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Resilience-performance trade-offs in managing social-ecological systems
Mehran Homayounfar 1, Rachata Muneepeerakul 1 and John M. Anderies 2

ABSTRACT. Resilience-based approaches have been attracting attention in governing social-ecological systems facing rapid social and
environmental changes. In this article, we investigate the governance policies that focus on resilience. Our analysis is built on a stylized
dynamical model that mathematically operationalizes a widely used conceptual framework, which links social components, natural
resources, and infrastructure in social-ecological systems. Specifically, we numerically solve the Hamilton-Jacobi-Bellman (HJB)
equation to determine policies—in the form of investment in public infrastructure—that maximize a quantitative metric of the system’s
resilience. For comparison purposes, we also derive policies that maximize the system’s performance and discuss the differences between
and implications of the two policies. The results showed that a policy that maximizes performance results in sub-optimal resilience and
vice versa. Moreover, our sensitivity analysis suggests that managing resilience requires that one be more responsive to changes in
external forcing.
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INTRODUCTION
Conventionally, approaches to resource allocation and
environmental management focus on performance (Brouwer et
al. 2002, Ganji et al. 2007, Homayoun-far et al. 2010, Anghinolfi
et al. 2013, Önal et al. 2016, Little et al. 2017, Moradi and Rasaei
2017). These approaches focus on a few performance metrics of
a system and search for policies that maximize expected utility or
minimize expected cost. Although these command-and-control
approaches may serve well in the early development phase of the
resource use process, they are not well-equipped to address the
complex, nonlinear interactions between system components,
which determine the system’s response to external shocks
(Anderies et al. 2006). As such, they can inadvertently increase
the vulnerability of the system against other disturbances (Csete
and Doyle 2002).  

As an alternative, resilience-based approaches, which are based
on system thinking, are receiving more attention in the study of
social-ecological systems (SESs). These approaches focus on
maintaining the capacity of a system to cope with unexpected
occurrences without changing from a desirable to an undesirable
configuration. This is challenging because SESs often exhibit
hysteresis and irreversible changes (Walker et al. 2002). Walker
and Meyers (2004) noted that research on thresholds and
evaluation of hysteresis effects is a priority topic in the area of
sustainability science. Martin (2011) further explored the
relationship between the idea of ecological resilience—
specifically in the case where a shock displaces a system beyond
its elasticity threshold (see Carpenter et al. 2005)—and hysteresis.
He combined the notion of resilience as used in ecology with
hysteresis to examine the effects of a recession on an economic
system. Lyver et al. (2019) investigated hysteresis in environmental
management by evaluating the effects of environmental, social,
and economic drivers on the resilience of traditional knowledge
systems. They argued that breaking connections between people
and their traditional lands and environment may move cultural
and ecological systems toward a critical threshold. In addition,
decisions for managing SESs must be made based on imperfect

information (Walker et al. 2002). For example, distributions of a
system’s variables can be highly uncertain, i.e., deep uncertainty,
or the parameters of the distributions may change faster than we
can update information and, therefore, improper priors dominate
the analysis. Incorporating these features makes resilience-based
approaches better suited for managing SESs but also particularly
challenging to analyze.  

In the sustainability literature, many studies have discussed the
resilience-based approaches in the management of SESs (Pezzey
1997, Fischer et al. 2009, Mäler and Li 2010, Derissen et al. 2011,
Barfuss et al. 2018, Krueger et al. 2020). Fischer et al. (2009:549)
proposed that “embedding optimization analyses within a
resilience thinking framework could draw on the complementary
strengths of the two bodies of work, thereby promoting cost-
effective and enduring conservation outcomes.” Complicating the
matter is the fact that promoting resilience can come at the expense
of other desirable properties. Because of the existence of multiple
thresholds and regime shifts, there is no perfect set of policies for
governing SESs that maximizes resilience and performance
simultaneously (Janssen and Anderies 2007, Ostrom et al. 2007,
Homayounfar et al. 2018). Oftentimes, making a system secure
against one source of disturbance increases vulnerability of the
system against another (Janssen and Anderies 2007). According
to Anderies et al. (2006), resilience-based approaches are effective
in management of social-ecological systems not by providing a
mechanism that can be used to predict the impact of management
actions but, rather, by focusing on particular system attributes
that play important roles in the dynamics of SESs and attempting
to develop principles to guide interventions in SESs to improve
their long-term resilience. In sum, resilience-based approaches
focus on key controlling variables, alternate system regimes, and
thresholds, whereas performance-based approaches focus on
controlling natural variability and keeping the system in some
perceived optimal state.  

Although the literature on resilience is enormous and growing,
so is cynicism about what the term means (much like the terms
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tipping point and sustainability), and there is a glaring lack of
rigorous development of analytical tools to actually deploy
resilience in practice. Anderies et al. (2013) explored these various
ideas in qualitative terms and called for more rigorous analysis
of trade-offs in managing resilience, robustness, and performance
of SESs. In theory, these trade-offs are ubiquitous in SESs.
However, to apply these analyses in real coupled systems, we need
a deeper and more precise understanding of such trade-offs. This
article is a step in that direction.  

To investigate issues surrounding resilience-based management
of SESs more rigorously, a reasonable, quantitative metric of
resilience is needed. To this end, Walker et al. (2002) introduced
a procedure to uncover resilient development pathways by
combining adaptive management approaches (Holling 1978,
Walters 1986) and scenario planning (Van der Heijden 1996).
Anderies et al. (2004) further proposed a conceptual framework
to assess robustness of SESs, from which Muneepeerakul and
Anderies (2017) developed a stylized dynamical model. The
model allows for mathematical definitions of the boundaries of
policy domains that result in a sustainable system in which both
human-made and natural infrastructure can be maintained over
the long run. In this study, we investigated how to manage for
resilience of the SES or, more generally, the coupled infrastructure
system (CIS) represented by this model.  

Regardless of whether the focus is on performance or resilience,
decision makers are faced with the same challenges of
appropriately taking into account the dynamics of natural and
human-made components in response to implemented policies
and disturbances. This is where dynamic programming is of value.
These techniques have been used in natural resources
management and bioeconomic models (Ganji et al. 2008,
Homayounfar et al. 2011, Alvarez et al. 2016, Yaegashi et al. 2017,
Zhao et al. 2017, Liu et al. 2018, Anderies et al. 2019).  

In this article, we seek to formulate the problem of trade-offs
between resilience and performance in coupled infrastructure
systems in such a way that powerful analytical techniques of
dynamic programming can be used to address the problem in a
quantitative and systematic way. In particular, we developed
Hamilton-Jacobi-Bellman (HJB) equations for a simplified
version of the CIS model with an emphasis on infrastructure. In
previous works, infrastructure was one of the dynamical variables
in a higher-dimensional dynamical system but, because of the
model complexity, the metric of resilience had to be determined
numerically (e.g., Yu et al. 2015, Muneepeerakul and Anderies
2017, Homayounfar et al. 2018, Muneepeerakul and Anderies
2020), making it not very amenable to certain types of analytic
tools. Here, through the simplification of the dynamical system
model—making infrastructure the main dynamic variable
although still embedding the effects of other variables—and the
analytical expression of the system resilience, we were able to
rigorously apply dynamical programming tools, namely the HJB
approach. This allows for rigorous and systematic comparison
between different aspects of the coupled system (e.g., resilience
and performance). This rigorous approach was not possible in
the previous works but was made possible here. We then compared
the derived policies and conducted sensitivity analysis of these
policies to changes in social and environmental settings. The
results revealed the differences—and therefore trade-offs—in
policies developed from these two philosophies.

METHOD
We analyzed the CIS model developed by Muneepeerakul and
Anderies (2017), which captures dynamical behavior of the state
of the public infrastructure, IHM, resource level, R, and the
fraction of efforts resource users (RUs) spend inside the system,
U: 

(1)
dR
dt

= g− lR−UNRH ( IHM)
dU
dt

= rU (1−U )(πU −w)

dIHM
dt

= µypCUNRH (I HM )− δH ( I HM)

(2)

{(I HM− I c )(π p−wp) ,when IHM > I c , πp > wp
0 , Otherwise

(3)
dIHM
dt

=µypC (g − lw
(1−C ) pH ( IHM))−δH ( I HM)

(4)
dx
dτ

= yC
θm (1− ρ

(1−C )Ø1H (x ))−x

(5)

{(x− xc )(π p /wp−1) ,when x > xc , πp > wp
0 , Otherwise

(6)

πp
wp

= (1− y )C Ø2(1− ρ
(1−C )Ø1H (x ))

(7)

U

  
  

where g is the replenishment rate of the resource, l is the natural
loss rate of the resource, δ is depreciation rate of infrastructure,
w is per capita revenue from working outside, r is responsiveness
of social actors to payoff differences, µ is maintenance
effectiveness of public infrastructure providers’ (PIPs)
investment, N is number of users, and p is the conversion factor
from resource to revenue. The function H(IHM) maps IHM to the
productivity of each RU. C and y are policy parameters
implemented by the PIPs: C represents the fraction of their
revenue that RUs contribute to PIPs for infrastructure
maintenance, and y is the fraction of all contributions received
from the RUs that the PIPs invest in maintaining the
infrastructure after compensating themselves. For further details
about the above system, the reader is referred to Muneepeerakul
and Anderies (2017).  

Homayounfar et al. (2018) investigated this model for its resilience
and robustness metrics. In that study, two types of specified
resilience were considered: resilience against abandonment by
PIPs and resilience against collapse of public infrastructure,
which would be accompanied by abandonment by RUs. Each
resilience was measured by how far the system was from the
boundary of its respective mechanism of collapse (i.e.,
abandonment by PIPs or by RUs). Because loss of resilience of
either type means the collapse of the system, the minimum
between the two resilience metrics was taken as the resilience of
the overall system. In Homayounfar et al. (2018), the resilience
metric was numerically determined from stability conditions and,
therefore, was not amenable to the present analysis. Therefore, we
introduced the following quantity, which captures the qualitative
behavior of the resilience matrix (determined numerically in
Homayounfar et al. 2018), to capture the system resilience to be
used in our analysis: 

(1)
dR
dt

= g− lR−UNRH ( IHM)
dU
dt

= rU (1−U )(πU −w)

dIHM
dt

= µypCUNRH (I HM )− δH ( I HM)

(2)

{(I HM− I c )(π p−wp) ,when IHM > I c , πp > wp
0 , Otherwise

(3)
dIHM
dt

=µypC (g − lw
(1−C ) pH ( IHM))−δH ( I HM)

(4)
dx
dτ

= yC
θm (1− ρ

(1−C )Ø1H (x ))−x

(5)

{(x− xc )(π p /wp−1) ,when x > xc , πp > wp
0 , Otherwise

(6)

πp
wp

= (1− y )C Ø2(1− ρ
(1−C )Ø1H (x ))

(7)

Otherwise  
  

where Ic indicates the critical state of the infrastructural services
below which it is not possible to improve the infrastructure
condition, πp=(1-y)pCUNRH(IHM) is the net revenue that PIPs
collect, and wp is the opportunity cost that is earned if  they choose
to abandon this system and work with another system. Equation
2 exhibits zero resilience when the infrastructure is in too poor a
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Table 1. Definitions and interpretation of dimensionless groups. PIP = public infrastructure provider.
 
Dimensionless group Definition Interpretation

x I
HM

/I
m

Rescaled state of the public infrastructure
τ δt Rescaled time
x

c
I

c
/I

m
Rescaled critical state of infrastructure below which it is impossible to improve the
condition of the infrastructure

ρ l/Nh Relative natural loss rate of the resource compared to the maximum harvest rate
ϑ

m
δI

m
/µpg Decay rate of infrastructure at I

m
 relative to maximum maintenance

Φ
1

pg/wN Potential income—with the entire resource flow turned into income—relative to outside
wage

Φ
2

pg/w
P

Potential income relative to PIP’s alternative opportunities

condition (IHM≤ Ic) or the PIPs’ payoff is too low (πp≤wp) and
exhibits higher values as the system is farther away from these
zero-resilience boundaries. Simply speaking, positive values of
(IHM-Ic)(πp- wp) indicate that the system is resilient against being
abandoned by PIPs and can absorb shocks to the infrastructure
although maintaining livelihoods of the RUs. This is the same
qualitative behavior observed in Homayounfar et al. (2018). The
quantity in Equation 2 captures the capacity of the system to
produce enough economic value to maintain both those who rely
directly on the resource and cover the costs of governing shared
resources (the income of the PIPs).  

To simplify the analysis, we made a timescale separation argument
based on the assumption that the dynamics of U, the fraction of
efforts RUs spend inside the system (days or weeks), and R,
resource level (weeks or months), were significantly faster than
IHM, the state of the public infrastructure (years or decades),
because establishment and development of human-made
infrastructures, either soft or hard, is a time-consuming process
(see Appendix 1 for more details). In this case, we set dR/dt=0 and 
dU/dt=0—focusing only on the non-trivial, interior solution of
U—and derived R and U as functions of IHM and rewrote the
dynamic of IHM as follows: 

(1)
dR
dt

= g− lR−UNRH ( IHM)
dU
dt

= rU (1−U )(πU −w)

dIHM
dt

= µypCUNRH (I HM )− δH ( I HM)

(2)

{(I HM− I c )(π p−wp) ,when IHM > I c , πp > wp
0 , Otherwise

(3)
dIHM
dt

=µypC (g − lw
(1−C ) pH ( IHM))−δH ( I HM)

(4)
dx
dτ

= yC
θm (1− ρ

(1−C )Ø1H (x ))−x

(5)

{(x− xc )(π p /wp−1) ,when x > xc , πp > wp
0 , Otherwise

(6)

πp
wp

= (1− y )C Ø2(1− ρ
(1−C )Ø1H (x ))

(7)

 
  

In sum, the dynamics of the CIS was now summarized by the
dynamics of public infrastructure on which our focus was now
placed. Non-dimensionalizing Equation 3 and using the resulting
dimensionless groups, the equation for human-made
infrastructure became: 

(1)
dR
dt

= g− lR−UNRH ( IHM)
dU
dt

= rU (1−U )(πU −w)

dIHM
dt

= µypCUNRH (I HM )− δH ( I HM)

(2)

{(I HM− I c )(π p−wp) ,when IHM > I c , πp > wp
0 , Otherwise

(3)
dIHM
dt

=µypC (g − lw
(1−C ) pH ( IHM))−δH ( I HM)

(4)
dx
dτ

= yC
θm (1− ρ

(1−C )Ø1H (x ))−x

(5)

{(x− xc )(π p /wp−1) ,when x > xc , πp > wp
0 , Otherwise

(6)

πp
wp

= (1− y )C Ø2(1− ρ
(1−C )Ø1H (x ))

(7)

 
  

The resilience of the system was then rewritten as: 

(1)
dR
dt

= g− lR−UNRH ( IHM)
dU
dt

= rU (1−U )(πU −w)

dIHM
dt

= µypCUNRH (I HM )− δH ( I HM)

(2)

{(I HM− I c )(π p−wp) ,when IHM > I c , πp > wp
0 , Otherwise

(3)
dIHM
dt

=µypC (g − lw
(1−C ) pH ( IHM))−δH ( I HM)

(4)
dx
dτ

= yC
θm (1− ρ

(1−C )Ø1H (x ))−x

(5)

{(x− xc )(π p /wp−1) ,when x > xc , πp > wp
0 , Otherwise

(6)

πp
wp

= (1− y )C Ø2(1− ρ
(1−C )Ø1H (x ))

(7)

 

  

where x=IHM/Im xc=Ic/Im and τ=δt are dimensionless groups
associated with IHM, Ic, and t, respectively (Table 1).  

The term πp/wp represents the ratio between the payoff for the
PIPs to the alternative payoff if  they decide to manage another
system and can be written as follows (see Table 1 for definitions
and interpretation of the dimensionless groups): 

(1)
dR
dt

= g− lR−UNRH ( IHM)
dU
dt

= rU (1−U )(πU −w)

dIHM
dt

= µypCUNRH (I HM )− δH ( I HM)

(2)

{(I HM− I c )(π p−wp) ,when IHM > I c , πp > wp
0 , Otherwise

(3)
dIHM
dt

=µypC (g − lw
(1−C ) pH ( IHM))−δH ( I HM)

(4)
dx
dτ

= yC
θm (1− ρ

(1−C )Ø1H (x ))−x

(5)

{(x− xc )(π p /wp−1) ,when x > xc , πp > wp
0 , Otherwise

(6)

πp
wp

= (1− y )C Ø2(1− ρ
(1−C )Ø1H (x ))

(7)

 
  

Putting these elements together, our problem to maximize
resilience can be written as: 

(7)

Max
y
∫0

∞ e
ρ'
δ
τ
(x− xc)(π p /wp−1)dτ

Subject to: dx
dτ

= yC
θm (1− ρ

(1−C ) Ø1H (x ))− x

(8)

ρ '
δ
V (x )=Max

y [( x− xc)(πp /wp− 1)+
dV
dx

dx
dτ ]

(9)

ρ '
δ
V ( x)=Max

y
[U +

π p
Nw

+ dV
dx

dx
dτ ]

(10)

ρ '
δ
V (x ) = Max

y [ π p
wp

+ dV
dx

dx
dτ ]

(11)

1
2[x0+

C
θm

− √(x0+
C
θm )

2
−4 C

θm[x0+ ρ
1−x0

(1−C )Ø1]]

  
  

Where ρ′ is the discount rate, not to be confused with ρ, a
dimensionless group in the dynamical equation. We will use ŷR 
to denote the solution to the above problem, which is the
investment policy that maximizes the system resilience.  

The HJB equation corresponding to the problem presented by
Equation 7 is: 

(7)

Max
y
∫0

∞ e
ρ'
δ
τ
(x− xc)(π p /wp−1)dτ

Subject to: dx
dτ

= yC
θm (1− ρ

(1−C ) Ø1H (x ))− x

(8)

ρ '
δ
V (x )=Max

y [( x− xc)(πp /wp− 1)+
dV
dx

dx
dτ ]

(9)

ρ '
δ
V ( x)=Max

y
[U +

π p
Nw

+ dV
dx

dx
dτ ]

(10)

ρ '
δ
V (x ) = Max

y [ π p
wp

+ dV
dx

dx
dτ ]

(11)

1
2[x0+

C
θm

− √(x0+
C
θm )

2
−4 C

θm[x0+ ρ
1−x0

(1−C )Ø1]]

 
  

where V is the so-called “value function” representing the
integral in Equation 7 associated with the optimal policy, ŷR,
which we will derive later.  

To make the comparison with performance-based approaches,
we defined two objective functions πp and UNw+πp representing,
respectively, the PIP performance and the system performance,
i.e., revenue, of the system: UNw is the overall payoff to the
resource users, and πp, as before, is the payoff to the PIPs. From

https://www.ecologyandsociety.org/vol27/iss1/art7/


Ecology and Society 27(1): 7
https://www.ecologyandsociety.org/vol27/iss1/art7/

the mathematical definition, the former function represents a
selfish social planner who does not care about the users, whereas
the latter reflects a benevolent social planner looking after all
social entities involved in the system. These functions were non-
dimensionalized into πp/wp and U+ πp/wN. Note that, because 1-
U can be thought of as a metric of out-migration from the system,
the results associated with the function U+ πp/wN have
implications on the system migration process. Through the same
procedure, we arrived at the following corresponding HJB
equations for the performance-based governance: 

(7)

Max
y
∫0

∞ e
ρ'
δ
τ
(x− xc)(π p /wp−1)dτ

Subject to: dx
dτ

= yC
θm (1− ρ

(1−C ) Ø1H (x ))− x

(8)

ρ '
δ
V (x )=Max

y [( x− xc)(πp /wp− 1)+
dV
dx

dx
dτ ]

(9)

ρ '
δ
V ( x)=Max

y
[U +

π p
Nw

+ dV
dx

dx
dτ ]

(10)

ρ '
δ
V (x ) = Max

y [ π p
wp

+ dV
dx

dx
dτ ]

(11)

1
2[x0+

C
θm

− √(x0+
C
θm )

2
−4 C

θm[x0+ ρ
1−x0

(1−C )Ø1]]

(7)

Max
y
∫0

∞ e
ρ'
δ
τ
(x− xc)(π p /wp−1)dτ

Subject to: dx
dτ

= yC
θm (1− ρ

(1−C ) Ø1H (x ))− x

(8)

ρ '
δ
V (x )=Max

y [( x− xc)(πp /wp− 1)+
dV
dx

dx
dτ ]

(9)

ρ '
δ
V ( x)=Max

y
[U +

π p
Nw

+ dV
dx

dx
dτ ]

(10)

ρ '
δ
V (x ) = Max

y [ π p
wp

+ dV
dx

dx
dτ ]

(11)

1
2[x0+

C
θm

− √(x0+
C
θm )

2
−4 C

θm[x0+ ρ
1−x0

(1−C )Ø1]]

  
  

We will use ŷP-PIP and ŷP-SYS to denote the investment policies that
maximize the PIP performance and the system performance,
respectively.  

Finally, we also conducted a simple sensitivity analysis on how
sensitive these optimal policies were to changes in social-
ecological settings. In particular, we simply varied two parameters
in the original model (Eq. 1): the per capita wage of working
outside the system (w, social) and the resource replenishment rate
(g, ecological), and considered how ŷR, ŷP-PIP and ŷP-SYS varied
with them.

RESULTS AND DISCUSSION
We first established xc as the critical level of infrastructure below
which it is impossible to improve the condition of the
infrastructure. In other words, at this level, it is not worthwhile
to invest in infrastructure maintenance. We derived xc from the
condition dx/dτ|y=1≤0, that is, x cannot improve despite the PIPs
investing everything they have collected from the resource users
(RUs). This leads to the following expression of xc: 

Max
y
∫0

∞
e
ρ'
δ
τ
(x− xc)(π p /wp−1)dτ

Subject to: dxdτ = yC
θm (1− ρ

(1−C ) Ø1H (x ))− x

(8)

ρ '
δ
V (x )=Max

y [( x− xc)(πp /wp− 1)+
dV
dx

dx
dτ ]

(9)

ρ '
δ
V ( x)=Max

y [U +
π p
Nw

+ dV
dx

dx
dτ ]

(10)

ρ '
δ
V (x ) = Max

y [ π p
wp

+ dV
dx

dx
dτ ]

(11)

1
2[x0+

C
θm

− √(x0+
C
θm)

2
− 4C
θm [x0+ ρ

1−x0
(1−C )Ø1]]  

  

We then analyzed the HJB equations (Eqs. 8, 9, and 10), which
yielded the following optimal policies: 

(12)

ŷR= {1 ,[dVdx C
θm

−CØ2 ( x− xc)](1− ρ
(1−C )Ø1H ( x ) )>0

0 , Otherwise

(13)

ŷP−PIP={1 ,[dVdx C
θm

−C Ø2](1− ρ
(1−C )Ø1H ( x ) )>0

0 , Otherwise

(14)

ŷP−SYS={1 ,[dVdx C
θm

−CØ1](1− ρ
(1−C )Ø1H (x ) )>0

0 , Otherwise

(12)

ŷR= {1 ,[dVdx C
θm

−CØ2 ( x− xc)](1− ρ
(1−C )Ø1H ( x ) )>0

0 , Otherwise

(13)

ŷP−PIP={1 ,[dVdx C
θm

−C Ø2](1− ρ
(1−C )Ø1H ( x ) )>0

0 , Otherwise

(14)

ŷP−SYS={1 ,[dVdx C
θm

−CØ1](1− ρ
(1−C )Ø1H (x ) )>0

0 , Otherwise

Ø

(12)

ŷR= {1 ,[dVdx C
θm

−CØ2 ( x− xc)](1− ρ
(1−C )Ø1H ( x ) )>0

0 , Otherwise

(13)

ŷP−PIP={1 ,[dVdx C
θm

−C Ø2](1− ρ
(1−C )Ø1H ( x ) )>0

0 , Otherwise

(14)

ŷP−SYS={1 ,[dVdx C
θm

−CØ1](1− ρ
(1−C )Ø1H (x ) )>0

0 , Otherwise 
  

In all three cases, it turned out that the optimal policies are the
so-called bang-bang control: investing either everything (y=1) or
nothing (y=0) depending on with the state of the infrastructure.
In particular, under these optimal policies, the PIPs invest
everything when xc<x<x1 and nothing when xc>x or x>x1 (Fig.
1); x1 was numerically determined from the conditions under
which ŷR, ŷP-PIP or ŷP-SYS is equal 1. Bang-bang control strategies
have been found in linear and nonlinear optimal control problems
involving infrastructure systems (e.g., Friesz et al. 1979, Cave and
Vogelsang 2003, Zandvliet et al. 2007, Hritonenko and Yatsenko
2010, Dahlgren and Leung 2015, Bolzoni et al. 2019).

Fig. 1. (A) The schematic illustration of the relationship
between an optimal policy for investing in the public
infrastructure, y, and the state of public infrastructure, x. Here,
xc represents the critical state of the infrastructural services
below which it is not possible to improve the infrastructure
condition, and x1 indicates the state beyond which the
investment stops. (B) H(x) is the function that maps x to the
productivity of each RU. Here, x0 is the threshold of x below
which productivity function, H, is zero.
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Generally, a complete analytical solution to optimization
problems such as ours is difficult (Boscain and Piccoli 2005). Here,
we solved the HJB equations numerically to obtain the value
function V (Fig. 2). Functions V exhibit big jumps at xc. The figure
also illustrates that, for the initial states lower than xc, there is no
reason for making an investment in the infrastructure: with its
infrastructure in such a poor condition, the RUs cannot generate
enough revenue to pass on to the PIPs to maintain the
infrastructure and, consequently, the system is doomed to
collapse in the long run. This resonates with many human-made
infrastructures such as local irrigation canal systems, flood
control, and water transfer systems, where infrastructural services
(either soft or hard) play a key role in survival of those systems.

Fig. 2. The relationship between the value functions, V, and the
initial value of x, state of public infrastructure. (A) Resilience-
based approach, (B) performance-based approach considering
the system performance, and (C) performance-based approach
considering the PIP performance. PIP = public infrastructure
provider.

The differences between ŷR, ŷP-PIP, and ŷP-SYS are the level of x at
which the maintenance investment stops, i.e., x1,R vs. x1,P-PIP and
x1,P-SYS, and how they vary with the taxation level C. The objective
of ŷP-SYS is to maximize overall performance, U+πp/Nw, in the
long run, so any investment for other purposes is considered
wasteful. In this analysis, the relationship H(x) between
infrastructure condition and productivity of each RU (Fig. 1) is
such that there is no gain in productivity beyond x=1 (many
shared infrastructures exhibit similar nonlinear behavior in their
productivity). This explains why x1,P-PIP and x1,P-SYS ≤1.  

Whereas x1,P-SYS is equal to 1 over all values of C, x1,P-PIP increases
monotonically with C until a certain point, after which it levels

off  at 1 (Fig. 3). The difference between x1,P-PIP and x1,P-SYS 
highlights the difference in the social planner’s objectives. A
benevolent social planner who is concerned about the
performance of both PIPs and RUs aims to maximize the overall
system’s performance, resulting in more investment infrastructure
than that seen in case where the sole focus is on the PIPs’
performance. For the resilience-based approach, x1,R exhibits a
hump-shaped relationship with C, peaking at an intermediate C.
Importantly, x1,R is always greater than x1,P-PIP and x1,P-SYS.
Maintaining the infrastructure in a better condition enables the
system to absorb greater infrastructural shocks—greater
resilience.

Fig. 3. xc is the critical level of infrastructure below which it is
impossible to improve the condition of the infrastructure. x1,R,
x1,P-PIP, x1,P-SYS indicate the level of x at which the maintenance
investment stops and are associated with resilience-based and
performance-based approaches under various C’s and in
different scenarios defined by the replenishing rate of the
resource, g, and per capita revenue from working outside, w: g 
= (90, 100, 110) and per capita wage from working outside, w =
(0.9, 1, 1.1).

We also conducted a sensitivity analysis of these optimal policies
to changes in social-ecological settings, namely changes in
replenishing rate of resource g and per capita wage from working
outside w (Fig. 3). When the system enjoys great resource
availability (high g) and incentive for the RUs to leave the system
is low (e.g., Fig. 3: g = 110 and w = 0.9), x1,R increases, and vice
versa, when g is low and w is high (e.g., Fig. 3: g = 90 and w =
1.1). In contrast, x1,P-PIP and x1,P-SYS are confined to 1 in all social-
ecological settings, exhibiting much less sensitivity to changes in
g and w. This pointed to a more nuanced trade-off  between policy
resilience and system resilience. This is in keeping with the
“resilience of what to what” notion in the resilience literature.
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Fig. 4. An illustration of the tension and trade-off  between resilience-based and performance-based
approaches in managing social-ecological systems.

What our analysis focused on was the resilience of the coupled
system, not the resilience of the policy. The policy for the less
resilient outcomes (e.g., those associated with maximum PIPs’
performance) is less sensitive to external factors (and may be seen
as more resilient). On the other hand, for the system to be more
resilient, the policy to achieve that must be more adaptive to
external factors (and can be seen as less resilient), an important
implication for policy makers.  

Finally, it should be noted that our resilience objective function
(Eq. 6) is related to the ecological resilience as defined by C. S.
Holling and colleagues (Holling 1973, Walker et al. 2004), which
can be linked to the size of basin of attraction and/or the distance
to the boundary of another regime—concepts/quantities that can
be defined in deterministic dynamical systems. In particular, a
small value of the resilience objective function means that the
system may sustain without perturbation but will quickly collapse
if  exposed to a small perturbation. If  the social planner designs
a policy under an (unrealistic) assumption that there would be no
perturbation, she would prioritize the conventional performance
objective function; her system may persist for a while, but will
collapse when even a small perturbation occurs. This underlines
the importance of the type of resilience-focused analysis
conducted here. Building on this work, adding stochastic shocks
to the system will enrich the analysis and the notion of resilience
(see, e.g., Drury and Lodge 2009) and will be a worthwhile future
research direction.

CONCLUSION
In this study, we applied dynamic programming to a dynamical
model of social-ecological systems (SESs) or, more generally,
coupled infrastructure systems (CISs), that places emphasis on
the roles of infrastructure (Anderies et al. 2004, Muneepeerakul
and Anderies, 2017). In particular, we derived the HJB equations
based on a simplified dynamics of public infrastructure and
determined the investment policies for infrastructure
maintenance that maximize, respectively, system resilience,

system performance, and PIP performance, namely ŷR, ŷP-SYS, and
ŷP-PIP, and showed that they differed. ŷR, ŷP-SYS and ŷP-PIP are
optimal for their respective objectives, so the fact that they differ
implies trade-offs between them: a policy that maximizes
performance results in sub-optimal resilience and vice versa.
Between the two performance objective functions, taking into
consideration the payoff of resource users results in greater
investment in infrastructure maintenance. These differences add
to complexity and challenges in governing SESs: it is well-known
that there is a trade-off  between performance and robustness.
Homayounfar et al. (2018) pointed out the trade-off  between
resilience and robustness, and now this study shows the trade-off
between resilience and performance (Fig. 4)—many trade-offs for
one to navigate in governing SESs. In addition, the sensitivity
analysis showed that the investment policy that maximize
resilience, i.e., ŷR, is more sensitive to changes in social-ecological
settings than the investment policies that maximize performance,
i.e., ŷP-SYS and ŷP-PIP, implying a nuanced trade-off  between system
resilience and policy resilience—managing for resilience requires
that one be more responsive to changes in external forcing.  

Effective governance of SESs involves multiple dimensions and
requires one’s ability to navigate the complex trade-offs among
them. The methodology employed here can be useful for such a
task. We hope that studies such as ours would enable
environmental scientists and professionals to determine how
environmental policies and institutions should change in response
to changes in social and environmental factors in a more holistic
way.

Responses to this article can be read online at: 
https://www.ecologyandsociety.org/issues/responses.
php/12892
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