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ABSTRACT. New forests are expanding around the world. In many regions, regrowth rates are surpassing deforestation rates, resulting
in “forest transitions,” or net gains in forest cover. Typically measured only in terms of aggregate“'forest cover” change, these new
forests are ecologically distinct from each other and from those originally cleared. We ask, what are the ecological attributes, goods,
and services we might expect from different pathways of forest recovery? To address this question, we proposed a typology of forest
transitions that reflects both their social drivers and ecological outcomes: tree plantation, spontaneous regeneration, and agroforestry
transitions. Using case studies, we illustrate how the ecological outcomes of each transition type differ and change over time. We
mapped the global distribution of forest-transition types to identify global epicenters of each, and found that spontaneous transitions
are most common globally, especially in Latin America; agroforestry transitions predominate in Europe and Central America; and
plantation transitions occur in parts of Europe and Asia. We proposed a conceptual framework to understand and compare the
ecological services arising from different types of forest transitions over time: forest ecosystem-service transition curves. This framework
illustrates that carbon sequestration tends to be comparatively lower in agroforestry transitions, and biodiversity recovery is lower in
industrial plantations. Spontaneously regenerating forests tend to have relatively high biodiversity and biomass but provide fewer
provisioning and economically valuable services. This framework captures the dynamism that we observe in forest transitions, thus
illustrating that different social drivers produce different types of ecosystem-service transitions, and that as secondary forests grow,
these services will change over time at rates that differ among transition types. Ultimately, this framework can guide future research,
describe actual and potential changes in ecosystem services associated with different types of transitions, and promote management
plans that incorporate forest cover changes with the services and benefits they provide.
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INTRODUCTION
Even as forest area continues to decline globally, forest cover is
increasing in many regions as the area of “new forests” (i.e.,
secondary forests, plantations, and other woody vegetation)
increases (Sloan and Sayer 2015, Rudel et al. 2016). Over the past
two centuries, notable forest transitions, in which a country or
region moves from losing to gaining net forest cover (Fig. 1A),
occurred in Western Europe and the United States (Mather 1992,
Rudel et al. 2005). Driven by industrialization, agricultural
intensification, and rural-to-urban migration, forest cover
increased through both spontaneous forest succession on
abandoned agricultural lands and tree plantations (Mather 1992,
Rudel et al. 2005, Meyfroidt and Lambin 2011). More recently,
forests have begun to return in many tropical countries, suggesting
incipient tropical forest transitions (Rudel et al. 2002, Sloan 2008,
Vaca et al. 2012, Aide et al. 2013, Sloan and Sayer 2015). These
new forests are often ecologically distinct from those originally
cleared (Dent and Wright 2009, Meyfroidt and Lambin 2011,
Redo et al. 2012, Chazdon et al. 2016), and the ecological
consequences of these tropical transitions are still poorly
understood. The scale, speed, and ecological nature of nascent
tropical forest transitions raise important questions about the
ecological and environmental benefits they will ultimately
provide.  

The forest transition literature measures primarily changes in
undifferentiated forest area without considering the ecological
characteristics of the forest (Mather 1992, Rudel et al. 2005) (Fig.
1). But from ecological and social perspectives, aggregate area
of “forest” (or “tree”) cover provides a poor metric of the social
and environmental benefits from expanding new forests, both in
the short and long term (Chazdon et al. 2016).  

Rudel et al. (2005) and Lambin and Meyfroidt (2010) identified
several pathways of socio-agrarian change that can lead to forest
transitions. Different pathways and drivers of forest recovery
can produce different types and distributions of forest cover,
which possess different ecological characteristics (e.g.,
biodiversity, biomass, structure, and proportions of native and
non-native species) (Holl et al. 2000, Chazdon 2003, 2014, Dent
and Wright 2009, Wilson and Rhemtulla 2016), geographic
characteristics (e.g., regrowth on steep slopes or plantations near
roads) (Dent and Wright 2009, Redo et al. 2012, Nanni and Grau
2014, Angonese and Grau 2014, Sloan 2016), and landscape
attributes (e.g., connectivity, spatial relationships among
secondary and remnant primary forest, habitat corridors)
(Thomlinson et al. 1996, Hecht and Saatchi 2007, Angonese and
Grau 2014) (Fig. 2). Different ecological attributes,
configurations, and trajectories of new forests in turn produce
different suites of ecosystem services (Chazdon 2008, Grau et
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al. 2008, Locatelli et al. 2015), which change over the trajectory
of the forest transition. Although the forest transition literature
has identified different pathways of social change that can
produce forest transitions (Rudel et al. 2005, Lambin and
Meyfroidt 2010), and the ecological literature has established that
recovering forests provide a variety of ecosystem services that
differ between forest types (Brown and Lugo 1990, Chazdon 2008,
2014, Dent and Wright 2009), to date these fields have not been
systematically integrated to examine the ecological consequences
of forest transitions over time.

Fig. 1. The forest transition. (A) The classic forest-transition
curve, depicting a decrease in forest area over a given
geographical area (continental, national, or regional), followed
by an increase as forests return. (B) The distinction between
primary and secondary forests, and the relative amounts of
each at the forest-area inflection point. Note that point A
represents a transition with a relatively high proportion of
primary forest remaining, whereas at point B, most forests on
the landscape are secondary.

We examine how variations in the type and drivers of a given
forest transition correspond with ecological variations in forests
and forest services over time. We address three key questions: (1)
What ecological attributes, goods, and services might we expect
from different pathways of forest recovery? (2) How do the

ecological characteristics of forests resulting from different forest
transitions differ from the forests that previously existed, as well
as from each other? (3) How common are the different forms of
reforestation underlying our forest transition types globally, and
how are they and the forests and services associated with them
geographically distributed?  

We propose a conceptual framework: “the forest ecosystem-
service transition.” This framework describes the ecological
attributes, goods, and services arising from different forest
transition pathways, how these change over the trajectory of a
forest transition, and how they differ from pre-existing forests.
We support this concept with current literature on the ecosystem
services arising from different types of secondary forests, and with
case studies of the drivers and services arising from transitions in
different ecological and social contexts. To operationalize this
concept, we use existing data sets to estimate the global
distribution of different forest transition types and their respective
suites of ecosystem services.  

Our paper is structured as follows. The first section defines a
typology of forest transitions relevant to ecological outcomes by
summarizing the forest transition literature. The second section
draws on the ecological literature to highlight the ecological
characteristics of new forests and their associated ecosystem
services. In the third section, we present four case studies of
subtropical and tropical forest transitions to provide examples of
different ecosystem-service transitions, how they arise, and how
they change over time. In the fourth section, we synthesize the
previous sections and present conceptual “forest ecosystem-
service transition curves” to illustrate how the ecosystem services
arising from different forest transition types converge and diverge
over time. In the fifth section, we estimate the prevalence of
different forest transition pathways globally and apply our
ecosystem-service transition curves to describe global patterns in
the ecosystem services that may result from different pathways of
recovery.  

By incorporating a nuanced ecological perspective into a largely
social science-based forest-transition theory, our synthesis
provides a framework for understanding and anticipating the
ecosystem goods and services that new forests can provide over
time. While at present, data are not sufficient to test our
framework, we believe that our conceptual framework will help
guide future research and make the forest transition theory more
useful to policy and planning.

FOREST TRANSITION TYPOLOGIES
Forest transitions are driven by changes in socio-economic
conditions and cultural perceptions of remnant forests, often in
concert (Mather 1992). Rudel et al. (2005) identified two main
pathways by which forest transitions occur: the urban–economic
development pathway, where rural to urban migration creates
opportunities for new forests to spontaneously regenerate on
abandoned, marginal agricultural land, and the forest scarcity
pathway, where declines in forest coupled with demand for forests
goods and services induce landowners and governments to plant
trees. Lambin and Meyfroidt (2010) expanded this dichotomy to
incorporate three contemporary forest transition pathways
emerging in tropical areas: a smallholder agroforestry pathway,
where smallholders plant trees to intensify land use, increase
productivity, and stabilize crop yields (Rudel 2005, 2009, Tiffen
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Fig. 2. The three forest transition pathways, their drivers, and their relative ecological outcomes. Note: The final column represents
the potential amount of each service that would be expected to return during a transition, relative to the other transition types.
(NTFP: nontimber forest product)

et al. 1994); a globalization pathway—a contemporary urban–
economic development pathway in which rural poor seek
employment and send back remittances from outside their
country, potentially reducing local agricultural activities (Aide
and Grau 2004, Hecht et al. 2006); and a state forest policy
pathway, in which “strong states” seeking to fulfill economic and
political agendas formalize land titling and conserve and plant
forests to arrest soil degradation, protect watersheds, or increase
the supply of forest products (Mather 2007, Meyfroidt and
Lambin 2008).  

Local contexts and cultures create variations in the
aforementioned pathways, and as a result, the outcomes are not
easily quantified. Culture clearly influences the nature of new
forests and inflection points, and whether there is a forest
transition at all. Despite the importance of culture—Mather
(1992) suggested that changing environmental values, social
movements, and policies can also drive increases in forest cover
—neither Meyfroidt and Lambin (2008) nor Rudel et al. (2005)
emphasize cultural drivers. But during the forest transitions
observed in the United States, western Europe, and parts of Latin
America, forests have also returned as they have become more
valuable for cultural reasons. Cultural values, discourse, and
religion may deem forests important for aesthetics, recreation,
and spiritual appreciation of biodiversity and nature generally,
and thus contribute to the pathways of forest recovery described
by Lambin and Meyfroidt (2010). Globalization transitions have
occurred as conservation ideologies have spread (Brechin and
Kempton 1994, Schelhas and Pfeffer 2008); forests have returned
when communities protect them for spiritual reasons, as has
occurred in Himalayan forests (Lambin and Meyfroidt 2010), and
a recent forest landscape restoration “movement” is well poised
to produce regional transitions in the coming decade (Kull et al.
2007, Schelhas and Pfeffer 2008, Lambin and Meyfroidt 2010).

Cultural transitions, which occur even in the poorest counties
(such as Nepal), partially counter the idea that forest transitions
are driven mostly by economic factors and thus occur mainly in
wealthier, “developed” countries (Lambin and Meyfroidt 2010).  

We examine the ecological outcomes of three different forest
transition pathways: economic growth, industrial plantation
reforestation, and smallholder agroforestry/on-farm trees. This
typology integrates the diverse social drivers of the
aforementioned pathways into a typology in which different
pathways are associated with distinct ecological outcomes (Fig.
1, Fig. 2). Our typology reflects the economic growth versus forest
scarcity dichotomy described by Rudel et al. (2005), but it also
splits their forest scarcity pathway (as per Lambin and Meyfroidt
2010) to distinguish industrial plantation reforestation (large,
commercial tree plantations, generally implemented by strong
states and commercial forestry interests) from smallholder
agroforestry intensification (smaller scale tree planting and
assisted regeneration, generally undertaken to provide local forest
goods and services). We also consider the effect of cultural factors
on landholders’ actions in situations of both forest scarcity and
economic growth (Mather 1992, Robbins and Fraser 2003,
Redman and Foster 2008) through our four case studies. We
elaborate on each pathway of our social-ecological typology to
illustrate how each produces different ecosystem goods and
services (Fig. 2).  

The economic development pathway can occur when countries
or regions urbanize, agriculture modernizes, and opportunities
for work and education in cities draw people off  the land. As a
result of both a reduction in on-farm labor capacity and the
increasing availability of labor-reducing technology for
agricultural production, farmers mechanize and intensify
production on flatter, more fertile land, and abandon marginal
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lands (Rudel et al. 2005). In some cases, forests have regenerated
spontaneously on these lands (Bentley 1989, Aide and Grau 2004,
Daniels 2010). Similarly, forests have regenerated when economic
collapse and withdrawal of government subsidies induced farmers
to abandon agricultural land, as occurred in Cuba and Eastern
Europe after the fall of the Soviet Union (Kuemmerle et al. 2011,
Alvarez et al. 2013).  

The type of forests produced by economic-driven transitions
varies with context and the surrounding forest landscape.
Vegetation regenerating on abandoned land ranges from lush,
productive forests where land remains fertile and seed sources are
nearby (Thomlinson et al. 1996, Chazdon 2003, 2008) to grasses
and shrubland where land is too degraded for regrowth without
intervention (Holl et al. 2000, Wilson and Rhemtulla 2016).
Regrowth in areas surrounded by intact forest tends to have more
native species, higher diversity, and spatial connectivity than that
in extensively cleared areas (Holl et al. 2000, Sloan et al. 2015).
In peri-urban areas, new forests produced by economic growth
(e.g., managed parks, plantations) sometimes resemble the
“simplified” forests produced by forest scarcity transitions, and
often contain relatively high proportions of non-native species.
These forests can also be ephemeral, subject to clearing if  land
values rise (Grau et al. 2003, Padoch 2007, Padoch et al. 2008,
Lugo 2009, Gutierrez and Grau 2014). Forest species composition
and integrity will vary depending on whether landholders
abandon lands outright or maintain a reduced or iterant presence
in the landscape (Hecht and Saatchi 2007) and whether migration
is long distance and thus more “permanent” or local/cyclical
(Waters 1997, Schmook and Radel 2008).  

If  forests are perceived as scarce at the country, regional, or local/
household level, forest cover may expand as people intentionally
plant trees (Mather 1992, Rudel et al. 2005, Rudel 2009).
Governments may subsidize plantations to produce forest goods
and commodities (e.g., timber, palm oil) or to stabilize land in
regions degraded by deforestation (Mather 1992, Rudel et al.
2005, Sloan 2016), thereby potentially producing industrial
plantation transitions. These forests differ from natural forests
but are nevertheless included in many national and global
estimates of tree and forest cover (FAO 2015, Chazdon et al. 2016).
State-driven reforestation is mediated by social and cultural
processes and so does not necessarily reflect “objective” forest
scarcity. It can also occur where prices signal perceived scarcity
(as in Indonesia) or a lack of essential forest services (as in
Vietnam) (Mather 2007). Similarly, at the regional level,
communities and municipalities may plant trees to protect or
restore ecosystem services, such as water or nontimber forest
products (NTFPs) (Wilson 2015), or to supply forest products for
increasing demand (e.g., fuel for the steel industry in Brazil)
(Sonter et al. 2014). At both national and regional scales, the
distribution of “new forests” in scarcity-driven transitions is
heavily influenced by land values, and is sometimes confined to
unproductive uplands that are relinquished or disused by other
land users (Grau et al. 2003, Laclau 2003, Padoch et al. 2008),
although market signals or local values may occasionally invert
these expected “core-periphery” patterns (Foster and Rosenzweig
2003, Sloan 2016).  

On a local scale, the scarcity of forest products (i.e., firewood,
timber, food crops) and services (i.e., soil maintenance, erosion

control, shade) can drive smallholders to plant or protect forest
cover in and around farms to enhance household production and
resilience, thereby producing smallholder agroforestry transitions
(Reij et al. 2005, Reij 2006, Rudel 2009, Wilson 2015). Although
practiced at small scales, widespread agroforestry intensification
has produced significant national-scale gains in forest cover in the
African context (Reij 2006). Compared to other forms of
reforestation, agroforestry tends to be labor intensive and often
highly utilitarian; thus, agroforests often correlate positively with
rural population density (Rudel et al. 2005, Rudel 2009).  

Regardless of scale, scarcity-driven transitions (both industrial
plantation and smallholder agroforestry) will usually produce
human-created forests (plantations, agroforests) with different
social-ecological properties from the forests that were originally
cleared (Fig. 1, Fig. 2). In particular, these utilitarian forests often
have a simpler structure (tree size, age, species composition) than
primary forests, and contain species with high commercial value
or multiple uses (Wilson and Rhemtulla 2016). This ecological
simplification is generally greater for industrial plantations than
for agroforests (Bhagwat et al. 2008, Chazdon et al. 2016).  

Changes in culture and social processes shape the aforementioned
pathways, and can also lead to forest regrowth. Forest cover may
increase because people encourage or permit forests to return for
recreation or spiritual reasons because they believe forests possess
intrinsic value, or to conserve biodiversity. Cultural changes can
be prompted by economic development (Stern 2004) combined
with forest scarcity (Wilson 2015), as when, for example, a growing
middle class desires forests for recreation and natural amenities
(Locatelli et al. 2017). But cultural changes are also shaped and
motivated by social movements and processes that operate across
these paradigms. Changes in how people perceive or value forests
may be realized far from their original source through
globalization: the rise and global spread of environmentalism
(Brechin and Kempton 1994, Schelhas and Pfeffer 2008);
international initiatives (e.g., the Bonn Challenge, which aims to
restore 150 million hectares of deforested land by 2020, and the
UN Sustainable Development Goals) (Kull et al. 2007, Schelhas
and Pfeffer 2008, Lambin and Meyfroidt 2010); tree planting
cultures and associated organizations and campaigns (Brechin
1997, Cohen 2004); and social demand for forest-grown crops,
such as shade coffee (Perfecto et al. 1996). Local, cultural-driven
initiatives can also produce transitions when local communities
install biodiverse, native forest restoration plantations (Diaz et al.
2009, Piotto et al. 2010, Potvin et al. 2011), as occurred during a
forest-oriented “back to the land” sustainable production
movement in Ecuador (Wilson 2015). Cultural shifts can therefore
operate across other types of pathways, and produce a variety of
different forest types in a range of different contexts.

ECOLOGICAL OUTCOMES OF FOREST TRANSITIONS
Forest transitions, like all land use and cover changes, have
implications for biodiversity and ecosystem function. However,
these are often poorly appreciated because the forest-transition
literature addresses changes to overall forest cover, and ignores
ecologically important characteristics such as forest age, species
composition, vertical structure, or all but the most severe levels
of degradation (Lund 2009, FAO 2011, Hansen et al. 2014, Putz
and Romero 2014, Tropek et al. 2014, Chazdon et al. 2016, but
see Kauppi et al. 2006). Different types and ages of forests are

https://www.ecologyandsociety.org/vol22/iss4/art38/


Ecology and Society 22(4): 38
https://www.ecologyandsociety.org/vol22/iss4/art38/

known to support different types of species, biodiversity, biomass,
and other structural and functional features (Bhagwat et al. 2008,
Dent and Wright 2009, Klanderud et al. 2010, Chai and Tanner
2011, Martin et al. 2013, Putz and Romero 2014). However, forest
transition theory fails to systematically account for biophysical
differences in forest types and dynamics, including the amount and
distribution of primary forest remaining at the inflection point,
the rate and extent of forest recovery, and the types of resulting
new forests (Perz 2007). The following discusses such points in
relation to the ecological implications of a forest transition.

Forest cover inflection points and primary forest cover
In many regions around the world, more than half  of extant forest
cover is secondary (including naturally regenerating and
plantations) (FAO 2015). New forests possess different ecological
and social attributes from primary forests, and from each other,
and ultimately provide different services and goods to both local
and global users (Pascarella et al. 2000, Kanowiski et al. 2005,
Bhagwat et al. 2008). The ecological implications of forest
transitions vary according to the degree to which primary forests
were cleared or degraded, and to which deforestation and
reforestation occur simultaneously. Areas of expanding and
retracting forest cover also often differ in geographic location (i.e.,
deforestation in the lowlands and reforestation in highlands),
which will affect the services provided after a transition, especially
in regions with steep topographic gradients (Redo et al. 2012, Aide
et al. 2013, Nanni and Grau 2014). If  primary forests continue to
be cleared as forests regrow, or if  inflection points occur at low
levels of forest cover, even large increases in forest cover may fail
to sustain forest ecological value (such as native species
biodiversity) compared to transitions that occur with more
remaining primary forest cover (Mather 1992, Gibson et al. 2011,
Dent and Wright 2009). Primary forests are important sources of
native propagules for nearby secondary forests (Dent and Wright
2009, Holl et al. 2000, Chazdon 2014); without them, the
biodiversity potential of secondary forests is greatly diminished
(Gibson et al. 2011).  

The extent to which primary forests are depleted prior to a forest
transition is related partly to the drivers of the transition (Mather
1992) and the simultaneity of the drivers of deforestation and
reforestation (Grainger 1995, Sloan 2008). Forest scarcity
transitions are most likely when primary forests are depleted to
critical levels, but can begin even as primary forests are being
cleared (Grainger 1995, Mather 1992). In some cases, plantations
replace primary forests (Rudel et al. 2016), as occurred with oil
palm and acacia in Southeast Asia, which further degrades native
forests (Chazdon et al. 2016). The extent of primary forest
remaining at the time of a forest transition varied between
countries in the historical European context, partially driven by
demographic shifts, agricultural intensification, or other external
economic forces (Mather 1992). National inflection points have
occurred at increasingly greater levels of forest cover over the past
two centuries (Rudel et al. 2005), possibly due to global cultural
attitudes toward forest conservation, although the precise reasons
are unknown (Rudel, personal communication).

Ecosystem services from tropical secondary forests
Tropical secondary forest can take decades or even centuries to
attain the plant species diversity of primary forests (Lamb et al.
2005, Klanderud et al. 2010, Chazdon 2014). The ecological
properties of the new forests diverge from each other and from

primary forests in various ways depending on ongoing use and
management, past land use, landscape attributes, and species
available or used, factors which vary systematically among our
three forest-transition types.

Spontaneously regenerating forests
Where environmental conditions allow, forests spontaneously
regenerate when other land uses (e.g., agriculture, pasture) stop,
which can occur when land is abandoned or intentionally
protected (Chazdon 2014). In the forest transition literature,
researchers often attribute spontaneous regeneration to shifts to
more intensive farming practices, which lead farmers to abandon
marginal land and concentrate farming in the most fertile and/or
accessible areas, or to declines in agricultural activity following a
decrease in rural populations (Mather 1992, Aide and Grau 2004,
Rudel et al. 2005). But forests also sometimes fail to
spontaneously regenerate. Less productive areas with long
histories of land use and clearing are the least likely to recover
unassisted (Aide et al. 2010, Mulligan 2010, Young 2011).
Deforested areas dominated by non-native, sometimes invasive,
fire-prone grasses and other competitive vegetation can also
retard or preclude forest recovery (Aide et al. 2010).  

Spontaneously regenerating forests often rapidly accumulate
above-ground biomass, and sequester large amounts of carbon,
although when both above-ground and soil carbon are
considered, most will still contain less biomass than a mature
forest even after 80 years (Martin et al. 2013, Chazdon 2014,
Poorter et al. 2016). However, the diversity and composition of
plant species in spontaneously regenerating forests often remains
different from primary forests for decades to centuries (Lamb et
al. 2005, Dent and Wright 2009, Klanderud et al. 2010, Chai and
Tanner 2011, Martin et al. 2013). Forest plant species composition
and diversity vary depending on duration and intensity of past
land use, the amount of remnant primary forest, and the available
species pool (which may include non-native tree propagules) (Uhl
et al. 1988, Aide et al. 2000, Guariguata and Ostertag 2001,
Chazdon et al. 2003, Foster et al. 2003, Styger et al. 2007, Cramer
et al. 2008). Spontaneously regenerating forests are also a source
of timber and nontimber products (e.g., food, medicines, and
firewood for many local peoples) and often contain more
culturally and economically “useful” species than do local
primary forests (Kirby and Potvin 2007, Wilson and Rhemtulla
2016).

Industrial plantations
In the tropics, industrial plantations are one of the most common
types of planted “forest,” and are often monospecific stands of
non-native species (such as teak, eucalyptus, pine, rubber, oil
palm) (FAO 2010, Rudel 2009, Payn et al. 2015). Plantations of
fast-growing trees can sequester large amounts of carbon at rates
that are higher than natural secondary forests (Kraenzel et al.
2003). This carbon may remain sequestered if  harvested wood is
used for long-term construction and plantations are regenerated
(Oliver et al. 2014), but plantation reforestation remains a
relatively risky option for long-term carbon sequestration because
of their vulnerability to pest outbreaks, wind, and fire, which
release stored carbon to the atmosphere (Jactel et al. 2005, Abbas
et al. 2016).  

Plantation trees may be harvested in as few as 10 years, thereby
quickly producing timber, fuel, or pulp, often at the expense of
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other ecosystem services. Some plantation forests house highly
diverse plant communities in their understories (Lugo 1997), but
some also emit toxins that prevent other trees from growing.
Managers also often employ techniques to minimize the
understory and natural tree recruitment. In general, plantations
have much simpler structures and accommodate fewer animals
and plants than do native forests (Healey and Gara 2003,
Kanowiski et al. 2005).  

Plantation trees often grow well in harsh conditions but can also
degrade soils where, for example, fast-growing commercial species
(such as teak) that inhibit understory growth are established in
marginal areas (Healey and Gara 2003, Zhang et al. 2010).
Depending on the environment and their situation in the
landscape, plantations can enhance water resources and mitigate
floods, but they may also consume large quantities of water,
thereby reducing stream flow and groundwater recharge
(O’Loughlin and Nambiar 2001, Jackson et al. 2005). The net
effects of plantations on hydrological function are both unclear
and context dependant.

Agroforests and on-farm trees
On-farm trees include agroforestry systems, household
plantations (typically smaller and more diverse than industrial
plantations), windbreaks, and orchards, which are all designed to
stabilize, diversify, or intensify agricultural or pastoral activities.
Agroforestry encompasses a diverse range of systems from
planted hedgerows and pasture trees to crops (such as coffee)
grown in the understories of older native forest (Schroth et al.
2004). Agroforestry and other on-farm tree systems often involve
planting trees or assisting natural regeneration (Schroth et al.
2004).  

The amount of carbon sequestered by agroforestry systems varies
dramatically with the type of system implemented. As with
plantations, many agroforestry and on-farm tree systems are not
designed to result in permanent forest cover but are instead grown,
cleared, or thinned, and then regenerated or replanted (Schroth
et al. 2004), which could compromise long-term carbon
sequestration and biodiversity benefits. These systems can also
provide a valuable refuge for many forest species in the landscape.
Wildlife species, however, are most often not the most threatened,
nor those in conflict with human population, such as large
carnivores or herbivores (Montagnini and Nair 2004, Jose 2009,
Power 2010, Tscharntke et al. 2012). In general, agroforestry
systems are more biodiverse than other types of agriculture but
still contain fewer native species than primary forests, with the
possible exception of regions where natural forests have relatively
low biodiversity (McNeely and Schroth 2006, Schroth and Harvey
2007, Bhagwat et al. 2008, Power 2010, Phalan et al. 2011, Reji et
al. 2011, Kremen and Miles 2012).  

Agroforestry systems often produce food and other NTFPs in
relatively high quantities compared to both native forests and
plantations. Because agroforests are often implemented at a small
scale, they can be strategically positioned in the landscape to
maximize services; for example, in watersheds to protect water
resources, in erosion-prone areas, in buffer zones alongside
primary forest fragments to conserve biodiversity, and in
silvopastoral systems to increase pasture productivity (Nair and
Garrity 2012, Calle et al. 2013, McGroddy et al. 2015).

CASE STUDIES OF FOREST TRANSITION TYPES
To illustrate the diversity and changes in ecosystem services
produced by different types of transitions, we present case studies
from around the world where forest transitions of different types
have occurred (Boxes 1–4). Cases were selected that (1) describe
a range of different types of transitions; (2) have published studies
on the ecosystem services arising from those transitions; and (3)
are in locations where our co-authors have expert knowledge and
access to data on context and ecosystem services. We describe the
geography and history of forest and land use in each site, and
compare the services provided to a primary forest reference site
(Fig. 2, Boxes 1–4). We focused on ecosystem services that are
amenable to being directly compared (preferably quantitatively)
and that are highly regarded by people locally and globally.  

New forests resulting from different transition types provide
different suites of goods and services (Fig. 3). We observed that
across all forest-transition types, compared to a primary forest
baseline, services that are directly useful to people (e.g., timber,
NTFPs) increased, while services with less direct/obvious utility
(e.g., biodiversity) were lost (Fig. 3). This is consistent with other
reviews of ecological service trade-offs following reforestation in
montane areas (Locatelli et al. 2017), and highlights the
anthropogenic nature of emergent forest landscapes and their
ecosystems (Lugo 2009). The case studies also illustrate that
spatial patterns of new forests are important: in all our case
studies, reforestation was concentrated in proximity to water
sources or aquifers, which resulted in relatively high water
provision services per unit area of forest post transition.

Fig. 3. The services resulting from different forest-transition
types based on case studies. Each service was compared to a
primary forest baseline in the country in which the transition
was occurring, and was given a score from -3 to 3 based on
studies that quantified or described the services found in the
secondary forests in each. A negative value indicates a
reduction in a given ecosystem service after the forest-area
inflection point relative to provision levels of primary forest; a
positive value indicates an increase in a given ecosystem service.
(NTFPs: nontimber forest products)
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Box 1. Plantation forestry: Misiones, Argentina  

Geography: Misiones is a province (c. 30,000 km2) in subtropical
Argentina (24–26º S), which contains one of the largest
continuous areas of Atlantic Forest, a highly diverse ecoregion.  

History: Misiones reached the lowest point of forest cover area
in the 1990s (Chevez and Hilgert 2003) when government
initiatives to halt deforestation included creating a biosphere
reserve and several provincial reserves.  

New forests: New forests expanded primarily as plantations of
North American pines (Pinus ellioti and P. taeda) for pulp, paper,
and saw wood. Plantations, owned by large companies, were
established primarily on land that was previously used for shifting
agriculture and established managed landscapes, which created
riparian forest belts and corridors between native forest patches.
Native forest cover has since remained stable, and because
selective logging has decreased in protected areas, forests are likely
recovering biodiversity. Shifting agriculture, the main historical
driver of deforestation, has slowed due to government restrictions
and rural–urban migration (Izquierdo et al. 2011).  

Ecosystem services and products: Biomass and carbon content in
these tree plantations have been found to be even higher than in
native forests (Fassola et al. 2009). The strategic placement of
these plantations in watersheds and erosion-prone areas means
that per unit forest area, the watershed and soil services they
provide are also greater (Izquierdo and Clark 2012). Plantations
have much lower biodiversity than native forests but they do
provide habitat for some species, especially in association with the
corridors, and they frequently act as buffers of native forests,
which limits access and expands the habitat for jaguars, peccaries,
and other large vertebrates (Di Bittetti et al. 2006, Paviolo et al.
2008, Zurita et al. 2006). The economy of the province is
dependent on forests for both industrial forest products and
tourism (Izquierdo et al. 2008). Plantations are not used for
recreational or aesthetic purposes (but they buffer protected areas
that are). Tree plantations produce large volumes of timber and
pulpwood. Nontimber forest products have declined because
plantations produce primarily timber, and access to native forests
by local populations is increasingly restricted by protected areas
and plantations.  

 

Box 2. Agroforestry: African Sahel  

Geography: The Sahel is a semi-arid (rainfall 100–600 mm year-1)
transitional ecoregion between the subtropical Sudanian
woodlands to the south and the Sahara Desert to the north. It is
dominated by savanna, grasslands, and scrublands.  

History: People traditionally practiced extensive or migratory
grazing, and cultivated millet and sorghum for subsistence.
Following the droughts of the 1970s and 1980s, the Sahel
(particularly in Chad and Burkina Faso) experienced a “greening”
as precipitation levels returned to normal (Herrmann et al. 2005,
Hickler et al. 2005, Olsson 2012, Seaquist et al. 2009) and people
adopted adaptive land management techniques (Rasmussen et al.

2001, Mortimore and Turner 2005, Olsson et al. 2005, Reij et al.
2005, Reij 2006, Reij and Waters-Bayer 2014).  

New forests: In response to droughts, landholders intensified soil
and water conservation by protecting young forest to increase
agro-ecological production and resilience (Reij 2006), and, to a
lesser degree, planting trees (Reij et al. 2005). These practices
produced forests with tree density that was comparable or
superior to unmanaged woodlands (Mortimore and Turner 2005,
Reij et al. 2005). Most new forests grew in managed areas and
areas with relatively high population density, even as people
continued to degrade forests along open-access peripheries
(Mortimore and Turner 2005, Mortimore and Adams 2001). A
perceived shift in economic rights to trees from the State to
individual landholders greatly enhanced these efforts (Reij and
Waters-Bayer 2014).  

Ecosystem services and products: Carbon sequestration is
significant (Olsson 2012) as new, dense forests span vast areas
(Mortimore and Turner 2005, Reij 2006). Biodiversity likely
increased as new forests contained many rare native tree species
(89% of such species were found exclusively on managed lands)
(Reij et al. 2005). Fuel wood and timber also increased
(Mortimore and Turner 2005, Rudel 2005: Ch.7), but no other
data on NTFPs are available. Higher water tables (> 5 m) and
local rainfall (+30%) have been attributed to soil and water
conservation efforts, including reforestation (Reij et al. 2005).
Cereal yields (Reij et al. 2005) and fodder also increased following
reforestation (Mortimore and Turner 2005, Rudel 2005: Ch.7),
but this is indirectly and partially attributable to increased tree
cover. 

Box 3. Spontaneous regeneration: Guanacaste, Costa Rica  

Geography: Guanacaste is a province (10,141 km2) in
northwestern Costa Rica (10.6° N). Volcanic mountains in the
east drop down to a broad alluvial plain and beaches on the Pacific
coast. Natural vegetation is predominantly tropical dry forest.  

History: Widespread deforestation reduced forest cover to 23.6%
of the province by 1975. Driven by international beef markets
and favorable policies for cattle, an expanding road network
allowed smallholders who were pushed out of other regions of
the country to colonize land, and government policies encouraged
forest clearing (Calvo-Alvarado et al. 2009).  

New forests: After a period of very low deforestation rates from
1979 to 1986, forest cover began to increase and expanded to
47.9% of the province by 2005 (Kleinn et al. 2002). The transition
is attributed to urbanization, a decline in the beef industry, a sharp
drop in agricultural employment, a rise in service sector
employment (particularly tourism), agricultural intensification in
the lowlands, and conservation policies, including the
establishment of protected areas, payments for ecosystem
services, and restrictions on timber extraction and forest clearing
(Calvo-Alvarado et al. 2009, Daniels 2010, McLennan and
Garvin 2012). Spontaneous regeneration dominates the new
forests, although the earliest regrowth on hilly terrain with coastal
views was later cleared and fragmented for tourism and real estate
development (Calvo-Alvarado et al. 2009), and tree plantations
are concentrated on flatter land (Morera et al. 2007).  
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Ecosystem services and products: Carbon stocks in primary forest
are much higher than in regenerating forest (after nine and 21
years) (Hall et al. 2012). New forests are often strategically located
in “forested protection zones” that have been created to provide
drinking water and biodiversity corridors, and address stream
corridor protection laws, and water improvement per unit forest
area is likely high (Mata 2004). Biodiversity is highest in primary
forest, but regenerating forests tend to have higher biodiversity
than both plantations and nonforest areas (Hall et al. 2012). As
forests recover, biodiversity increases due to increased habitat,
greater connectivity, and lower edge-to-area ratios (Hall et al.
2012). However, because of complex pollination and migration
patterns, fragmented landscapes are unlikely to approach the
biodiversity of intact forest (Frankie et al. 2004). Most harvested
timber comes from teak plantations (Piotto et al. 2004). The shift
from rural to urban lifestyles, and a sharp decline in households
cooking with fuel wood likely means that NTFPs (including fuel
wood) are decreasing in importance to livelihoods (Calvo-
Alvarado et al. 2009).  

 

Box 4. Mixed transition: Intag Valley, Ecuador  

Geography: The Intag Valley (Imbabura, Ecuador) is a region in
western Andean Ecuador. The valley is located 1100–3700 m
above sea level, and receives 1600–2400 mm of precipitation per
year. Vegetation ranges from premontane to upper montane cloud
forest, with grasslands at higher elevations.  

History: Intag’s dense cloud forests were cleared rapidly in the
1970s, 1980s, and 1990s for agriculture and cattle ranching
(Sarmiento 2002, Kocian et al. 2011). Forests were felled
(sometimes after extracting timber), burned, planted with crops,
and then converted to pasture. Like many Andean landscapes,
soil fertility has declined over the past several decades (Jokisch
2002, Mayer 2002). Between 1991 and 2001, pastures and
cropland expanded at the expense of intact and degraded forests,
and the northeast portion of the valley lost 37% of its primary
forest (Wilson 2015).  

New forests: In response to severe declines in water quality and
to seasonal droughts that followed deforestation, in the 1990s a
local NGO helped communities establish more than 40
community-based watershed reserves for reforestation. The forest
cover inflection point occurred in the early 2000s at 40% cover,
and between 2001 and 2010, forests returned on 26% of the land
area for a net increase of 3%. Forests returned through adopting
agroforestry, planting native species along waterways, and
spontaneous regrowth on agricultural land and pastures.  

Ecosystem services and products: The carbon stock of primary
forests in the region remains six times greater than in young
naturally regenerating and restored forests (S. Wilson, unpublished
data). Primary forest diversity is two times greater than in planted
forests and four times greater than in spontaneously regenerating
forests, which tended to be species poor and dominated by early
successional species with low wood density. Planted forests had
much higher tree diversity than spontaneously regenerating
forests (Wilson and Rhemtulla 2016), while agroforests had
intermediate diversity (S. Wilson, unpublished data). Residents

reported improvements in water quality as new forests (natural,
planted, agroforestry) were frequently established around
waterways. However, compared to past conditions, water quality
and quantity are still low and will likely take years to return to
predeforestation conditions (Bruijnzeelet al. 2010). In the process
of planting trees, people came to value them for the services they
provide and developed new uses for them. The main forest
products are fuel wood and timber. Planted forests contain more
species that are used for timber, while naturally regenerating forest
contain more species that are used for firewood. Planted forests
contain more NTFP species (used for fertilizer, food, livestock
fodder, and medicine) than both primary and naturally
regenerating forests. Returning forests thus have both higher
timber and NTFP potential value per unit forest area than do
primary forests (Wilson and Rhemtulla 2016).  

 

FOREST ECOSYSTEM-SERVICE TRANSITION CURVES
Our literature review and case studies demonstrate that different
socio-economic changes yield different types of reforestation,
ultimately giving rise to different suites of ecosystem services.
These suites change and develop nonlinearly over the course of
forest transition as forests mature and grow. To describe this
development of ecosystem services coincident with reforestation,
we propose conceptual “forest ecosystem-service transition
curves” (Fig. 4), which illustrate how the type, amount, and
trajectory of how ecosystem services change over the course of
each transition type. These curves provide a framework for
visualizing the ecosystem services that are likely to result from
different types of transitions, and for estimating the long-term
impacts of a transition from primary to secondary forest cover in
different contexts. The conceptual curves presented here simplify
the variability in actual reforestation outcomes, and are not
intended to be rigorously quantitative (Norden et al. 2015).
Instead, they indicate the relative amount of a given service that
we might expect following a given type of forest transition. These
estimated outcomes are based on our summary of the literature
and consultations with leading experts in ecology, land use, cover
change, and secondary forests through the PARTNERS
reforestation research network (http://partners-rcn.org/).  

The ecosystem-service curves illustrate the ecological implications
of different forest transition types at local, national, or regional
scales (Vallet et al. 2016). At a given scale, the suite of ecosystem
services produced will depend on the dominant type of
reforestation. To examine patterns and identify the ecological
implications of these suites over time, in the next section we
estimate the global distribution of different types of reforestation.

GLOBAL DISTRIBUTION OF FOREST TRANSITION
TYPES
We estimated to what extent the new forest types (corresponding
to our forest transition types) have expanded in different countries
around the world. This analysis illustrates the relative global
extent of different forms of reforestation and, by extension, their
suites of ecosystem services. But more importantly, it pilots our
curves as a framework for evaluating the ecological effects of
forest transitions.
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Fig. 4. Forest ecosystem-service transition curves. The total
forest cover depicted in a classic forest-transition curve is
indicated by a solid line. Each panel shows conceptual curves of
how quickly a given service recovers relative to forest area for
each type of forest transition. (NTFP: nontimber forest
product)

In our analysis, we estimated the dominant form of reforestation
(plantation, agroforestry, natural, and mixed) for the 52 countries
with the greatest gross gains in forest cover from 2000 to 2012,
proportional to the national area (Table 1, Fig. 5). Plantation
reforestation was characterized by recently established tree
plantations, agroforestry by forest regeneration on nominal
agricultural lands, and spontaneous regeneration (likely owing to
economic growth) by forest regeneration in other areas. We also
defined a “mixed” reforestation class in which plantation
reforestation and either agroforestry or spontaneous regeneration
both occur at high levels (> 40%) in a given country (Table 1).
Our methodology is summarized in Appendix 1, and the final
national classification is presented in Table 1.

Prevalence of different types of regrowth globally
In general, most countries experience appreciable regrowth of
more than one forest type (Fig. 6A), which illustrates the
complexity of forest transitions. However, several trends are still
apparent with respect to regional ecological service transitions.  

The dominant reforestation types tend to group regionally (Fig.
6). Plantation forests account for most of the new forests in
regions with higher population densities (e.g., Central America,
Western Europe, Japan, parts of Southeast Asia). This pattern
would imply that timber, fibers, and short-term carbon
sequestration are likely the dominant services derived from
transitions, while biodiversity, NTFPs, and aesthetic or spiritual

values are likely to be less common. On the other hand,
plantations are often intentionally established for utilitarian
purposes and have a clear role in human-dominated landscapes,
which may increase the likelihood that they persist.  

Regions with lower population densities (e.g., the boreal northern
latitudes and South America) tend to show transitions through
spontaneous regeneration, as did the higher population density
Asia–Pacific region (Rudel et al. 2016). Spontaneous regeneration
transitions were the most common type in the global south,
generally, possibly due to high levels of rural–urban migration
throughout (Aide and Grau 2004, Güneralp and Seto 2013, Hecht
et al. 2015). This pattern contradicts the profile of the “tropical
forest transition” defined by FAO Forest Resources Assessment
data, which suggests that most tropical forest transitions occur
through plantation reforestation (Sloan and Sayer 2015). The
ecological implications of this difference are enormous; while
plantation transitions tend to yield lower biodiversity,
biodiversity in spontaneously regenerating forests can be
relatively high. That most of the countries in our analysis
experienced transitions through spontaneous regeneration is thus
good news for biodiversity, especially as these transitions occurred
disproportionately in the global south and Latin America, where
from a global perspective, forest biodiversity tends to be highest
(Aide and Grau 2004, Kreft and Jetz 2007).  

Agroforestry and mixed transitions types are most common in
Europe and in archipelagoes (Caribbean, Philippines) (Fig. 6B).
Europe has many private, small-scale forests and sustainable
forest management enterprises (Nabuurs et al. 2007, MacDicken
et al. 2015), which could explain the prevalence there. Food
production and associated services (e.g., water) are expected to
result from transitions in the Philippines and the Caribbean.  

Overall, our global analysis shows that forest transitions produce
different “types” of new forests in different contexts, which lead
to different groups of services that are geographically distributed.
Anticipating the services that will result from a given transition
type will help managers, governments, communities, and policy-
makers understand, anticipate, and plan for the present and future
services that people can expect to receive from forests transitions,
locally and globally.

CONCLUSIONS
Forest transition theory has provided a powerful framework for
describing an important and previously neglected process of
forest cover expansion. The use of a simplified metric—
undifferentiated forest cover—facilitated the wide application of
this theory (Rudel et al. 2005, Chazdon et al. 2016). However,
forest cover alone tells us little about the ecosystem services forest
transitions provide, as they are driven by a variety of social-
ecological drivers that produce different forest types with different
ecological functions, and ultimately, different ecosystem services.
Our forest ecosystem-service transition curves provide a
framework for understanding this global forest change that goes
beyond coarse estimates of forest cover (Fig. 1, Fig. 4). This
framework illustrates how the benefits of reforestation change
over time as forests are cleared and return in different contexts.
Linking underlying social and ecological conditions with the
different new forests they produce and the associated levels of
goods and services can help planners and policy-makers promote
and adapt different strategies for forest recovery.  
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Table 1. The 52 countries with the highest national proportional gross forest cover gain, and their dominant forest transition type. The
dominant forest transition type was identified by the type of forest cover that accounted for most of the recovery (> 50%). When no
forest type made up more than 50%, the transition was recorded as “mixed”. Since FAO forest resource assessment estimates of planted-
forest gain are independent of Hansen estimates, forest gains through different pathways add to more than 100% when planted forest
gains occur.
 

Forest transition type determination

Country
Gross forest gain

(km2)

Gross forest
gain (as % of
national area)

Agroforestry gain
(as % of gross

forest gain)

Natural
regeneration gain

(as % of gross
forest gain)

Plantations gain
(as % of gross

forest gain)

Forest transition type

Russia 162292 0.98 19.0 81.0 10.0 Natural regeneration
United States 138082 1.52 10.0 90.0 20.3 Natural regeneration

Canada 91071 1.07 21.0 79.0 34.5 Natural regeneration
Brazil 75866 0.9 15.9 84.1 29.6 Natural regeneration

Indonesia 69701 3.7 30.2 69.8 -1.8 Natural regeneration
Malaysia 25798 7.86 39.0 61.0 5.7 Natural regeneration
Sweden 15281 3.71 1.7 98.3 3.7 Natural regeneration
Chile 14611 1.59 9.6 90.4 30.7 Natural regeneration

Finland 10849 3.56 2.8 97.2 87.4 Mixed reforestation
South Africa 8313 0.7 5.0 95.0 4.7 Natural regeneration
New Zealand 7102 2.68 6.5 93.5 0.4 Natural regeneration

Vietnam 5643 1.75 38.8 61.2 259.1 Plantation
France 5062 0.92 47.0 53.0 7.9 Natural regeneration
Poland 5041 1.65 46.5 53.5 48.4 Mixed reforestation

Thailand 4992 0.95 70.5 29.5 175.3 Plantation
Uruguay 4965 2.95 13.7 86.3 62.2 Mixed reforestation

Spain 4482 1.03 33.7 66.3 39.0 Natural regeneration
Madagascar 4051 0.69 18.6 81.4 35.3 Natural regeneration

Belarus 3755 1.8 48.5 51.5 43.9 Mixed reforestation
Ukraine 3529 0.62 53.8 46.2 25.8 Agroforestry

Laos 3379 1.48 8.4 91.6 37.0 Natural regeneration
Portugal 2866 3.22 14.9 85.1 25.5 Natural regeneration

Philippines 2726 0.92 53.9 46.1 9.2 Agroforestry
Germany 2582 0.74 30.1 69.9 0.0 Natural regeneration

Japan 2570 0.72 13.6 86.4 -1.9 Natural regeneration
Ivory Coast 2298 0.73 24.6 75.4 33.1 Natural regeneration

Cuba 2271 2.1 88.1 11.9 63.4 Mixed reforestation
Latvia 1857 2.93 26.6 73.4 -43.6 Natural regeneration

Romania 1530 0.66 37.9 62.1 29.4 Natural regeneration
Hungary 1350 1.46 76.0 24.0 76.3 Mixed reforestation

Czech Republic 1331 1.69 36.4 63.6 14.3 Natural regeneration
Ireland 1238 1.75 3.7 96.3 84.0 Mixed reforestation

Lithuania 1226 1.93 43.0 57.0 48.9 Mixed reforestation
Cambodia 1096 0.62 19.4 80.6 -9.1 Natural regeneration
Guatemala 1094 1 39.8 60.2 73.1 Mixed reforestation

Liberia 1084 1.12 11.6 88.4 0.0 Natural regeneration
Estonia 894 2.05 25.6 74.4 -2.2 Natural regeneration
Austria 658 0.78 17.3 82.7 0.0 Natural regeneration

Swaziland 603 3.47 3.3 96.7 -16.6 Natural regeneration
Slovakia 523 1.06 22.4 77.6 1.9 Natural regeneration

Sierra Leone 451 0.62 13.6 86.4 15.5 Natural regeneration
Dominican Republic 393 0.81 71.6 28.4 0.0 Agroforestry

Costa Rica 382 0.74 54.9 45.1 99.5 Plantation
Belgium 373 1.24 26.3 73.7 -32.2 Natural regeneration

Denmark 322 0.79 59.6 40.4 142.9 Plantation
Solomon Islands 203 0.74 9.2 90.8 -4.9 Natural regeneration

Fiji 119 0.67 26.8 73.2 395.0 Plantation
Brunei 88 1.54 25.0 75.0 22.7 Natural regeneration

Jamaica 68 0.62 65.6 34.4 -14.7 Agroforestry
Puerto Rico 64 0.72 68.5 31.5 0.0 Agroforestry
Mauritius 30 1.56 82.8 17.2 0.0 Agroforestry

Luxembourg 27 1.04 40.8 59.2 0.0 Natural regeneration

https://www.ecologyandsociety.org/vol22/iss4/art38/


Ecology and Society 22(4): 38
https://www.ecologyandsociety.org/vol22/iss4/art38/

Fig. 5. Gross increase in forest cover as a percentage national area, for the top 52 countries, 2000–2012.
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We have provided an overview of forest and ecosystem-service
transitions, combined with detailed local examples. The “forest
ecosystem-service transition” concept will only become more
rigorous and applicable for describing services gained and lost as
global data sets are improved and systematically linked to detailed
case studies. Our global analysis of regionally dominant
reforestation types was limited by a lack of consistent global data
sets that differentiate between secondary forest types (Hansen et
al. 2013, Chazdon et al. 2016). This limitation highlights a need
for global spatial data on agroforestry, which currently do not
exist, and for better remote sensing products generally that
discriminate between new forest types. Although some techniques
exist to identify changing forest types over time (Fagan et al. 2015),
they have been applied only at relatively small scales. Combining
satellite-based indicators of ecological function with census
statistics on land use and human population, or with participatory
remote sensing methods, are potential avenues to yield a more
rigorous classification of forest types (Chazdon et al. 2016). A
complementary and promising (but labor-intensive) avenue is
visually interpreting agroforestry and planted forests using high-
resolution satellite imagery, as has been conducted at regional
scales (Miettinen and Liew 2010) and for select countries (World
Resources Institute Global Forest Watch http://www.
globalforestwatch.org/).  

Case studies provide nuanced analyses that integrate diverse
economic and cultural factors, show complex patterns of forest
recovery, and provide corresponding data on ecosystem services,
as we have demonstrated. Meta-analyses of case studies could
potentially refine our ecosystem-service transition models. But to
date, case studies that track multiple services over time are rare,
and case study data are often incomplete. We found many cases
where one or a couple of ecosystem services were quantified, but
the scope for quantitative comparisons was limited by a lack of
consistency among cases in terms of which services were
measured, by which metrics, and relative to which baseline. Case
studies are needed that (1) examine a broad array of ecosystem
services produced by different types of secondary forests at
different ages, and (2) use comparable sets of metrics to assess
these services. The forest ecosystem-service framework could
serve as a guide to design studies at specific locations that
represent important cases of interest.  

Despite data limitations, our analysis illustrates why and how
forest transitions differ from each other, socially, ecologically, and
regionally. The proportion of different forms of reforestation and
their corresponding suites of ecosystem services vary dramatically
among different world regions. According to our framework and
global analysis, biodiversity is likely relatively high (relative to
other forms of reforestation) in the global south, and in particular,
Latin America (although it is still lower than in the primary forests
that were cleared). The production of timber, carbon, and fibers
is likely high in plantation transition regions in the Western
Europe and the Asia–Pacific regions, perhaps in part because the
scarcity of these services is felt more acutely in these areas of high
population density (Mather 1992, Rudel et al. 2005). A wide range
of services likely occurs in the Philippines, Caribbean, and other
parts of Europe, areas which have mixed transitions and
agroforestry transitions.  

Our case studies show that patterns in the types of new forests
reflect differences in underlying social, economic, and ecological

conditions. This creates both challenges and advantages in terms
of both the ease of promoting forest recovery (through education,
policies, and management), and in anticipating the suite of
ecosystem services they ultimately produce (Sloan 2015, 2016).
However, new forests and forest transitions provide an important
opportunity to partially reverse historical environmental
degradation. Because different forest transition types enable
different cobenefits, policy-makers and practitioners can use our
framework to guide choices about what types of transitions to
promote to achieve specific end goals at regional and global scales,
as in the context of REDD+ or multilateral reforestation
initiatives like the Bonn Challenge.  

Our study points to a particular win-win in that forest transitions
are likely to enhance soil and watershed conservation, since new
forests tend to be located in riverine and steep areas where
competition with industrial agriculture is minimized. This pattern
occurs both because of intentional actions (i.e., establishing
plantations or forests to protect water supplies) and as a
byproduct of agricultural intensification (i.e., when farming
technologies are introduced and marginal land is abandoned),
and it can be strategically built upon elsewhere.  

With respect to planning for different services, carbon
sequestration will be comparatively lower in agroforestry
transitions, whereas biodiversity recovery is likely to be lower in
industrial plantations. Naturally regenerating forests usually have
highest biodiversity and relatively large biomass but tend to
provide less provisioning and economically valuable services.
Understanding the tendency for different socio-economic drivers
to produce different forest-transition types provides us with an
opportunity to promote and manage new forests in a way that
meets the needs of populations, and to contribute to
environmental goals, such as mitigating climate change and
biodiversity loss. We encourage other researchers to elaborate on
and test the forest ecological-service transition curves we have
outlined, and to develop this framework for policy application.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/9615
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Appendix 1. Categorizing countries by forest transition (FT) type. 

The aim of this analysis was to provide and pilot a framework for evaluating the 

ecological impacts of forest transitions, which will become more useful as remote sensing 

technology improves our ability to distinguish between different types of secondary forest. To 

understand where different types of transitions are occurring, and the relative scales at which 

different packages of ecosystem services are unfolding globally, we classified countries with 

high levels of reforestation (Figure 2) according to their apparent predominant forest transition 

type. First, we used satellite estimates from the Hansen dataset (Hansen et al. 2013) to select the 

50 countries with the greatest national proportional gross forest cover gain between 2000 and 

2012. These 50 countries included all continents (except Antarctica) and several biomes (Table 

1).   We then categorized each as undergoing either a forest plantation transition, an agro-forestry 

transition, or a spontaneous regeneration transition. Because a number of countries had a 

relatively even distribution of two or more forest types, we added a “mixed” forest transition 

category with an even combination of plantations, agro-forestry or spontaneous regrowth. 

Countries were group into one of these four types as follows: A national “forest plantation 

transition” occurred where more than >50% of the gross forest cover gain according to Hansen et 

al. (2013) was attributed to an increase in planted forest area from 2000-2010 according the FAO 

FRA 2010 (FAO, 2010). Planted forests range from monotypic industrial plantations to semi-

natural forests propagated by assisted reforestation (FAO, 2010).  An “agroforestry transition” 

occurred where >50% of gross forest cover gain according to Hansen et al. (2013) occurred 

within “agricultural” and “agricultural mosaic” lands of 2001 as mapped by the MODIS 

MCD12Q1 global-land cover classification (Friedl et al. 2010), following the approach of Zomer 

et al. (2014).  The label of “spontaneous regeneration transition” was applied to any country not 

satisfying these criteria for a forest-plantation or agro-forestry FT.  In general, the spontaneous 

forest transition label describes natural forest gain dispersed in large part outside agricultural 

landscapes.  The label of “mixed” forest transition was applied where forest cover was evenly 

split between two or more types of cover  

In the absence of better global data, agroforestry was necessary defined here simply as an 

increase in forest cover on agricultural lands, as per Zomer et al. (2014).  In practice, it is 

ambiguous whether the agroforest extent thus calculated comprises forests and fallows managed 

for agriculture (i.e., agroforestry) on still-occupied agricultural lands, or by natural regrowth on 



abandoned agricultural lands. In the latter case, this would mean our agroforestry classification 

would be conflated with a spontaneous regeneration transition in contexts of widespread 

agricultural abandonment (Rudel et al. 2000).  This data limitation speaks to the need for a 

comprehensive global database of agroforestry, which at present time does not exist. Our 

estimation here represents an alternative used elsewhere in the literature (Zomer et al. 2014).  
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