with the highest probability of urban development
would be developed until the acreage of the cells reached the urban
land demand (Fig. 2).

MODEL IMPLEMENTATION AND RESULTS

Urban land expansion in the Guangzhou metropolitan region
Regression analysis was used to predict the urban land demand
for every district and county. Because GDP and population data
sets were available for every year with discrete urban land data,
the urban land was regressed first by population with year t (Eq.
6), then by GDP with year t (Eq. 7), and finally by both population
and GDP (Eq. 8). 
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The population and GDP of the central district were projected
for 2020 according to Equations 6 and 7. The urban land in the
central district was projected using Equation 8. The urban
development of k district or county was projected using Equation
9. 
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Similarly, the population, GDP, and urban development were
projected individually for the districts of Baiyun, Luogang,
Panyu, Nansha, Huadu, and cities of Zengcheng and Conghua.
The urban development of Guangzhou City was calculated as the
total of the eight districts and cities. 
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The level of urban development in every district and county was
allocated to the cells according to the probability of development.
From the regression analysis, we projected the amount of urban
land in every district and county of the Guangzhou metropolitan
area (Fig. 3). The regression analysis indicated that, between 2005
and 2020, the area of urban land would increase by 188.95 km²
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in the central district, 130.28 km² in Baiyun, 26.27 km² in
Luogang, 40.22 km² in Huadu, 97.85 km² in Zengcheng, and 1.61
km² in Conghua (Fig. 3). By using the strategy of urban spatial
development planning, the projected consumption of urban land
increased by 81.59 km² in the Panyu district and 30.91 km² in the
Nansha district between 2005 and 2020.

Fig. 3. The urban land in the Guangzhou metropolitan region
in 2000~2020 (km²).

The projection cannot extract urban land area from cropland,
forest, rural residential land, and other land. The probability of
land-use conversion from cropland, forest, rural residential land,
and other land to urban land was significantly different in each
district. Therefore, we calculated the area converted to urban land
from other land in each district. However, the projection only
provided the total area of new urban land. We used a Markov
matrix to project urban land sources. A Markov matrix was used
to calculate the area of urban land that had encroached on other
land-use types based on the conversions between 2000 and 2005.
We calculated the sources of urban development for every district
and county, based on the projection of urban land and the Markov
matrix results for the period between 2005 and 2020 (Table 1).

Table 1. Markov transition probability matrix in central district
between 2000 and 2005.
 
Land use Cropla

nd
For
est

Rural residential
land

Other
land

Urban
land

Cropland 0.56 0 0 0.01 0.43
Forest 0 0.85 0.02 0.01 0.12
Rural residential
land

0 0 0.54 0 0.46

Other land 0 0 0 0.97 0.03
Urban land 0 0 0 0 1.00

A Markov matrix, as a simple homogeneous chain, was proposed
by Markov in 1906. A Markov chain is a sequence of random
variables X1, X2, X3, …, Xk with the Markov property. In case we
acquire initial event Xk = α and the probabilities Pk

α of  the event
Xk = α, the probability P(k + 1)

β of  the event Xk + 1 = β could be
calculated by the simple formula (Basharin et al. 2004): 

 

 1

8

1

( ) ( )k

k

ULUL t t
=

∆∆ =∑  (10)  

  

∑=+

α
βααβ ,

)1( ppP kk
 (11)  

  

  

0.13

0.09

0.02

0.05

0.05

 
 
 
 
 
 
 
 
 

M

 

(12) 

0.13

1

5 / 7

1/ 7

3 / 7

3 / 7

 
 
 
 
 
 
 
 
 

M

+0.09

7 / 5

1

1/ 5

3 / 5

3 / 5

 
 
 
 
 
 
 
 
 

M

+0.02

7

5

1

3

3

 
 
 
 
 
 
 
 
 

M

+…+0.05

7 / 3

5 / 3

1/ 3

1

1

 
 
 
 
 
 
 
 
 

M

=

1.44

1.04

0.20

0.58

0.60

 
 
 
 
 
 
 
 
 

M

 

(13) 

  

1.44 1.04 0.20 0.60
11.1, 11.6, 10, , 12

0.13 0.09 0.02 0.05
= = = =L  (14) 

  

max

(11.1 11.6 10 12)
11.05

11
λ + + + += =L  (15) 

  

max 11.05 11
0.005

1 11 1

n
CI

n

λ − −= = =
− −

 (16) 

  

0.005
0.003

1.520

CI
CR

RI
= = =  

(17) 

  

[5.35,2.14,0.14,0.31, ,1.46]W = L  (18) 

  

[0.80,0.69,2.95,2.39, ,0.82]W = L  (19) 

  

( ) ( )k i jk

ij

UL Pt t∆ =∑  (20) 

1
o c

c

P P
Kappa

P

−=
−

 
(21) 

 

  

Finally, the projected conversion of cropland, forest, rural
residential land, and other land to urban land in 2005~2020 in
Guangzhou was calculated based on the Markov transition
probability matrix and the total growth in the area of urban land
in Guangzhou from 2000 to 2020 (Table 2).

Table 2. The projected conversion of cropland, forest, rural
residential land, and other land to urban land between 2005 and
2020 in Guangzhou (km²).
 
Districts
and
counties

Cropland to
urban land

Forest to
urban land

Rural
residential

land to urban
land

Other
land to
urban
land

Total

Central
district

75.38 65.90 39.39 8.28 188.95

Baiyun 54.45 32.64 32.97 10.23 130.28
Luogang 7.48 16.49 2.29 0.01 26.27
Panyu 46.14 14.38 9.41 11.67 81.59
Nansha 13.01 13.01 0 4.88 30.91
Huadu 26.39 0.76 7.54 5.53 40.22
Zengcheng 17.60 57.58 19.81 2.86 97.85
Conghua 1.17 0.20 0.21 0.03 1.61

The driving factors of the probability of urban development
determined by a regression model
Using the model, we regressed the probability of urban
development in the cells with their driving factors for the period
of 2000~2005. The extent of urban land in 2000 was used as the
initial stage, and urban land dynamics for the period of 2000~2005
were applied to extract the β values. The probability of urban
development for each cell determined whether these areas would
be developed.  

In the model, we considered the distance to railways, roads,
schools, hospitals, entertainment centers, and other factors (Table
3). The constraint factors included water bodies and large forest
patches. The parameter of distance to roads, railways, schools,
hospitals, and entertainment centers were estimated by a logistical
regression model. In our model, the four land-use types of
cropland, forest, rural residential land, and other land were
converted to urban land. We extracted the β values for the four
types of land-use conversion in Equation 2. The β values for the
change from cropland to urban land are listed in Table 3. Similarly,
the β values from forest, rural residential land, and other land to
urban land for the six districts and two cities were regressed, but
these values are not listed here.

The standardized preferences of the regional authority, real estate
developer, resident, and farmer agents
The analytical hierarchy process (AHP) method is applied in the
model and uses pairwise comparisons to acquire the preferences
of decision makers (Saaty 1980, Wu 1998). We rated the agent
preference scores for the driving factors from 1 to 9 (Table 4).
Then, we constructed a set of pairwise comparison matrices for
each of the driving factors using the relative score measurement
(Table 5). The agents then indicated their preferences for each
decision scenario.  

We synthesized the pairwise comparison matrix and obtained the
priority vector for the variables (Table 6). The pairwise
comparison matrix was established by dividing each matrix
element by its column total. For example, the value 0.132 in Table
6 was obtained by dividing 1 (from Table 5) by 7.57, or the sum
of the column items in Table 6.  
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Table 3. The β values from cropland to urban land in Guangzhou metropolitan area for baseline scenario.
 
Cropland to Urban Land Central Baiyun Luogang Panyu Nansha Huadu Zengcheng Conghua

Constant -0.824 6.152 1.107 2.291 1.826
Focal of urban land 1.307 0.909 5.631 2.695 4.594 3.707
Distance to urban land -37.57 -69.359 -58.763 -17.66 -50.549 -346.194
Distance to cropland -32.71
Distance to forest land 3.06 3.61 -6.759 1.232 -39.774 20.207
Distance to grassland -5.979 -11.427 -14.59 20.75 -27.346
Distance to water body 6.726 -11.667 14.672 3.174 38.355
Distance to school -8.11 -5.147 4.767 -13.675 48.468
Distance to hospital 18.133 -59.409 12.52 680.198 -25.213
Distance to entertainment -29.034 -14.963 10.577 -128.144
Distance to railway 8.098 69.789 16.182 -34.662
Distance to road -17.09 -21.503 -20.237 -12.188 -14.718 -26.213
Digital elevation map (DEM) -164.326 4.604
Slope -12.181 -4.419 -25.135
Aspect

Table 4. Pairwise comparison scale for the agent preferences.
 
Variables A B C D E F G H I J K

A 1 7/5 7 5/3 7/5 7/3 1 1 7/5 1 7/3
B 1 5 5/3 1 5/3 5/7 7/9 1 5/7 5/3
C 1 1/3 1/5 1/3 1/7 1/9 1/5 1/7 1/3
D 1 3/5 1 1/3 1/3 3/5 3/7 1
E 1 5/3 5/7 5/9 1 5/7 5/3
F 1 3/7 1/3 3/5 3/7 1
G 1 7/9 5/7 1 7/3
H 1 9/5 9/7 3
I 1 5/7 5/3
J 1 7/3
K 1

A-Focal of urban land, B-Distance to urban land, C-Distance to
cropland, D-Distance to forest land, E-Distance to grassland, F-
Distance to water body, G-Distance to railway, H-Distance to road, I-
Distance to school, J-Distance to hospital, K-Distance to entertainment.

Table 5. Pairwise comparison matrix for regional authority for
the rapid development scenario
 
Variables A B C D E F G H I J K

A 1 7/5 7 5/3 7/5 7/3 1 1 7/5 1 7/3
B 1 5 5/3 1 5/3 5/7 7/9 1 5/7 5/3
C 1 1/3 1/5 1/3 1/7 1/9 1/5 1/7 1/3
D 1 3/5 1 1/3 1/3 3/5 3/7 1
E 1 5/3 5/7 5/9 1 5/7 5/3
F 1 3/7 1/3 3/5 3/7 1
G 1 7/9 5/7 1 7/3
H 1 9/5 9/7 3
I 1 5/7 5/3
J 1 7/3
K 1

A-Focal of urban land, B-Distance to urban land, C-Distance to
cropland, D-Distance to forest land, E-Distance to grassland, F-
Distance to water body, G-Distance to railway, H-Distance to road, I-
Distance to school, J-Distance to hospital, K-Distance to entertainment.

The priority vector in Table 6 was obtained by determining the
row averages. For example, the priority of the first driving force
in Table 6 was calculated by dividing the sum of the rows (0.132 +
0.094 + 0.019 + 0.057 + 0.094 + 0.057 + 0.132 + 0.132 + 0.094 +
0.132 + 0.057) by the number of columns (11), to obtain the value
of 0.13.  

The priority vector, indicated in Table 6, is given below: 
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By dividing all the elements of the weighted sum matrices by their
respective priority vector element, we obtained the following: 
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Next, we computed the average of these values to obtain the
largest eigenvalue λmax 
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Table 6. The synthesized matrix for regional authority for the rapid development scenario.
 
Variables A B C D E F G H I J K Priority Vector

A 0.132 0.134 0.127 0.123 0.127 0.127 0.118 0.153 0.136 0.127 0.127 0.13
B 0.094 0.095 0.091 0.088 0.091 0.091 0.085 0.119 0.097 0.091 0.091 0.09
C 0.019 0.019 0.018 0.018 0.018 0.018 0.017 0.017 0.019 0.018 0.018 0.02
D 0.057 0.057 0.055 0.053 0.055 0.055 0.039 0.051 0.058 0.055 0.055 0.05
E 0.094 0.095 0.091 0.088 0.091 0.091 0.085 0.085 0.097 0.091 0.091 0.09
F 0.057 0.057 0.055 0.053 0.055 0.055 0.051 0.051 0.058 0.055 0.055 0.05
G 0.132 0.134 0.127 0.158 0.127 0.127 0.118 0.119 0.069 0.127 0.127 0.12
H 0.132 0.123 0.164 0.158 0.164 0.164 0.152 0.153 0.175 0.164 0.164 0.16
I 0.094 0.095 0.091 0.088 0.091 0.091 0.166 0.085 0.097 0.091 0.091 0.10
J 0.132 0.134 0.127 0.123 0.127 0.127 0.118 0.119 0.136 0.127 0.127 0.13
K 0.057 0.057 0.055 0.053 0.055 0.055 0.051 0.051 0.058 0.055 0.055 0.05

We calculated the consistency index, or CI, as follows: 
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The consistency of the matrix can be verified using the consistency
ratio, CR of  CI, with the appropriate value from Table 6. For a
matrix size of 13, using Table 6, we determined the appropriate
value of the random consistency ratio (RI) to be 1.52. The
consistency ratio CR is defined in Equation 17. 
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Next, we calculated the priority preference vector for the real
estate agent, resident, and farmer for the rapid development
scenario and constructed Table 7. We calculated the priority
vector of preferences for the regional authority, real estate,
resident, and farmer agents for the green land protection
scenario.  

The weightings of the driving factors were equal to combined
preferences (PRk) of the regional authority, real estate developer,
resident, and farmer agents as determined by Equation 4. We
calculated the weightings of the driving factors for the rapid
development and green land protection scenarios. For the rapid
development scenario, the weightings of the driving factors were
as follows: 
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For the green land protection scenario, the weightings of the
driving factors are listed as follows: 
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For the baseline scenario, the agent preferences did not impact
on the weightings of factor k. For the rapid development and
green land protection scenarios, the combined preferences (Eq.
5) impacted on the weightings of factor k.  

By using Equation 3, we calculated the urban development
probability of every cell for the rapid development and green land
protection scenarios.

Table 7. The standardized preferences of regional authority, real
estate developer, resident, and farmer agents on the driving factors
for the rapid development scenario.
 
Driving factors Regional

Authority
Real

Estate
Developer

Resident Farmer

Focal of urban land 0.131 0.090 0.089 0.019
Distance to urban land 0.094 0.147 0.124 0.056
Distance to cropland 0.018 0.044 0.017 0.169
Distance to forest land 0.053 0.016 0.074 0.128
Distance to grassland 0.091 0.082 0.053 0.116
Distance to water body 0.055 0.117 0.087 0.164
Distance to railway 0.123 0.049 0.085 0.05
Distance to road 0.156 0.114 0.130 0.094
Distance to school 0.097 0.144 0.148 0.06
Distance to hospital 0.128 0.111 0.081 0.088
Distance to
entertainment

0.055 0.084 0.113 0.055

Digital elevation map
(DEM)
Slope
Aspect
Water body Prohibited Prohibited Prohibited Prohibited
Big forest patches Prohibited Prohibited Prohibited Prohibited
Consistency ratio (CR) 0.003 0.001 0.007 0.009

The likelihood of urban development within all districts and cities
is equal to the conversion probability. 
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Model evaluation
Kappa is calculated on the basis of the projected and observed
values over the entire region (Congalton and Green 1999). The
equation used is as follows: 
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Where Po is the correct percentage of the model output, and Pc 
is the expected correct percentage.  

The value of Kappa ranges from 0 to 1. Although there is no
universally accepted standard, a Kappa value greater than 0.8 is
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considered to be an indication of a strong agreement between the
predicted and observed maps (Congalton and Green 1999, Tian
et al. 2011b).  

We simulated urban development under the three scenarios in
2005 and further evaluated the model by comparing an artificial
interpretation of the land-use map with the simulated land-use
map for 2005 using the Kappa coefficient (Congalton and Green
1999, Pontius et al. 2001, Tian et al. 2011b; see Online Resource
1). We computed the Kappa coefficient using the settings for the
baseline scenario, rapid development scenario, and green land
protection scenario, resulting in Kappa values of 0.8444, 0.7350,
and 0.7336, respectively. The Kappa coefficient calculation was
based on the baseline scenario settings, suggesting a strong
agreement between the predicted and observed maps. The result
for the baseline scenario was closer to the empirical land-use map
of 2005 than the rapid development and green land protection
scenarios. The results for the rapid development and green land
protection scenarios were considered to be two possible
development modes, according to agent preferences.

Simulation of urban development in the Guangzhou metropolitan
region
Urban development in Guangzhou under three scenarios, i.e.,
baseline, rapid development, and green land protection scenarios,
was simulated.

Baseline scenario:
For the baseline scenario, the simulation was based on previous
development. Agent preferences did not influence the weighting
of the driving factors. The spatial strategy derived from urban
planning and policies was not considered for urban expansion.
The probability of urban development was decided by the β values
(Table 3). Four land-use types were converted into urban land.
There was a prohibition against converting the water bodies and
large patches of forest. Under this scenario, 597.69 km² land, i.e.,
364.51 km² of cropland, 47.75 km² of forest, 150.49 km² of rural
residential land, and 4.03 km² of other land, would be converted
into urban land during the period of 2005~2020 (Fig. 4).

Rapid development scenario:
For this scenario, the agents gave more attention to economic
development. The weightings of variables related to
infrastructure, such as the distance to schools, hospitals,
entertainment centers, railways, and roads, increased whereas the
weightings of other variables, such as the distance to forest,
grassland, and water bodies, decreased. However, the weightings
of the physical factors, such as digital elevation map (DEM) and
slope, did not change much. From a rapid development
perspective, roads and railways are the most important
infrastructure. Schools, hospitals, and entertainment centers will
be beneficial to residents. These factors stimulated economic
development. According to this scenario, 657.46 km² of land, i.
e., 400.96 km² of cropland, 52.53 km² of forest, 165.54 km² of
rural residential land, and 4.43 km² of other land, would be
converted into urban land during the period of 2005~2020 (Fig.
5).

Green land protection scenario:
For this scenario, the agents pay more attention to green land
protection. The weights of the variables, such as the distance to
forest, grassland, and water bodies, increased whereas other

factors, such as distance to schools, hospitals, entertainment
centers, roads, and railways, decreased. The weightings of physical
factors, such as the DEM and slope, did not change. From the green
land protection perspective, the forest, grassland, and water bodies
were given primary protection. According to this scenario, 537.92
km² of land would be converted into urban land during the period
of 2005~2020 (Fig. 6). During this period, approximately 217.47
km² of cropland, 180.85 km² of forest, 100.45 km² of rural
residential land, and 39.14 km² of other land would be converted
into urban land.

Fig. 4. The simulation of urban development in Guangzhou
metropolitan region in 2020 for baseline scenario.

Metrics used in the comparisons among the simulated scenarios
Landscape metrics have been widely used to quantify the spatial
and temporal patterns of urban dynamics (Tian et al. 2007a, b,
2011a, b, Wu et al. 2011). To compare the urbanization pattern of
the simulated scenarios for Guangzhou, spatial metrics were
calculated using Fragstats software (McGarigal and Marks 1995).
Through the analysis of landscape metrics, we compared the spatial
pattern of urbanization for the different scenarios in the
Guangzhou metropolitan region.  

The spatial metrics describe the size, connection between the urban
patches, and the complexity of the urban form. The spatial metrics

http://www.ecologyandsociety.org/vol19/iss3/art52/


Ecology and Society 19(3): 52
http://www.ecologyandsociety.org/vol19/iss3/art52/

for different periods in Guangzhou can help to trace trends in the
dynamic change of landscape patterns during urbanization. We
compared the landscape metrics of the three scenarios from the
patch shape and aggregation level of the urban landscape. The
selected spatial metrics were the edge density (ED), parameter area
ratio (PARA), and contiguity index (CONTIG; see Appendix 1).

Fig. 5. The simulation of Guangzhou metropolitan region in
2020 for rapid development scenario.

We compared the landscape metrics of the three scenarios in 2020.
Among the three scenarios, the ED was lowest and the CONTIG
was highest in the rapid development scenario (Appendix 1) and,
therefore, the scenario resulted in the lowest fragmentation of urban
patches. In contrast, the ED was highest and the CONTIG was
lowest in the green land protection scenario (Appendix 1). In the
rapid development scenario, agent preferences were more focused
on economic development, whereas the agents gave more attention
to ecological environment in the green land protection scenario.
Therefore, in the rapid development scenario, the distance to urban
land, schools, hospitals, entertainment centers, railways, and roads
were more important in determining the direction of urban
expansion (Table 7). New urban land was more associated with the
above factors and encroached on the forest, grassland, and
cropland. However, forest, grassland, and cropland restricted
urban land sprawl because of the agent preferences in the green
land protection scenario. New urban land expanded far away from

forest, grassland, and cropland, and was therefore more dispersed
and fragmented than in the rapid development scenario. The
differences in the PARA and CONTIG between the two urban
development scenarios also confirmed the agent-based model.
The ED and PARA were lowest in the rapid development scenario,
which indicated that the shape of the urban patches was more
regular in this scenario. However, in the green land protection
scenario, the ED and PARA were highest, which indicated that
the urban patches became more irregular. In the rapid
development scenario, agent preferences encouraged new urban
land to sprawl around previous constructions, including the urban
center, schools, hospitals, entertainment centers, railways, and
roads, and, therefore, the whole urban area become more
compact. In contrast, in the green land protection scenario, agent
preferences resulted in protection for forest, grassland, cropland,
and water, which ensured that new urban land did not always
sprawl around previous construction because of the restrictions
in developing forest, grassland, cropland, and water. Therefore,
the urban area was not regular, as in the rapid development
scenario, but more scattered.

Fig. 6. The simulation of Guangzhou metropolitan region in
2020 for green land protection scenario.

DISCUSSION
The urbanization of metropolitan regions is a complex and
human-dominated process. The traditional approaches to
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studying urbanization often ignore human behavior, decision-
making processes, and policies. The ABM is an approach that has
received significant attention in recent years as a way to link the
biophysical and socioeconomic characteristics of a system (Tian
et al. 2011b). It is particularly appropriate when there is an
important interdependence between agents and their
environment. We simulated the behavior and decision making of
regional authorities, real estate developers, residents, and farmers
in this model by using AHP. The rules were based on a priori
knowledge related to agent preferences. Pairwise comparisons
were used to acquire agent preferences and their interactions to
determine the driving factors. Parameter combination and choice
reflects complex decision-making processes and policies. The
model parameters have a big impact on simulation results.  

At the same time, urban planning and policies have been used in
the simulation of urban development. Spatial strategy policies
will affect the direction of urban development in a metropolitan
area. The development of urban land in the Panyu and Nansha
districts is projected to increase under the current spatial strategy.
In our model, three policy scenarios of baseline, rapid
development, and green land protection were simulated. Scenario
analysis is a useful tool for studying different policies. Sustainable
development strategies have been incorporated into agent-based
modeling to correctly define the behavior of agents (Li and Liu
2008). Urban planning and policies have been incorporated into
the model to better understand the spatial pattern of urban
expansion for policy makers.  

In future studies, several areas need to be further investigated.
First, the classification of agents should be more precise, and
should consider the demands of different age or income groups.
This is mainly considered with regard to the appearance of
adverse urbanization in some large and medium-sized cities
during periods of growth in their urbanization. Second, there is
a need for more scientific methods, which could be used to
quantify the decision-making behavior of agents in most Chinese
cities because of the lack of detailed spatial data. The integration
of an agent-based spatial model and a detailed questionnaire
survey could improve simulation performance if  such spatial
information were available.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/6909
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 Appendix 1. Comparison of landscape metrics among the simulation scenarios for the Guangzhou metropolitan region 

Metrics Description Formula 

Baseline 

scenario 

Rapid 

development 

scenario 

Green 

land 

protection 

scenario 

PD 

PD equals the number of patches of the corresponding 

patch class divided by total landscape area (m2), 

multiplied by 10,000 and 100 (to convert to 1km2). It 

expresses the number of patches on a per unit area 

basis that facilitates comparisons among landscapes of 

varying size. According to the meaning, the maximum 

density of patches of a single class is attained when 

every other cell is of that focal class. 

)100)(10000(
A

N
PD =  5.52 4.49 6.63 

LSI 

LSI is landscape shape index, E is total length of 

perimeter of urban land, A is the area of study area. 

LSI = 1, when the landscape consists of a single 

square or maximally compact (i.e., almost square) 

patch of the corresponding type. LSI increases without 

limit as the patch type becomes more disaggregated. 

A

E
LSI

25.0=  24.1968 23.3146 25.7066 

AI 

Aggregation index is calculated from an adjacency 

matrix, which shows the frequency with which 

different pairs of patch types (including like 

adjacencies between the same patch type) appear 

side-by-side on the map. 

1

AI [ ( ) ](100)
max

ii

i

ii

m

i

g
P

g=

=
→∑  93.15% 93.53% 92.58% 

PAFRAC 

Perimeter-area fractal dimension indicates the 

relationship between the area and perimeter of the 

urban patch. A fractal dimension greater than 1 for a 

2-dimensional landscape mosaic indicates a departure 

from a Euclidean geometry. PAFRAC approaches 1 for 

shapes with very simple perimeters such as squares, 

and approaches 2 for shapes with highly convoluted, 

plane-filling perimeters. 
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