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ABSTRACT. Expansion of the wildland–urban interface (WUI) and the increasing size and number of wildfires has policy-makers
and wildfire managers seeking ways to reduce wildfire risk in communities located near fire-prone forests. It is widely acknowledged
that homeowners can reduce their exposure to wildfire risk by using nonflammable building materials and reducing tree density near
the home, among other actions. Although these actions can reduce the vulnerability of homes to wildfire, many homeowners do not
take them. We examined the influence of risk factors on homeowners’ perceived wildfire risk components using a survey of WUI
homeowners in central Oregon (USA) and biophysical data that described wildfire risk as predicted by wildfire simulation models, past
wildfire, and vegetation characteristics. Our analysis included homeowners’ perceptions of the likelihood of wildfire and resulting
damage, and examined how these factors contribute to homeowners’ likelihood to conduct mitigation actions. We developed an empirical
model of homeowners’ risk perceptions and mitigation behavior, which served as input into an agent-based model to examine potential
landscape and behavior changes over 50 years. We found homeowners’ wildfire risk perceptions to be positively correlated with hazardous
conditions predicted by fuel models and weakly predictive of mitigation behavior. Homeowners’ perceived chance of wildfire was
positively correlated with actual probability of wildfire, while their perceived chance of damage to the home was positively correlated
with potential wildfire intensity. Wildfire risk perceptions also were found to be correlated with past wildfire experience. Our results
suggest that homeowners may be savvy observers of landscape conditions, which act as “feedbacks” that enhance homeowners’ concerns
about wildfire hazard and motivate them to take mitigation action. Alternatively, homeowners living in hazardous locations are somehow
receiving the message that they need to take protective measures. Mitigation compliance output from the agent-based model suggests
that completion of mitigation actions is likely to increase over 50 years under various scenarios.
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INTRODUCTION
The area of land burned by wildfire in the United States has
increased dramatically in recent years, particularly in the west,
where high fuel loads have also contributed to more severe fires
(USDA Forest Service 2009, Short 2015). The number of private
homes located in forested areas and in the wildland–urban
interface (WUI) has also increased, bringing greater numbers of
people and structures into fire-prone landscapes (Radeloff  et al.
2005). The increasing size and occurrence of wildfires, coupled
with greater numbers of houses at risk, are leading factors that
are causing suppression expenditures to increase (Liang et al.
2008), which have totalled more than US$1 billion annually for
13 of the past 15 years among the federal agencies alone (National
Interagency Fire Center 2014). Managers and policy-makers are
thus searching for ways to reduce wildfire risk in fire-prone areas.
Although the total area of land owned by individual homeowners
is a small fraction of most landscapes compared to other types
of landowners—federal and private industrial, for example—
privately owned home sites tend to receive a disproportionately
large share of wildfire suppression effort when wildfires occur
(USDA OIG 2006, Gebert et al. 2007, Liang et al. 2008).  

However, suppressing active wildfires is not the only way to save
homes and lives. In fact, Calkin et al. (2014) argue that the
emphasis on fire suppression has exacerbated the WUI fire
problem by framing it as a wildfire control failure “instead of
focusing on the susceptibility of structures to the inevitability of
wildfire exposure.” Private homeowners can undertake effective

actions at the home site to mitigate wildfire risk, such as using
fire-resistant building materials, clearing roofs and gutters of tree
needles and debris, and reducing vegetation around the home, all
of which reduce the possibility of potential damages and losses
(GAO 2005). Indeed, home ignitability—something a
homeowner can influence through such mitigation actions—is a
principal determining factor in private property losses owing to
wildfire (Syphard et al. 2014). For this reason, policy-makers and
local officials have emphasized the importance of increasing such
actions among homeowners located in fire-prone areas.  

A number of studies have suggested that homeowners located in
fire-prone wildland–urban interface areas tend to understand that
their homes are at risk of wildfire and do conduct at least some
risk mitigation activities as a result (e.g., Nelson et al. 2004,
Brenkert-Smith et al. 2006, McCaffrey 2008, Steelman 2008, Kyle
et al. 2010, Dickinson et al. 2015). These findings appear to be
consistent across geographic locations and different research
methodologies (McCaffrey and Olsen 2012). However, many
homeowners still do not take mitigation actions; hence, efforts to
better understand what factors influence mitigation behavior
continue.  

We build on previous research pertaining to the wildfire risk
perceptions and mitigation activities of homeowners in fire-prone
landscapes by examining the role of biophysical (or “modeled”)
wildfire risk factors in influencing wildfire risk perceptions and
risk mitigation behaviors. We use the word modeled as others have
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used the word “objective” in prior research efforts—to describe
risk factors that are based on modeled biophysical variables (e.g.,
Fischer et al. 2014). Specifically, we (1) identify biophysical and
socioeconomic factors that influence homeowners’ wildfire risk
perceptions and their likelihood to mitigate risk, and (2)
demonstrate how such information can be used to anticipate
where homeowners are mostly likely to conduct risk mitigation
activities. Toward this second objective, our analysis provides
empirical parameters to an agent-based model (Envision) for
predicting homeowners’ mitigation responses to hypothetical
wildfire risk management scenarios, as part of a coupled human
and natural systems (CHANS) study examining the management
of wildfire risk in a fire-prone landscape of central Oregon (USA)
(Spies et al. 2014, Spies et al. 2017). This approach of employing
an agent-based model that combines social and biophysical data
allows us to examine possible future trends of homeowner
mitigation behavior in response to the changing ecological
landscape under different climate and management scenarios. To
our knowledge, such an attempt at predicting future mitigation
behavioral trends has not been attempted. Data to address our
objectives were gathered using a survey of homeowners living in
WUI locations in central Oregon, which described their
perceptions of wildfire risk, including the likelihoods of both
wildfire and resulting damage to the home, as well as factors
hypothesized to influence homeowners’ propensity to conduct
mitigation activities. We combined these data with biophysical
data that described modeled wildfire risk, past wildfire, and
vegetation characteristics to estimate an empirical model of
homeowners’ perceptions of wildfire risk components, and their
combined influence on mitigation behavior. We used this
empirical model to develop a predictive equation that described
homeowners’ likelihoods to conduct risk mitigation activities,
which served as a decision rule in an agent-based model to account
for homeowners’ responses to landscape conditions and wildfires
under hypothetical forest management and climate scenarios. Our
results have implications for anticipating which homeowners are
most likely to conduct mitigation activities, devising policy or
programmatic efforts to encourage greater mitigation activity
among homeowners not yet engaged, and developing approaches
for predicting future coupled homeowner and landscape behavior.

Conceptual foundation
For most hazards, including wildfire, higher perceptions of risk
among individuals generally are believed to be associated with
individuals’ greater desire to reduce their exposure to risk (e.g.,
McCaffrey 2006). This largely has been confirmed by studies that
have examined landowners’ and homeowners’ self-reported
perceptions of their own general level of exposure to wildfire risk
(McCaffrey et al. 2011, Champ et al. 2013, Fischer et al. 2014,
Dickinson et al. 2015). Protection Motivation Theory also
suggests that individuals are more likely to mitigate risk for
threatening events based on their perceptions of the probability
and severity of an event and associated outcomes (risk
perceptions) and their ability to take protection actions (Rogers
1983). This perspective is reflected in studies that have examined
perceived wildfire risk and its influence on mitigation behavior in
terms of individual risk components: wildfire likelihood and
potential wildfire severity (Hall and Slothower 2009, McCaffrey
et al. 2011, McNeill et al. 2013, Dickinson et al. 2015). However,
recent research also suggests merit in considering the role of

modeled or objective wildfire risk in shaping wildfire risk
perceptions (Fischer et al. 2014).

Wildfire risk
Risk generally is defined as the multiplication of the probability
of an event occurring with the negative outcomes of that event if
it occurred (Kasperson et al. 1988, Renn et al. 1992). In the case
of wildfire, objective risk as described by fire experts is comprised
of the technical probability of a wildfire occurring and the severity
of the wildfire if  it occurs (Ager et al. 2013). However, also relevant
from a public policy standpoint is perceived risk, which is
comprised of an individual’s perceived probability of a wildfire
occurring and the perceived severity of the wildfire if  it occurs
(Martin et al. 2009). Homeowners tend to consider the wildfire
risk to their property as lower than the wildfire risk to surrounding
landscapes in fire-prone areas (McCaffrey 2008). Overall,
although public perceptions of wildfire risk maybe multifaceted
and complex, it has been suggested that many managers believe
that homeowners do not take risk mitigation actions simply
because they misunderstand biophysical risk (Gordon et al. 2012).
Several factors have been found to influence individuals’ wildfire
risk perceptions, including modeled measures of biophysical risk.
In one study of private nonindustrial forest landowners in eastern
Oregon, survey respondents’ wildfire risk perceptions were found
to be correlated with actual hazardous fuel conditions on the
ground as measured by the potential for crown fire in the vicinity
of respondents’ parcels (Fischer et al. 2014), as well as past
experiences with wildfire and other factors. Others have also
found positive relationships between past wildfire experiences and
risk perception (Cohn et al. 2008, Gordon et al. 2012). Contact
with certain information sources also has been correlated with
perceived wildfire risk. Specifically, the local fire department,
county fire specialists, and neighbors and friends as information
sources are positively associated with an increase in homeowners’
perceived likelihood of wildfire, while only neighbors and friends
as information sources are positively associated with an increase
in homeowners’ perceived consequences from wildfire (Brenkert-
Smith et al. 2013, Dickinson et al. 2015).

Factors influencing mitigation behavior
Risk perceptions alone typically are not the only factor that has
an influence on individuals’ risk mitigation decisions (Showalter
1993, Lindell and Prater 2000), and this seems to be the case with
wildfire (Cortner and Gale 1990, McCaffrey 2004). Champ et al.
(2013), for example, suggest that homeowners’ wildfire risk
perceptions and mitigation decisions are jointly determined by a
combination of characteristics pertaining to homeowners and
their home sites. Research, however, has not found a consistent
association between wildfire risk and actual mitigation behavior
on private land, with some studies finding a positive association
(e.g., Nelson et al. 2004, Martin et al. 2009, McCaffrey et al. 2011,
Brenkert-Smith et al. 2012, McNeill et al. 2013, Dickinson et al.
2015) and others finding no association or better explanations
using other variables (e.g., Nelson et al. 2005, Hall and Slothower
2009, Schulte and Miller 2010). An explanation may be in the
variety of ways that researchers have measured mitigation
behavior, ranging from a yes/no question about whether
homeowners have conducted mitigation activities generally, to
separate measurements and analysis for several individual
mitigation actions, including clearing brush near the home or
using fire-resistant building materials (Table 1). The variety of
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Table 1. Review of recent quantitative studies that modeled homeowner fire risk mitigation behavior.
 
Authors and year Study area location Survey

response
rate†

Mitigation
measurement

method‡

Tested factors influencing mitigation behavior (all
statistically significant; others were tested)

Biophysical
variables tested?

Bihari and Ryan
(2012)

Montana, Colorado,
New Mexico,
California, Florida,
New Jersey (USA)

43% Groups Community cohesion No

Brenkert-Smith et
al. (2012)

Colorado (USA) 36% Number Lot size, age, money, perceived risk, wildfire
experience, efficacy, wildfire information sources and
social interactions

No

Bright and Burtz
(2006)

Minnesota (USA) 54% Individual Membership in individualist/private property group
or nonindividualist/community-oriented property
group

No

Champ et al.
(2013)

Colorado (USA) 52% Number Wood roof, slope near home, perceived risk, income,
age, previously accessed local Firewise website,
previously owned home in an area at risk of wildfire

Yes, significant

Collins (2008) Arizona (USA) 50% Number Amenity values (prefer environment, property fire
prevention, fire suppression capability), housing
tenure, income, retirement status, length of residence,
full-/part-time residency, livelihoods depend on
forests, parcel characteristics (dwelling type and
value)

Yes, not
significant

Dickinson et al.
(2015)

Colorado (USA) 36% Groups Nearby neighbors, receiving information or talking
about fire with neighbors, perceiving neighbors’
property as having dense fuels, attending fire-specific
events or talking with a fire expert, perceived
probability of wildfire, perceived efficacy and
aesthetics of mitigation, needing more information
about mitigation

No

Hall and
Slothower (2009)

Oregon (USA) 59% Dummy Efficacy of mitigation program, general attitude
toward mitigation

No

Kyle et al. (2010) California (USA) 33% Groups Affective attachment, community tenure, place
identity, place dependence, social bonding, home
tenure

No

Martin et al.
(2009)

Colorado, Oregon
(USA)

49% Number Perceived risk, subjective knowledge, responsibility,
full-time or seasonal status, study site location

No

McNeill et al.
(2013)

Western Australia 33% Groups Method of completing survey (paper or online),
gender, age, geographic region, risk severity,
protection responsibility, warning reliability, loss of
services (water, electricity, phone)

No

Schulte and
Miller (2010)

Colorado (USA) 54% Groups Amenity values, motive based on community effort,
neighbor effect, fire-resistant construction, fire-
resistant roof, fire-resistant windows

Yes, not
significant

Wolters et al.,
personal
communication

Oregon (USA) 48–51% Number Age, education, familiarity with community wildfire
protection plan, risk perception, proximity to
wildland area, wildfire experience

No

†Overall response rate for the survey as reported by the authors. Most analyses excluded some respondents due to unanswered questions, which made
some effective response rates lower. Administration methods varied (e.g., random mail survey, internet survey, drop-off survey).
‡“Dummy” = yes or no response to a single general question about completing mitigation activities; “Individual” = yes or no response to multiple
questions about individual mitigation activities;,“Number” = number of individual mitigation activities that respondents indicated completing;
“Groups” = individual actions were lumped into similar groups and then a yes/no response, a number, or a mean of activities within groups or
categories was used.

ways researchers have measured risk perception has also likely
contributed to the range of findings.  

Another influencing factor in mitigation behavior has been
homeowners’ interactions with agencies and organizations
involved in wildfire education and outreach (Dickinson et al.
2015), including membership in forestry or fire protection
organizations (Fischer et al. 2014), participation in natural
resource-related planning efforts (Bihari and Ryan 2012),
involvement in homeowner associations in locations where

wildfire risk is a concern (McCaffrey et al. 2011), and living in
neighborhoods where wildfire mitigation programs have been
implemented (McGee et al. 2009). Broader public education and
outreach efforts also have been linked with an increased likelihood
of mitigation (Schulte and Miller 2010, McCaffrey et al. 2011).  

Lastly, the physical (i.e., age) and financial ability (i.e., income)
of homeowners to accomplish mitigation actions is another
influencing factor examined by previous research, which has
yielded mixed results (e.g., Collins 2008, 2009, McFarlane et al.
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2011, Brenkert-Smith et al. 2012, Champ et al. 2013, Fischer et
al. 2014). Additional factors found to positively influence
mitigation behavior include length of land ownership/residence
(hereafter referred to as years at property [Blanchard and Ryan
2007, Collins 2009, Fischer 2011]) and presence of local
requirements such as homeowners association rules that mandate
mitigation actions (Winter et al. 2009).

Conceptual framework and predicting future behavior
We examined homeowner mitigation behavior using a conceptual
framework informed by the literature, particularly Fischer et al.
(2014) and Champ et al. (2013), as well as Protection Motivation
Theory (Rogers 1983). Synthesizing this work, we hypothesized
that homeowners’ perceived wildfire risk is a function of factors
such as hazardous fuel conditions near the home site, as well as
the homeowners’ past experiences with wildfire, and the social
context (or networks) in which homeowners’ beliefs, attitudes,
and norms about wildfire are formed and diffused (Fig. 1). We
hypothesize that whether homeowners undertake risk mitigation
activities to reduce their exposure to wildfire risk is a function of
their perceived wildfire risk, past experiences with wildfire, social
context, and whether they are subject to any local requirements
to conduct mitigation activities. The conceptual framing thus
defines a structural model for empirically testing the influence of
various biophysical and socioeconomic factors on homeowners’
wildfire risk perceptions and their likelihood of undertaking
mitigation activities.

Fig. 1. Conceptual framework describing factors influencing
homeowners’ perceived wildfire risk and likelihood of
conducting mitigation activities.

However, our empirical application extends this conceptual
framework to account for the individual roles of modeled and
perceived wildfire risk in terms of its two principle components:
the likelihood that a wildfire could occur in the vicinity of the
home site and the likelihood of damage to the home should such
a wildfire occur (e.g., Ager et al. 2013). Following a multiplicative
view of risk (e.g., Kasperson et al. 1988, Renn et al. 1992), we
assume that homeowners’ perceived wildfire risk is the product
of their perceived likelihood of wildfire multiplied by their
perceived likelihood of damage should a fire occur, thereby
reflecting expected loss owing to wildfire. This formulation

enables an analysis of factors that influence both wildfire risk
perceptions and mitigation behaviors by allowing for the possibility
that individual risk components are influenced by different factors.
Following these hypotheses, we anticipated that future homeowner
mitigation trends will show an increase in mitigation behavior in
association with increased modeled risk (e.g., increased fuel loads,
climate change) and increased fire behavior.

METHODS

Study area
Our study area is the eastern Cascades of central Oregon, including
portions of Deschutes, Jefferson, Wasco, Klamath, and Lake
counties (Fig. 2). The study area was chosen to coincide with and
contribute to a CHANS modeling effort underway in the region
(Spies et al. 2017). The area includes steep environmental gradients
spanning cool, wet subalpine forests to high deserts covered by
juniper woodlands (Spies et al. 2014). Federal lands dominate the
ownership, but there is a diversity of other ownership types,
including private corporate, family (e.g., nonindustrial private), and
tribes. Forested residential areas have grown significantly in recent
years, likely due to the area’s scenic qualities, sunshine, and
recreation opportunities. The fire history of the region suggests that
wildfires have become more common, with wildfires often
originating in wilderness landscapes and spreading to wildland–
urban interface locations (Spies et al. 2014). These ecological and
socioeconomic circumstances combine to present numerous
challenges to landscape managers and public officials who are
tasked with protecting forest resources and homes in the region.

Fig. 2. Central Oregon study area with detail near Sunriver,
Oregon. (WUI = wildland–urban interface)

Survey of homeowners
Data describing homeowners’ wildfire risk perceptions and
mitigation activities were obtained using a public mail survey in
Deschutes, Klamath, and Lake counties in central Oregon. Small
portions of Jefferson and Wasco counties are also within the study
area, but those areas are primarily within the Warm Springs Indian
Reservation. No homeowners were identified in those areas. The
survey focused on homeowners in wildland–urban interface and
was stratified between the interface and intermix Silvis WUI

http://www.ecologyandsociety.org/vol22/iss1/art21/


Ecology and Society 22(1): 21
http://www.ecologyandsociety.org/vol22/iss1/art21/

designations (SILVIS Lab 2017). Agent-based modeling for the
broader CHANS study focused on actor groups and land areas
where wildfire risk was measurable and wildfire was transmittable
and model-able. Our survey sample therefore excluded homes in
urban areas. Also, because family forest owners were examined
as a separate group by the CHANS study, we defined our target
sample of WUI homeowners as those with properties of 2 ha or
less. A random sample of homeowners was selected by a
professional sampling company, but excluded second homes,
multihome units, and vacant homes.  

Surveys were successfully delivered to 1704 addresses using a
modified Dillman approach, which included an introductory
postcard, followed by a survey packet, a reminder postcard, and
a final survey packet (Dillman et al. 2014). Mailings were made
one week apart, and the survey packet included a cover letter, the
questionnaire, and a business reply envelope. We received 532
responses, for a response rate of 31%. This response rate is in line
with recent randomly sampled survey projects on wildfire topics
(e.g., Kyle et al. 2010, Brenkert-Smith et al. 2012, McNeill et al.
2013). To explore possible responder bias, we compared
demographic variables from our sample to those from the three
surveyed counties using U.S. Census Bureau (2015) facts. Though
we cannot detect the strength or direction of the possible influence
on our dependent variables with this comparison, it does provide
a general sense of how our participants compared to the general
local population. Our sample appeared to represent gender well,
though our sample did overrepresent older individuals, those with
a Bachelor’s degree or higher, and those in higher income brackets
(Table 2). These differences might be because this sample was
drawn from properties that are single-unit dwellings, which are
more likely to be inhabited by those with higher income and
education levels. Hence, our concern about responder bias is
minimal.

Table 2. Socioeconomic characteristics (United States Census
Bureau 2015) of the survey sample compared to study area
counties.
 
Characteristics Survey

sample
Deschutes

County
Klamath
County

Lake
County

% Female 46.7 50.7 50.0 46.9
% Population 65 years or older 41.6 17.4 18.7 22.7
% Bachelor's degree or higher 47.3 31.0 19.7 18.6
% Median household income
greater than US$50,000

63.1 $50,209† $39,627† $33,611†

†Mean values

The survey questions asked respondents about their perceptions
of wildfire risk, recent mitigation activities, experience with past
wildfires, contact with individuals and groups regarding wildfire
and mitigation information, and socioeconomic and
demographic variables. Respondents were asked two questions of
interest:  

1. Considering the forests closest to your home, in your
opinion, what is the chance of wildfire of any severity in the
next 5 years? 

2. If  a wildfire were to occur in the forests closest to your home,
in your opinion, what is the chance it would damage your
property or home? 

For both questions, respondents were asked to record their
answers using a percentage scale ranging from 0 to 100%. The
responses to these questions were used to develop two response
variables: CHANCE OF WILDFIRE and CHANCE OF
DAMAGE.  

Another set of 12 questions asked respondents about any
mitigation actions they have taken. We asked this in two ways.
One question asked respondents to indicate “yes” or “no” whether
they had taken any of several “Firewise” activities within the last
5 years to protect their property and home from wildfire, including
“planting fire-resistant plants, using non-flammable building
materials, pruning tree branches within 85 feet (25.9 m) of the
home, reducing the density of trees within 100 feet (30.5 m) of
the residence, as well as other activities” to reduce fire risk near a
home. This variable is the primary mitigation variable used in the
body of this manuscript. A following set of 11 questions asked
respondents to indicate “yes” or “no” whether they had
participated in specific mitigation activities listed individually,
including general planning activities (e.g., preparing a home
evacuation plan), community activities (e.g., attending
community-based meetings related to wildfires), property
protection activities (e.g., reducing tree density within 100 feet
[30.5 m] of your home), and home protection activities (e.g.,
stacking firewood at least 30 feet [9 m] from the home). Our focus
is on property and home mitigation, so we examined only the
seven variables in those categories. Additional data describing
biophysical conditions in the vicinity of sampled homeowners
were developed by geo-locating survey respondents’ addresses on
GIS layers that described tree density estimations (TREES PER
HECTARE) from the Gradient Nearest Neighbor (GNN) Forest
Structure Model (Ohmann and Gregory 2002), and output from
a wildfire model that described burn probabilities and intensities
(Ager et al. 2013) (see Appendix 1).

Empirical model
There are challenges with modeling homeowner wildfire risk
mitigation behavior, including reliance on self-reporting to assess
compliance. Each mitigation activity is a categorical variable,
usually with a “yes” or “no” response. Creating an overall
mitigation measure is then done in several ways. There are four
general approaches that researchers have employed to measure
homeowner wildfire risk mitigation activity using regression
models (Table 1): dummy, number, individual, and group. The
dummy method uses a dummy variable that indicates whether a
survey respondent has taken any one of several mitigation actions.
Although straightforward, this approach treats all mitigation
actions equally (e.g., cleaning gutters is equal to installing a metal
roof). Another approach is to estimate mitigation as a number of
individual mitigation actions a given survey respondent has taken,
such that a respondent who has taken two actions (e.g., cleaning
gutters and planting fire-resistant vegetation) is treated as having
exerted twice as much mitigation effort as a respondent who has
taken a single action (e.g., installing a metal roof). An advantage
of this number approach is that it arguably provides a finer metric
of increasing mitigation effort than a simple dummy variable.
However, such an interpretation necessarily assumes that
homeowners all face equal opportunities regarding mitigation.
For example, if  the number is based on whether survey
respondents cleaned gutters, planted fire-resistant vegetation, or
installed a metal roof, whether or not a respondent could earn a
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number of “3” would depend in part on whether they even had
any gutters to clean, a desire to plant any vegetation, and a
nonmetal roof that they could replace. Some homeowners may
own homes that lack gutters, some may desire little in the way of
landscaping, and some may have purchased their homes with a
metal roof already installed. The individual method estimates
behavior for each of several activities individually (i.e., a separate
regression model is built for each specific mitigation action). A
shortcoming is that findings reflect factors that influence
individual actions and not mitigation behavior more generally.
The group method lumps individual actions into similar
groupings and then uses either a yes/no response, number of
actions, or means of activities within the groups to examine
mitigation behavior. Depending on how those measures occur
within the groups, this approach could treat all actions equally
and/or assume all homeowners have equal opportunities. No
method is clearly superior or capable of discerning some of the
fine details of mitigating. For our work, the choice of method
was guided by the CHANS model requirements, though we also
chose to employ two methods in order to broaden our ability to
address several of the limitations listed previously in this
paragraph. Our primary method was to examine mitigation as a
dummy variable, though we also tested an alternative model that
examined mitigation as the number of activities conducted, to
further explore and confirm our findings.  

In the broader agent-based modeling research context of this
study, our analysis was intended to serve in developing a predictive
equation for describing the likelihood that homeowners would
conduct any wildfire risk mitigation activities to the home site. In
this case, neither the agent-based model (Envision) (Spies et al.
2017) nor the wildfire simulation models integrated into Envision
could distinguish between different mitigation actions
homeowners might take. Rather, these models viewed mitigation
effort by homeowners as an “all or nothing” discrete variable. For
this reason, we elected to examine survey respondents’ mitigation
efforts by using a simple dummy variable approach. However, in
Appendix 2, we provide estimation results of an alternative
regression model using a count approach.  

Our empirical model tested the influence of factors hypothesized
to influence homeowners’ wildfire risk perceptions and their
likelihood of conducting mitigation activities. Following and
expanding on the general structure developed by Champ et al.
(2013), we assumed that homeowners’ perceptions of both the
likelihood of wildfire (CHANCE OF WILDFIRE*) and the
likelihood of damage (CHANCE OF DAMAGE*) can be
described by sets of explanatory variables x1 and x2, respectively,
as: 

  
CHANCE OF WILDFIRE* = α�x� + ε�  (1) 

 
CHANCE OF DAMAGE* = α�x� + ε�  (2) 

 PERCEIVED RISK* = CHANCE OF WILDFIRE*                                             ∗ CHANCE OF DAMAGE*  
(3) 

 
MITIGATION* = α#x# + βPERCEIVED RISK* +ε�  (4) 

 Logit(CHANCE OF WILDFIRE))
= ln , CHANCE OF WILDFIRE)1 − CHANCE OF WILDFIRE)

. 
 

(5) 

 Logit(CHANCE OF DAMAGE))
= ln , CHANCE OF DAMAGE)1 − CHANCE OF DAMAGE)

. 
 

(6) 

 
Prob(MITIGATION = 1) = 3 e567689:;<=;>?;@ <>AB∗

1 + e567689:;<=;>?;@ <>AB∗C 
 

(7) 
 

Pr(MITIGATION) = EF
�8EF 

 
(8) 

 x = 1.106 + (1.687 ∗ WILDFIRE WITHIN NEIGHBORHOOD)+ (2.154 ∗ CHANCE OF WILDFIRE∗ CHANCE OF DAMAGE)  
(9) 

 
CHANCE OF WILDFIRE = EL

�8EL 
 

(10) 
 

CHANCE OF DAMAGE = EM
�8EM 

 
(11) 

           y = 0.735 + (209.235 ∗ BURN PROBABILITY)             + (1.747 ∗ WILDFIRE WITHIN MILES)                              + (1.322 ∗ PRESCRIBED BURN WITHIN MILES)  
(12) 
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where α1 and α2 are vectors of unstandardized estimated
coefficients, and ε1 and ε2 are error. We assumed that the likelihood
of wildfire and the likelihood of damage constitute the two
principle components of wildfire risk (Brenkert-Smith et al.
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where the vector α3 and β are unstandardized estimated
coefficients and ε3 is error. The model structure accounts for
potential joint determination of perceived wildfire risk and
mitigation behavior suggested by Champ et al. (2013), while
enabling examination of factors that influence the individual
components of perceived wildfire risk.  

We assumed that survey respondents’ wildfire risk perceptions are
reflected in the dependent variables CHANCE OF WILDFIRE
and CHANCE OF DAMAGE, and we used them in a set of
regression equations to represent the structural model terms
CHANCE OF WILDFIRE* and CHANCE OF DAMAGE*.
Because the likelihood variables CHANCE OF WILDFIRE and
CHANCE OF DAMAGE are both confined to values between
0 and 100%, we applied a logit transformation to each variable
as: 
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where ln is the natural logarithm. We used this empirical structure
to estimate ordinary least squares regression equations that
described survey respondents’ perceptions of the likelihood of
wildfire burning near their home within the next 5 years
(CHANCE OF WILDFIRE) and the likelihood that such a
wildfire would damage their property or home (CHANCE OF
DAMAGE) as functions of biophysical and socioeconomic
factors.  

To examine mitigation behavior, we constructed the dependent
variable MITIGATION as a binary that represented whether each
respondent answered “yes” or “no” to completing Firewise
activities over the previous 5 years, with 0 indicating no activity
and 1 indicating activity. Assuming that the error term is
logistically distributed implies a binomial logit model: 
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where e is the base of the natural logarithm (Greene 2012:688).  

To account for the influence of respondents’ wildfire risk
perceptions on their risk mitigation actions, we computed the
variable PERCEIVED RISK as the product of CHANCE OF
WILDFIRE and CHANCE OF DAMAGE and used it as an
explanatory variable in the mitigation estimated equations. We
estimated two different logit models that described survey
respondents’ mitigation activities (MITIGATION). One version
was based on PERCEIVED RISK variable values computed from
the survey respondent-reported values for the expected loss
variables CHANCE OF WILDFIRE and CHANCE OF
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Table 3. Descriptions of dependent and independent variables examined in the empirical models (N = 284).
 
Variables drawn from the survey Definition Minimum Mean Maximum

CHANCE OF WILDFIRE Respondents’ self-reported perception of the chance a wildfire will burn
near their home in the next 5 years

0.000 0.678 1.000

CHANCE OF DAMAGE Respondents’ self-reported perception of the chance a wildfire, if  it
occurs, will damage their property or home within the next 5 years

0.000 0.314 1.000

PERCEIVED RISK Variable equal to respondents’ self-reported “chance of wildfire” ×
“chance of damage”

0.000 0.230 1.000

MITIGATION 1: Respondent reported mitigation activity within the past 5 years; 0:
otherwise

0.000 0.768 1.000

WILDFIRE WITHIN MILES 1: Respondent reported experiencing wildfire within several miles of
their parcel within the past 5 years; 0: otherwise

0.000 0.718 1.000

WILDFIRE WITHIN
NEIGHBORHOOD

1: Respondent reported experiencing wildfire within their neighborhood
within the past 5 years; 0: otherwise

0.000 0.158 1.000

PRESCRIBED BURN WITHIN
MILES

1: Respondent reported experiencing prescribed fire within several miles
of their parcel within the past 5 years; 0: otherwise

0.000 0.718 1.000

PRESCRIBED BURN NEAR
NEIGHBORHOOD

1: Respondent reported experiencing prescribed fire just outside their
neighborhood within the past 5 years; 0: otherwise

0.000 0.264 1.000

ADVICE: FAMILY OR
NEIGHBOR

1: Respondent reported advice from family or neighbors about
addressing wildfire; 0: otherwise

0.000 0.430 1.000

ADVICE: LOCAL
GOVERNMENT

1: Respondent reported advice from city or county government or fire
department about addressing wildfire; 0: otherwise

0.000 0.518 1.000

ADVICE: LOCAL FIRE
AWARENESS GROUP

1: Respondent reported advice from local fire awareness group about
addressing wildfire; 0: otherwise

0.000 0.285 1.000

PROPERTY OWNER 1: Respondent reported that they owned the property; 0: rented 0.000 0.915 1.000
YEARS AT PROPERTY Number of years respondent reported living at residence 0.750 13.099 60.000
AGE Respondents’ self-reported age 24.000 58.091 86.000
COLLEGE-EDUCATED 1: Respondent reported that they possessed a college degree; 0:

otherwise
0.000 0.511 1.000

HOMEOWNERS
ASSOCIATION RULES

1: Respondent reported that their homeowners association or
subdivision has landscaping and building rules to protect against fire; 0:
otherwise

0.000 0.317 1.000

Variables drawn from wildfire or
landscape models

Definition Minimum Mean Maximum

BURN PROBABILITY Annual likelihood (%) of burning given a random ignition in the study
area (Ager et al. 2013), averaged within a 1-km radius of the parcel
center

0.000 0.257 1.070

CONDITIONAL FLAME
LENGTH

Average flame length (m) if  a fire occurs (Ager et al. 2013), averaged
within a 1-km radius of the parcel center

0.001 2.566 9.642

TREES PER HECTARE Number of trees per hectare within a 1-km radius 0.000 150.46 1069.74

DAMAGE. The second version was based on the values of
CHANCE OF WILDFIRE and CHANCE OF DAMAGE
predicted using the estimated coefficients reported in Table 5. This
second version controlled for potential simultaneity in the
relationship between survey respondents’ perceptions of the
likelihood of wildfire and damage and their propensity to conduct
mitigation activities, and it distinguishes between the effects each
explanatory variable may have on these.

Explanatory variables
Survey and other data were used to develop explanatory variables
that were hypothesized to influence homeowners’ perceptions of
the chance of wildfire near their property, the chance of damage
to their home, and their likelihood to have conducted any
mitigation activities (Table 3). We expected that respondents’ past
experiences with wildfire near their homes (WILDFIRE
WITHIN MILES, WILDFIRE WITHIN NEIGHBORHOOD)
would be positively correlated with both respondents’ perceptions
of the chance of wildfire and chance of damage to their homes
in the event of wildfire, as well as their propensity to conduct

mitigation activities. We also expected that respondents’ past
experiences with prescribed burning near their homes
(PRESCRIBED BURN WITHIN MILES, PRESCRIBED
BURN NEAR NEIGHBORHOOD) would be correlated with
their perceptions of the chance of wildfire and damage. However,
our expectation of the potential direction of this influence was
ambiguous. On the one hand, by reducing forest fuel, evidence of
prescribed burning could lead some respondents to perceive lower
chances of wildfire and damage relative to respondents who did
not report prescribed burning near their homes, which suggested
a negative relationship. On the other hand, the very fact that
prescribed burning is deemed necessary by public officials to
reduce wildfire hazard could lead other respondents to perceive
higher chances of wildfire and damage relative to respondents
who did not report prescribed burning near their homes, which
suggested a positive relationship.  

We developed additional biophysical variables to approximate
survey respondents’ exposure to wildfire risk (Table 3). The
variables BURN PROBABILITY and CONDITIONAL
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FLAME LENGTH describe the wildfire likelihood and potential
intensity within a 1-km radius of each respondent’s home. These
two variables were developed using the wildfire simulation model
FSIM and methods described by Finney et al. (2011), which
generates wildfire scenarios for a large number of hypothetical
wildfire seasons and incorporates fire and weather history data.
Fuel loads for these wildfire simulations were obtained using the
national LANDFIRE data grid (Rollins 2009). For additional
description of how BURN PROBABILITY and CONDITIONAL
FLAME LENGTH were developed, see Appendix 1. TREES
PER HECTARE, which was derived from the GNN Forest
Structure Model (Ohmann and Gregory 2002), describes the
average tree density within a 1-km radius of each survey
respondent’s home, as a proxy measure of the presence of forest
fuel that homeowners may perceive. Following with previous risk
perception research (e.g., Brenkert-Smith et al. 2006, McCaffrey
2008, Martin et al. 2009), we expected that these variables might
have a positive influence on respondents’ wildfire risk perceptions
and mitigation likelihood, suggesting that respondents are
making risk assessments in line with experts’ assessments
(reflected in the model output).  

We also sought to test the influence of respondents’ contacts with
various individuals, agencies, and organizations from which
respondents may receive advice concerning their exposure to
wildfire risk and approaches to mitigating risk. We tested these
potential influences using the explanatory variables ADVICE:
FAMILY OR NEIGHBOR, ADVICE: LOCAL GOVERNMENT,
and ADVICE: LOCAL FIRE AWARENESS GROUP. We would
expect these explanatory variables to have positive and
statistically significant estimated coefficients if  such contacts are
positively correlated with wildfire risk perceptions and mitigation
activities. Lastly, we tested the influence of several additional
characteristics of respondents, including whether respondents
reported owning the properties on which they lived (PROPERTY
OWNER), the number of years they reported living at their
current residence (YEARS AT PROPERTY), their age (AGE),
and their level of education (COLLEGE-EDUCATED). The
explanatory variable HOMEOWNERS ASSOCIATION
RULES (HOA RULES) identified respondents who were subject
to homeowners association or subdivision rules concerning
landscaping and building to protect against wildfire, and would
be expected to be positively correlated with respondents’
propensity to conduct mitigation activities.

Visualizing and predicting homeowner mitigation activity
We used the coefficients from the three estimated equations
(CHANCE OF WILDFIRE, CHANCE OF DAMAGE, and
MITIGATION) to develop a set of predictive equations to
parameterize an agent-based model, Envision (Bolte et al. 2007),
as part of a CHANS study examining the management of wildfire
risk in the fire-prone landscape of central Oregon (Spies et al.
2014, Spies et al. 2017). Envision was designed to provide spatially
explicit landscape change simulations that are likely to result from
hypothetical management scenarios. Our predictive equations
provided predictions within Envision about whether homeowners
in any given management scenario were likely to conduct wildfire
risk mitigation activities given biophysical conditions present in
simulated scenarios. The resulting predictions were a key
determinant in identifying how many homes were likely to suffer
damage under each simulated management scenario.  

The predictive equations used biophysical variable values
resulting from Envision landscape simulations as input values for
the biophysical explanatory variables: BURN PROBABILITY,
CONDITIONAL FLAME LENGTH, TREES PER HECTARE,
WILDFIRE WITHIN MILES, WILDFIRE WITHIN
NEIGHBORHOOD, PRESCRIBED BURN WITHIN MILES,
and PRESCRIBED BURN NEAR NEIGHBORHOOD. All
other explanatory variables, which were not simulated by
Envision, were set at their sample mean values. We examined the
sensitivity of predicted values that resulted from the predictive
equations by comparing homeowner mitigation activity
likelihoods for three cases: (1) setting all biophysical explanatory
values at their minimum sample values, (2) setting all biophysical
explanatory values at their maximum sample values, and (3)
setting all biophysical explanatory values at their mean sample
values. Additionally, we visually examined the spatial patterns of
predicted values relative to key biophysical variables (e.g., past
occurrence of wildfire) by mapping them in ArcGIS at a
resolution of 30 m.

RESULTS

Characteristics of the survey sample
Our data included responses from 284 homeowners who had
completed the survey questionnaire sufficiently to populate the
dependent and explanatory variables of interest in our analysis.
Responses reflected significant awareness and concern about the
degree of wildfire hazard in this fire-prone dry forest landscape
(Tables 3 and 4). On average, survey respondents believed that
there is a 68% likelihood that a wildfire will burn near their home
in the next 5 years, and suggested 31% as the likelihood that such
a wildfire, if  it occurs, will damage their property. If  we combine
these likelihoods to compute an average expected loss, on average
survey respondents believe there is a 21% (0.68 × 0.31) likelihood
that a wildfire will damage their home within the next 5 years.
This contrasts with an estimated sample average annual burn
probability of 0.3% based on fire behavior models. In other words,
homeowners’ risk perceptions, on average, appear to be orders of
magnitude higher than risk assessments based on wildfire model
output. The high perception of risk about wildfire is reflected in
a fairly high propensity among respondents for conducting
mitigation activities to reduce wildfire risk, with 77% reporting
activity in the past 5 years.

Table 4. Reported mitigation behavior.
 
Mitigation %

conducted

Property protection activities:
Plant fire-resistant plants 37
Plant trees and shrubs at least 15 feet (4.6 m) apart 39
Prune the branches of trees within 85 feet (25.9 m) of your
home

67

Reduce the density of trees within 100 feet (30.5 m) of your
home

51

Home protection activities:
Clean roof surfaces/gutters and surrounding vegetation to
avoid accumulation of needles, leaves, and dead plants

86

Stack firewood/lumber at least 30 feet (9.1 m) from the home 58
Use nonflammable building materials such as tile, slate,
stone, etc.

55
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Survey respondents also appear to be fairly familiar with wildfire;
most reported experiencing a wildfire and/or prescribed fire
nearby in the past 5 years. Survey respondents reported obtaining
information about addressing wildfire from a variety of sources,
including family and neighbors (43%), local government agencies
(52%), and local fire awareness groups (28%). Most survey
respondents (92%) owned the homes for which they were
responding, and were long-term residents in that home and in
central Oregon (13 and 21 years, respectively). One-third reported
that their homeowners association or subdivision has landscaping
and building rules to protect against wildfire.

Risk perception model estimation results
The estimated equation for CHANCE OF WILDFIRE was
statistically significant (F = 5.32, df = 8, P < 0.0001) and had an
adjusted R2 of  0.109 (Table 5). Respondents’ self-reported
perceptions of the chance of wildfire were positively and weakly
correlated (P < 0.10) with the estimated average annual likelihood
of wildfire (BURN PROBABILITY) within a 1-km radius of
respondents’ homes. Respondents’ perceptions of the chance of
wildfire also were positively correlated with respondents’ past
exposure to wildfire and prescribed burning. The presence of
prescribed burning in the vicinity of the homeowner’s property
tended to heighten respondents’ concerns about wildfire and
resulting damage to their homes. None of the estimated
coefficients for ADVICE: FAMILY OR NEIGHBOR, ADVICE:
LOCAL GOVERNMENT, or ADVICE: LOCAL FIRE
AWARENESS GROUP variables were statistically significant,
which suggested that respondents’ perceptions of the chance of
wildfire were not strongly correlated with their self-reported
contact with those individuals, agencies, or groups. Respondents
who possessed a college degree had lower expectations for chance
of wildfire.  

The estimated equation for CHANCE OF DAMAGE also was
statistically significant (F = 11.332, df = 7, P < 0.0001) and had
an adjusted R2 of  0.204 (Table 5). Respondents’ self-reported
perceptions of the chance of damage to their homes, should a
wildfire occur, were positively correlated (P < 0.05) with the
estimated average flame length (CONDITIONAL FLAME
LENGTH) within a 1-km radius of respondents’ homes.
Respondents’ perceptions of the chance of damage also were
positively correlated with average tree density in the vicinity of
their home sites, with respondents’ past exposure to wildfire and
prescribed burning, and with their self-reported contact with local
fire awareness groups (but not with the other advice variables).

Mitigation activities likelihood model estimation results
The estimated equations for likelihood of mitigation activities—
one based on survey respondent-reported PERCEIVED RISK
and one based on the predicted values for the CHANCE OF
WILDFIRE and CHANCE OF DAMAGE—were both
statistically significant (Table 6). Both equations indicate that
respondents’ perceptions of the chance of wildfire and chance of
damage, combined, were positively correlated with their
propensity to conduct mitigation activities. Respondents who
reported experiencing past exposure to wildfire had greater
propensity to conduct mitigation activities. Our results indicated
that respondents’ propensity to conduct mitigation activities was
positively correlated with self-reported contact with local
government agencies and local fire awareness groups but not with

advice from family and neighbors. Respondents appeared more
likely to mitigate with increased residence time and existence of
HOA landscaping and building rules to protect against fire. Older
respondents were less likely to conduct mitigation.  

Lastly, we estimated alternative logit models that included the
variables BURN PROBABILITY and CONDITIONAL
FLAME LENGTH to test whether these proxies for biophysical
risk were directly correlated with mitigation likelihood in addition
to their indirect correlation through the PERCEIVED RISK
variable (Appendix 2, Table A2-1). However, estimated
coefficients for both variables were found to be statistically
insignificant (P > 0.25), which indicated that their influence likely
exists primarily through respondents’ perceived risk, consistent
with the conceptual framework outlined by Fischer et al. (2014).
Additionally, results of an alternative ordered model of the
number of mitigation activities (Appendix 2, Table A2-2) yielded
similar results to those we found with the binary MITIGATION
variable. An alternative ordered model that included BURN
PROBABILITY and CONDITIONAL FLAME LENGTH
again yielded estimated coefficients for those variables that were
not statistically significant (P > 0.25). Our results suggest that the
influence of biophysical variables that characterize fuel
conditions (i.e., fire hazard) on respondents’ mitigation behavior
likely occurs indirectly through respondents’ perceptions of fire
hazard on their forest parcels.

Sensitivity analysis for homeowner mitigation model
The resulting homeowner mitigation model used in Envision
projected the likelihood of any mitigation action being taken by
a given homeowner: 
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Sensitivity analysis indicated that CHANCE OF WILDFIRE
was relatively insensitive to variation in individual biophysical
explanatory variables, but CHANCE OF DAMAGE was quite
sensitive, especially to CONDITIONAL FLAME LENGTH and
TREES PER HECTARE—more so than for any other
explanatory variable we examined (Table 7). MITIGATION was
relatively insensitive to variation in the BURN PROBABILITY
variable but was somewhat more sensitive to the
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Table 5. Estimated coefficients of logistic regression models describing survey respondents’ self-reported perceptions of likelihood of
wildfire and property damage (N = 284).
 

CHANCE OF WILDFIRE CHANCE OF DAMAGE

Explanatory variables Estimated
coefficient

t statistic Odds ratio Estimated coefficient t statistic Odds ratio

Constant 1.704† 1.70 – -6.401§ -9.15 –
BURN PROBABILITY 2.092† 1.75 8.101 – – –
CONDITIONAL FLAME
LENGTH

– – – 0.390‡ 2.13 1.477

TREES PER HECTARE – – – 0.006§ 4.83 1.006
WILDFIRE WITHIN MILES 1.747§ 3.19 5.737 1.775§ 3.33 5.900
PRESCRIBED BURN
WITHIN MILES

1.322‡ 2.42 3.751 – – –

PRESCRIBED BURN NEAR
NEIGHBORHOOD

– – – 0.929 1.63 2.532

ADVICE: FAMILY OR
NEIGHBOR

-0.657 -1.39 0.518 0.196 0.40 1.217

ADVICE: LOCAL
GOVERNMENT

0.176 0.37 1.192 0.797 1.61 2.219

ADVICE: LOCAL FIRE
AWARENESS GROUP

0.085 0.16 1.089 1.221§ 2.20 3.391

PROPERTY OWNER -1.202 -1.43 0.301 – – –
COLLEGE-EDUCATED -1.570§ -3.44 0.208 – – –
Summary statistics: Adjusted R2 = 0.109

F = 5.32, df = 8, P < 0.0001
Adjusted R2 = 0.204

F = 11.332, df = 7, P < 0.0001

Note: Estimated using ordinary least squares regression with dependent variables computed as logit transformations of respondents’ self-reported chance
of wildfire and chance of damage.
†, ‡, and § indicate statistical significance at 10%, 5%, and 1% levels, respectively.

CONDITIONAL FLAME LENGTH variable. The explanatory
variable WILDFIRE WITHIN NEIGHBORHOOD yielded the
greatest range of variation (79–95%) in mitigation likelihood. All
in all, the sensitivity analysis suggested that homeowners’ wildfire
risk perceptions vary, and that the influence of biophysical factors
was strongest via the risk component of chance of damage to the
home, and was represented in our analysis by the
CONDITIONAL FLAME LENGTH and TREES PER
HECTARE variables. When all biophysical explanatory variables
were considered, the predicted percent of respondents who would
take mitigation action varied from a minimum of 75% to a
maximum of 99% (Table 7).

Visualizing and predicting homeowner mitigation behavior on the
landscape
Using ArcGIS, initial predictions of mitigation likelihood were
computed for a small portion of the landscape at 30-m resolution
based on current biophysical conditions in order to visualize
biophysical and mitigation behavior gradients across these small
ownerships (Fig. 3). The resulting map highlights the positive
influence of trees per hectare and higher potential flame lengths
on the likelihood that WUI homeowners completed mitigation
activities; past wildfires had more moderate influence.  

Using Envision, we ran simulations of the northern section of the
study area to investigate possible changes in WUI homeowner
mitigation behavior based on future changes in biophysical
conditions under three management scenarios: status quo, no
management on federal lands, and a management regime focused
on restoration. Aggregate results from Envision indicated a
gradual increase in the likelihood of completing mitigation
activities under all three scenarios but no obvious differences in
mitigation rates across the three scenarios (Fig. 4). ArcGIS

visualization using the Envision output data for year 50 (Fig. 5)
indicated that this increase in mitigation likelihood likely is a result
of projected increases in trees per hectare and potential flame
length under the simulated management scenarios.

Fig. 3. Initial (year zero) biophysical and mitigation behavior
variable variation around Sunriver, Oregon. (WUI = wildland–
urban interface)
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Table 6. Estimated coefficients of logit models describing survey respondents self-reported likelihood of conducting mitigation activities
within the past 5 years (N = 284).
 

With respondent-reported value of PERCEIVED
RISK variable†

With predicted value of PERCEIVED RISK variable‡

Explanatory variables Estimated
coefficient

Wald Chi-
square

Odds ratio Estimated
coefficient

Wald Chi-
square

Odds ratio

Constant -0.370 0.50 – -0.401 0.54 –
PERCEIVED RISK† 1.272§ 1.71 3.566 – – –
PERCEIVED RISK‡ – – – 2.154§ 1.84 8.615
WILDFIRE IN NEIGHBORHOOD 1.571| 2.36 4.811 1.687| 2.56 5.405
ADVICE: FAMILY OR NEIGHBOR 0.328 0.97 1.389 0.337 0.99 1.400
ADVICE: LOCAL GOVERNMENT 0.932¶ 2.72 2.538 0.812| 2.33 2.253
ADVICE: LOCAL FIRE
AWARENESS GROUP

1.806¶ 2.87 6.087 1.625| 2.53 5.080

PROPERTY OWNER 1.373| 2.41 3.946 1.247| 2.22 3.479
TENURE 0.031§ 1.82 1.031 0.031§ 1.83 1.031
AGE -0.027| 2.08 0.973 -0.024§ 1.82 0.977
HOMEOWNERS ASSOCIATION
RULES

1.322¶ 2.78 3.117 1.028| 2.54 2.795

Summary statistics: Log-likelihood = 244.64
χ2 = 63.30, df = 9, P < 0.0001

Log-likelihood = 243.60
χ2 = 64.35, df =9, P < 0.0001

† Computed as PERCEIVED RISK = CHANCE OF WILDFIRE × CHANCE OF DAMAGE.
‡ Variable value predicted using estimated coefficients reported in Table 5.
Note: The §, |, and ¶ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Fig. 4. Probability of completing mitigation behavior across the
full study area over 50 simulated years in Envision under three
management scenarios.

DISCUSSION AND CONCLUSION
We have estimated empirical models that examine the influence
of biophysical and socioeconomic factors on homeowners’
wildfire risk perceptions and risk mitigation actions, with a focus
on biophysical measures of wildfire risk components, including
the likelihoods of wildfire and damage to the home. This work
builds on recent studies (e.g., Champ et al. 2013, Fischer et al.
2014, Dickinson et al. 2015, Wolters et al., personal
communication) in a number of ways by (1) examining the two
components of risk discretely, (2) examining the influence of
biophysical (or landscape) variables on both homeowners’
wildfire risk perceptions and mitigation behavior, (3) using two

Fig. 5. Year 50 biophysical and mitigation behavior variable
variation around Sunriver, Oregon. (WUI = wildland–urban
interface)

methods for measuring mitigation, (4) using sensitivity analysis
to identify which variables have the greatest potential to change
mitigation output in the model, and (5) demonstrating how such
analysis can enable visualizing mitigation likelihoods at landscape
scales under different management scenarios. Additionally, the
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Table 7. Sensitivity analysis showing predicted values† of CHANCE OF WILDFIRE, CHANCE OF DAMAGE, and MITIGATION
when setting individual biophysical explanatory variables at their sample minimum, maximum, and mean values (see Table 2).
 

Explanatory variable held at:

Explanatory variables Minimum Mean Maximum

CHANCE OF WILDFIRE predicted values:‡
BURN PROBABILITY 0.950 0.973 0.995
WILDFIRE WITHIN MILES 0.910 0.973 0.983
PRESCRIBED BURN WITHIN MILES 0.932 0.973 0.981
CHANCE OF DAMAGE predicted values:‡
CONDITIONAL FLAME LENGTH 0.042 0.106 0.652
TREES PER HECTARE 0.046 0.106 0.967
WILDFIRE WITHIN MILES 0.032 0.106 0.164
PRESCRIBED BURN NEAR
NEIGHBORHOOD

0.085 0.106 0.190

MITIGATION predicted values:‡
WILDFIRE WITHIN NEIGHBORHOOD 0.791 0.831 0.953
BURN PROBABILITY 0.831 0.831 0.832
WILDFIRE WITHIN MILES 0.808 0.831 0.848
PRESCRIBED BURN WITHIN MILES 0.830 0.831 0.832
CONDITIONAL FLAME LENGTH 0.812 0.831 0.939
TREES PER HECTARE 0.813 0.831 0.968
PRESCRIBED BURN NEAR
NEIGHBORHOOD

0.825 0.831 0.855

Global minimum, mean, and maximum predicted values:§
CHANCE OF WILDFIRE 0.676 0.973 0.998
CHANCE OF DAMAGE 0.004 0.106 0.999
MITIGATION 0.752 0.831 0.993

† Predicted using the estimated coefficients reported in Tables 5 for CHANCE OF WILDFIRE and CHANCE OF DAMAGE, and Table 6, column 3
for MITIGATION.
‡ Predicted values computed by setting the listed individual variable at its minimum, mean, and maximum value, respectively, holding other
explanatory variables at their mean values.
§ Predicted values computed by setting all listed explanatory variables at their minimum, mean, or maximum values, respectively.

inclusion of homeowner risk assessments and (expert) model
output risk assessments provides an interesting comparison. Our
analysis illustrates one way to represent landowner behavior in
agent-based models of fire-prone landscapes (Kline, White,
Fischer et. al., unpublished manuscript). It also provides an
empirical application and example of the conceptual framework
outlined by Ager et al. (2015) for incorporating socioeconomic
data and analysis into biophysical assessment of wildfire risk and
mitigation opportunities at the fireshed scale.  

Earlier work by McCaffrey et al. (2011) found that homeowners’
wildfire risk perceptions dropped after they completed mitigation
actions, which suggests that the individuals were cognizant that
the altered landscape was at decreased risk of fire. Our findings
support this notion; though participants tended to overestimate
risk by several orders of magnitude (21% from surveys versus
0.3% from biophysical models), we found homeowners’ wildfire
risk perceptions to be positively correlated with hazardous fuel
conditions predicted by fuel models as well as past experience
with wildfire. This indicates that actual hazard conditions can be
a significant determinant in risk perceptions. Specifically,
homeowners’ perceived chance of wildfire was positively
correlated with the modeled probability of wildfire, while their
perceived chance of damage to the home was positively correlated
with modeled potential wildfire intensity and tree density.
Although many managers may believe that homeowners do not
take risk mitigation actions because they misunderstand
biophysical risk (e.g., Gordon et al. 2012), our results indicate that

the homeowners examined in our study may be savvy observers
of landscape conditions and wildfire events, and that these
“landscape feedbacks” enhance homeowners’ concerns about
wildfire hazard and motivate them to take mitigation action. This
also suggests that homeowners may be considering proximate
properties when making mitigation decisions, as the landscape
variables used in this study employed means for the surrounding
1-km area. In other words, if  a neighbor mitigates, it is possible
an individual may not mitigate on their own property because
they have perceived a reduction in risk. This warrants more
investigation into how proximate landscape conditions need to
be to affect perceived risk.  

We found advice from friends, family, and local government
agencies to have little if  any influence on wildfire risk perceptions
among the homeowners we examined. However, advice from local
government and fire awareness groups appears to have a positive
influence on whether homeowners undertake risk mitigation
activities. In other words, information on the risks of wildfire may
not lead to an increased perception of risk, but information on
how to mitigate risks may lead to completion of mitigation
behaviors. This supports earlier work by Dickinson et al. (2015)
that suggested receiving fire-related information from “experts”
was positively associated with both structural and vegetation
mitigation behaviors. Others have found similar relationships
between fire-related information sources and mitigation behavior
(Hall and Slothower 2009, Brenkert-Smith et al. 2012, Champ et
al. 2013), while one team found that simply being familiar with

http://www.ecologyandsociety.org/vol22/iss1/art21/


Ecology and Society 22(1): 21
http://www.ecologyandsociety.org/vol22/iss1/art21/

the Community Wildfire Protection Plan was enough to increase
the likelihood of completing mitigation actions (Wolters et al.,
personal communication).  

Although policy-makers generally express concern about people
choosing to live in fire-prone landscapes, evidence from our study
and others (e.g., McCaffrey and Olsen 2012, Toman et al. 2013)
generally suggests that a general awareness of the likelihood of
wildfire risk exists among many residents in fire-prone landscapes,
and that these residents likely are making a calculated and
relatively informed choice to live in fire-prone landscapes. For
example, our respondents were largely long-term residents who
had been exposed to a wildfire or prescribed fire before.
Additionally, the perceived probability and potential damage from
wildfire was quite high in our sample, considerably higher than
the probability and severity of potential fires as predicted by fire
models (Ager et al. 2013), though this may be partially explained
by our use of general terms in the survey questions (i.e.,
participants were asked to consider the forests closest to their
homes when answering the questions—there was no prerequisite
fire size or distance). However, our results also suggest that among
the components of wildfire risk—likelihood of wildfire versus
likelihood of damage—it is homeowners’ perceptions of the
likelihood of damage that may be most sensitive to biophysical
measures of potential wildfire intensity, if  not necessarily
likelihood. Policy-makers seeking to influence increased
mitigation behavior among homeowners may contribute toward
this by improving homeowners’ awareness of their chance of
experiencing damage to the home site should a wildfire occur, as
well as what measures homeowners can reasonably take to address
this. This knowledge component is evident in the fire experience,
perceived risk, and information source variables’ associations with
mitigation. Our results also suggest that policy-makers may
encourage greater mitigation compliance by supporting HOA
rules for reducing fuels on private property. In short, HOA rules
and targeted programs to provide access to information so
homeowners can assess risk, and physically, financially, and legally
accomplish the mitigation work could help improve mitigation
compliance.  

Finally, the challenges of working with nested analysis procedures,
multiple models, and a large landscape are worthy of discussion.
The single largest challenge from a social scientist’s perspective
was the multiple assumptions that had to be made at several steps
in the project. For example, while we had individual data from
homeowners across the landscape that allowed for a nested
regression analysis, programming Envision to model homeowner
behavior involved inserting constants where our data suggested
that dynamic variables would have been more appropriate (e.g.,
burn probability, advice from various social groups). However, the
computational limitations presented by Envision dictated the
format by which we could influence the large model. Other
assumptions not uncommon to large CHANS projects were also
challenging (e.g., that we can predict future human behavior
without foreknowledge of shifts in societal norms or significant
surprise events). A challenge specific to the scale of this project
was that the land area was large enough that individual or even
group behaviors caused little if  any change in the outcomes for
the larger landscape. In other words, homeowners may have been
the most numerous actor type on this landscape, but they owned
a comparatively small land area. Hence, an increase in mitigation

behavior on homeowner properties would not be expected to
make a sizable impact on large tracts of federal land, for example.
To combat this challenge, we focused in on smaller areas to see
smaller scale shifts in both biophysical and social behavior
variables (see Figs. 3 and 5). Additionally, because the land area
was so large and covered numerous smaller communities,
examining the overall averages of mitigation behavior across the
entire landscape showed no difference in mitigation behavior
despite very different biophysical trajectories (Fig. 4). This can
likely be explained by understanding that changes happened on
smaller scales (Figs. 3 and 5) but may not be visible when averaged
across the large landscape.  

Limitations of this study, though minimized to the extent possible,
do exist. We acknowledge that a higher response rate could
strengthen our confidence in generalizing beyond the study
sample. Future research might employ a different survey
administration method (e.g., drop-off and pick-up) as an attempt
to increase response rate. We also recognize that by asking
respondents to recall actions and events over the last 5 years that
we may be introducing some recall bias. Employing a longitudinal
design that incorporated biophysical data would strengthen our
prediction abilities for modeled biophysical risk and mitigation
behaviors. It would be interesting to explore qualitative data
aimed at explaining the various risk and mitigation findings from
this survey as a follow-up to this study and with these participants.
A future step could also be to build the larger, landscape model
to be better able to handle more dynamic variables (i.e., less
constants). Now that we have a basic model that seems to work
as anticipated, we are now in a position to increase the number
of dynamic variables in order to better represent the fluid human
reality.  

We offer the following caveats. Perhaps most important is
recognition that measuring mitigation is tricky and imperfect.
There are multiple methods for doing this, each with strengths
and weaknesses, which we tried to at least mediate by using two
methods. Second, this study and most studies rely on self-
reporting, which has inherent flaws in memory recall and the
tendency to be biased toward positive response (i.e., making
yourself  look good). Third, while we are attempting to understand
mitigation behavior, we are not actually measuring behavior.
Rather, we are looking at intent. This can seem a shortfall;
however, barring the time and funds to actually monitor each
individual’s behavior over time, measuring intent to mitigate is a
good proxy. Fourth, though we found biophysical variables to
have some influence on mitigation via perceived risk, it was a
weakly significant relationship, and other variables were more
predictive. Still, this relationship with biophysical variables and
perceptions of risk may warrant consideration in future research
and policy.  

An outcome of our empirical models is to enable the development
of landscape models that can explore how homeowners’
mitigation activities might vary over space and time and under
different fire and management scenarios. In particular, building
on work by Champ et al. (2013), our empirical models
demonstrate the influence that biophysical landscape
characteristics play in shaping homeowners’ wildfire risk
perceptions and motivating them to take mitigation actions. This
can be useful in a fire management context by enabling landscape
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managers to identify places where landowners and homeowners
are most likely to conduct mitigation actions and where they may
need greater incentives (Ager et al. 2015). More broadly, social
science information, such as we have developed here, can play a
role in landscape-level mitigation planning and implementation
efforts. Integration of biophysical wildfire risk metrics with
information that characterizes likely landowner behavior enables
managers and local officials to identify areas of both need and
opportunity in terms of private landowner and homeowner
cooperation with landscape-level mitigation efforts. Ideally, such
integration would enable a leveraging of mitigation effort by
identifying where mitigating risk most effectively involves
activities conducted by public agencies and which are focused on
treating biophysical conditions, such as forest fuel, versus
encouraging activities conducted by private landowners and
which are focused on individual home sites.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/9054
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Appendix 1: Constructing independent variables to represent wildfire likelihood and 
potential intensity 

We developed two explanatory variables to approximate survey respondents’ actual exposure to 
wildfire of risk using outputs from the wildfire simulation model FSIM and methods described 
by Finney and colleagues (Finney et al. 2011). The FSIM program generates wildfire scenarios 
for a large number (e.g., 50,000) of hypothetical wildfire seasons using relationships between 
historical Energy Release Component (ERC) and fire occurrence. The ERC and other weather 
data are derived from weather records that span between 10 and 20 years and were collected as 
part of the network of automated weather stations (RAWS) (Zachariassen et al. 2003). The 
simulations operate on a daily time step and the daily probability of a fire was predicted by 
logistic regression of historical fire occurrence and ERC. Once a fire is ignited, the daily weather 
is generated using the results of a time series analysis of daily RAWS weather data (Finney et al. 
2011). The time series uses estimates of the seasonal trends, the autocorrelation (dependency of a 
day’s ERC value on previous days), and the daily standard deviation to generate synthetic daily 
weather streams for each day of simulation. Wind data (speed by direction) were also derived 
from the RAWS stations and tabulated by month as a joint probability distribution and the 
resulting distribution was then randomly sampled to obtain daily wind data. Each fire’s growth 
and behavior were simulated from its ignition day through the remainder of the season, or until 
containment was achieved as predicted based on historical large fires and their recorded 
sequence of daily activity (Finney et al. 2009). The containment model was developed from an 
analysis of the daily change in fire size to identify intervals of high spread and low spread for 
each fire. The containment probability model was found to be positively related to periods of low 
fire spread (Finney et al. 2009). Each fire’s growth and behavior were simulated from its ignition 
day through the remainder of the season, or until containment was achieved as predicted based 
on historical large fires and their recorded sequence of daily activity (Finney et al. 2009).   
 
Surface and canopy fuel data were obtained from the national LANDFIRE data grid (Rollins 
2009). The surface fuel data consisted of stylized fuel models as described elsewhere (Scott et al. 
2005). Validation of the fire size distribution from FSIM simulations were reported in Finney 
and colleagues (Finney et al. 2011). While refinements to FSIM and the input data continue 
within the federal wildfire management agencies, the outputs used in the current study are 
adequate for the study objectives. Data consisted of 240,347 ignitions that started on Forest 
Service land representing 20,000–50,000 fire season replicates on the 16 national forests. We 
assumed random ignition locations for simulated fires, consistent with FPA large fire simulation 
methods (Finney et al. 2011). Large fire events within the study area have primarily been caused 
by lightning, and there are too few large fire incidents to detect spatial patterns if they existed. 
Fire simulations were performed at 270 x 270 m pixel resolution, a scale that permitted relatively 
fast simulation times and incorporated important spatial variation in fuel data. Simulations were 
completed on a farm of 64 bit SMP workstations located at the EROS Data Center in Sioux Falls, 
South Dakota.   
 
FSIM outputs consisted of an overall burn probability and a frequency distribution of flame 
lengths in 0.5 m classes for each 270 m x 270 m pixel. Burn probability was defined as: 
 

BURN PROBABILITY =  B/n 



 
 

      
where B is the number of times a pixel burns and n is the number of simulated fires. The BURN 
PROBABILITY for a given pixel is an estimate of the annual likelihood that a pixel will burn 
given a random ignition within the study area. Fire intensity (Byram 1959) is predicted by the 
fire spread algorithm and is dependent on the direction the fire encounters a pixel relative to the 
major direction of spread (i.e., heading, flanking, or backing fire), as well as slope and aspect 
(Finney 2002). FSIM converts fireline intensity (FI, kW m-1) to flame length (FL, m) based on 
Byram’s (1959) equation:  

FL = 0.775(FI)0.46 
 
The flame length distribution generated from multiple fires burning each pixel was used to 
calculate CONDITIONAL FLAME LENGTH as:   
 

CONDITIONAL FLAME LENTH = �(BPi / BURN PROBABILITY) ∗ (FLi

8

i=1

) 

 
where FLi is the flame length midpoint of the ith category, and BPi is the probability of fire in 
flame length i. CONDITIONAL FLAME LENGTH is the probability weighted flame length 
given a fire occurs and is a measure of wildfire hazard (Ager et al. 2010). For each parcel we 
then calculated average values for BURN PROBABILITY and CONDITIONAL FLAME 
LENGTH for a 1-km radius of respondents’ homes to develop a broader index of wildfire 
exposure. 
 



 

 

Appendix 2: Alternative regression models describing homeowner mitigation behavior.  
 
 
Table A2.1. Estimated coefficients of an alternative binary logit models describing 
respondents self-reported likelihood of conducting mitigations activities within past five years, 
with biophysical explanatory variables included (N= 284). 

 With respondent-reported 
perceived risk variable† 

With model-predicted  
risk variable‡ 

 
Explanatory variables 

Estimated 
coefficient 

Wald chi-
squared 

Estimated 
coefficient 

Wald chi-
squared 

Constant -0.217 0.07 -0.152 0.04 

PERCEIVED RISK†  1.362* 3.20 -- -- 

PERCEIVED RISK ‡ -- -- 2.725* * 4.41 

BURN PROBABILITY 0.649 0.31 1.357 1.18 

CONDITIONAL FLAME 
LENGTH 

-0.101 0.44 -0.200 1.40 

WILDFIRE IN 
NEIGHBORHOOD 

1.573**  5.60 1.701* * * 6.67 

ADVICE: FAMILY OR 
NEIGHBOR 

0.295 0.74 0.260 0.57 

ADVICE: LOCAL 
GOVERNMENT 

0.937***  7.46 0.794**  5.13 

ADVICE: LOCAL FIRE 
AWARENESS GROUP 

1.793***  8.08 1.514**  5.44 

PROPERTY OWNER 1.370**  5.71 1.220**  4.64 

TENURE 0.030* 2.97 0.029* 2.93 

AGE -0.028**  4.55 -0.025* 3.57 

HOA RULES 1.147***  7.85 1.035**  6.47 

Summary statistics: Log-likelihood = 244.17 
χ2 =63.78, df =11, P<0.0001 

Log-likelihood = 241.98 
χ2 =65.96, df =11, P<0.0001 

Note: The *, ** , and ***  indicate statistical significance at the 10%, 5% and 1% levels. 
† Computed as PERCEIVED RISK = PERCEIVED CHANCE OF WILDFIRE * 
PERCEIVED CHANCE OF DAMAGE. 
‡ Variable value predicted using estimated coefficients reported in Table 5.   
 

 
 
 



 

 

Table A2.2. Estimated coefficients of an ordered logit model describing respondents self-
reported likelihood of any of several mitigation activities † within past five years (N= 246). 

 Without wildfire risk variables  With wildfire risk variables 

 
Explanatory variables 

Estimated 
coefficient 

 
t-statistic 

Estimated 
coefficient 

Wald chi-
squared 

Intercept 7 -4.977* ** -7.52 -4.562* ** 42.84 

Intercept 6 -3.370* ** -5.37 -3.281* ** 24.28 

Intercept 5 -2.566* ** -4.24 -2.140* ** 10.91 

Intercept 4 -1.853* ** -3.11 -1.422* * 4.93 

Intercept 3 -1.073* -1.82 -0.634 0.99 

Intercept 2 -0.286 -0.49 0.160 0.06 

Intercept 1 0.923 1.49 1.381* * 4.26 

PERCEIVED RISK ‡ 1.118**  2.00 1.356* * 4.98 

BURN PROBABILITY -- -- 0.195 0.06 

CONDITIONAL FLAME 
LENGTH 

-- -- -0.082 2.24 

WILDFIRE IN 
NEIGHBORHOOD 

0.646**  2.01 0.622* 3.76 

ADVICE: FAMILY OR 
NEIGHBOR 

0.382 1.63 0.349 2.15 

ADVICE: LOCAL 
GOVERNMENT 

0.761* ** 3.09 0.760* ** 9.50 

ADVICE: LOCAL FIRE 
AWARENESS GROUP 

1.086* ** 3.60 1.069* ** 12.15 

PROPERTY OWNER 0.373 0.85 0.445 1.02 

TENURE 0.030***  2.56 0.028* * 5.53 

AGE 0.007 0.72 0.006 0.35 

HOA RULES 0.014 0.06 0.014 0.00 

Summary statistics: Log-likelihood = 920.032 
χ2 =72.01, df =9, P<0.0001 

Log-likelihood = 917.155 
χ2 =70.13, df =11, P<0.0001 

Note: The *, ** , and ***  indicate statistical significance at the 10%, 5% and 1% levels. 
† Activities include planting fire-resistant plants, planting trees and shrubs at least 15 feet 
apart, pruning branches of trees within 85 feet of home, reducing the density of trees within 
100 feet of the home, cleaning roof, gutters, and surrounding vegetation to avoid 
accumulation of needles, leaves, and dead plants, stacking firewood and lumber at least 30 
feet from the home, and using nonflammable building materials, such as tile, slate, or stone. 

‡Variable value predicted using estimated coefficients reported in Table 5.
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