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Insight

A method for benchmarking two different resilience assessment methods
Song Yong 1, Yiheyis T. Maru 1  , Alexander Herr 1  , Thomas G. Measham 2   and Barton Loechel 1 

ABSTRACT. Assessments of objective and subjective resilience are the main methods for understanding disaster preparedness and
developing policy responses. However, the two assessment outcomes are not directly comparable. A model combining objective and
subjective resilience assessments provides a better approximation of the underlying resilience. Building on previous comparisons, we
have developed a robust Bayesian hierarchical model for comparing and linking these assessments. Three modeling scenarios provide
the opportunity to explore the complex relationship between resilience data and explanatory variables under different conditions and
prior knowledge about variables. Our strategy reasonably shares the uncertainty with the posterior distribution of all model parameters,
instead of leaving all uncertainties to the variance parameter estimation, thus reducing methodological bias and providing a robust
uncertainty estimation. The approach allows connecting and comparing objective and subjective resilience assessments, laying a strong
foundation for developing a fully integrated resilience assessment.
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INTRODUCTION
As the world faces multiple and interacting perturbations,
including climate change, biodiversity loss, and more recently the
COVID-19 pandemic, resilience has become a rallying scientific
concept. Resilience is a measure of a system’s capacity to cope
with shocks and undergo change while retaining essentially the
same structure and function. Resilience assessment enables
evaluation of the state and trajectory of a social-ecological system
and guides the building of absorptive, adaptive, and
transformative capacities in regional economies (Walker et al.
2004, Walton et al. 2013, Filatova et al. 2016, Measham et al.
2019, Dogru et al. 2019, Walker 2020, Chu. et al. 2021). Resilience
assessments are critical to inform interventions for building
society’s resilience in the face of stresses or shocks (see, e.g.,
O’Connell et al. 2019, Walker 2020).  

A recent review of the literature found 56 community resilience
assessment frameworks with 68 measures developed for diverse
purposes and different systems and contexts (Walpole et al. 2021).
Although there have been significant advances, gaps still exist in
resilience assessment tools; they tend to be either qualitative or
quantitative, using subjective or objective methods but rarely both
(Rivington et al. 2007, Suwarno et al. 2009, Mayega et al. 2015,
Zhang et al. 2018, Ensor et al. 2021, Walpole et al. 2021). The
differences in assessment methods make a comparative analysis
of resilience outputs difficult, which may detract from the
acceptability of resilience assessment outcomes (Jones et al. 2021).

Differences in focal area and scale are prevalent, leading to
difficulties in comparing resilience assessment outcomes and
future trajectories. Some assessments focus on social resilience,
whereas others focus on ecological resilience (see, e.g., Walker and
Cooper 2011, Saja et al. 2019, Xiao et al. 2020). However,
resilience, as an integrating concept, deals with the social-
ecological system and assumes that people, communities,
economies, societies, and cultures from local to global scales are
tightly coupled with and depend upon nature (see, e.g., Folke et
al. 2011, Leach et al. 2012, Allen et al. 2019, Grafton et al. 2019,
Pimm et al. 2019, Jones et al. 2021).  

In this paper, we focus on improving the integration of two major
resilience assessment approaches, namely “subjective” and
“objective” resilience assessments. These approaches provide
insights into different aspects of resilience and a combination of
both will provide a more complete estimate of community
resilience. The subjective resilience approach engages with the
community to develop the resilience assessment instrument. It
elicits community members’ knowledge, experience, perceptions,
and evaluation of resilience. The objective resilience approach
selects variables and indicators for resilience assessment in a
region without direct community input, for example from census
data (Higuera et al. 2019, Jones and d'Errico 2019).  

Establishing a measure of resilience from both approaches
becomes particularly relevant when resilience assessments guide
the development of policies, interventions, and support programs
(Markantoni et al. 2019, Jones et al. 2021). Here methodological
difficulties arise because current resilience assessment approaches
are limited in their ability to fully integrate variables collected in
different ways (see, e.g., Pimm et al. 2019). A tool that can connect
objective and subjective resilience assessments would integrate
different dimensions, thus improving rigor and acceptance of
resilience measurements.  

The resilience assessment model presented in this paper builds on
recent work by Jones and d'Errico (2019), who have made
significant progress in directly comparing objective and subjective
resilience assessment results. They presented two measures, the
Resilience Index Measurement Analysis (RIMA) and the
Subjective self-Evaluated Resilience Score (SERS), for objective
and subjective assessment of resilience, respectively, and both
measures are a response to the same shocks and socioeconomic
drivers (FAO 2016, Jones and d'Errico 2019).  

Jones and d'Errico (2019) used the ordinary least squared method
to estimate the parameter and variances of the two models and
presented a comparison of the correlations between different
variables within the SERS and RIMA models. Their work was
seminal in providing a comparative view of these
methodologically different resilience assessments. However, the
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comparison estimates the two models separately, which leads to
inconsistent estimation of the combined model variability and
does introduce bias into the parameter estimation of explanatory
variables. Consequently, the unexplainable parts in the two
evaluations are identical once the explanatory variables are
connected. However, this connection might not be attainable in
some circumstances. Their least squared estimation method only
gives an optimized single point estimate for each parameter, which
is not able to represent the uncertainties related to the correlation
parameters. If  the distributions of the correlation parameters are
not well estimated, variance parameter estimates would contain
additional errors, and this further affects the uncertainty
estimation. In summary, if  the two models are estimated
separately, the complex correlations within and across the
different explanatory variables are not comparable for these two
resilience assessments.  

Our approach addresses the problem from a Bayesian modeling
perspective. This improves the limitations of direct comparison
in that we couple these two assessments to obtain linked results.
Specifically, this paper focuses on how to compare and connect
“subjective” and “objective” resilience assessments using a
Bayesian hierarchical modeling (BHM) framework. A Markov
Chain Monte Carlo (MCMC) sampling algorithm provides the
analytical solution for the posterior distributions via simulation
(Gelman et al. 2014). At the MCMC estimation stage, the two
models are connected by a common link parameter through
conditional independent distribution. Therefore, errors resulting
from the separation in the estimation are greatly reduced. In
addition, we considered different modeling scenarios that allow
the unexplainable parts of the resilience assessment to differ.  

This BHM framework allows modeling of complex correlations
within and across the different explanatory variables and so allows
us to account directly for uncertainties from the data, the model,
and the parameter estimation. Our coupled approach enables
researchers to understand the role of fixed effects in the
assessments (i.e., the selected explanatory variables explain only
part of the resilience assessment variance) because it determines
the remaining variance as a function of the underlying process or
other unknown fixed effects, including spatial variance. For
example, even within a small area the explainable resilience
between different households may vary. A combined approach is
advantageous because it (1) helps in understanding how subjective
and objective resilience assessments compare, (2) addresses the
influence of correlation between explanatory variables, and (3)
enables the quantification of other known or unknown fixed
effects and underlying processes.  

In simple terms, the model we are presenting provides a more
robust way of comparing similarities and differences of objective
and subjective resilience assessments than models currently
provided in the literature. Our approach to linking the two
resilience assessments also explicitly addresses uncertainties in a
way that conventional models are unable to provide. This paper
lays a foundation for an integrated objective and subjective
resilience assessment model, which we currently have under
development. This integration will provide even more accurate
results with improved precision. Overall, this better estimation of
the underlying resilience of a system (e.g., households,
communities, regions) provides robust insights that inform policy
and practice responses.

METHODS
Our approach implements a coupled modeling strategy to analyze
the relationship between SERS and RIMA by using BHM. This
type of Bayesian modeling provides a natural modeling
framework for combining data sets and accounting for
uncertainties (Wikle 2010). It describes the two resilience
assessments in the same explanatory linkage parameter. This link
affords a “statistical communication” between resilience
assessments during the estimation process using conditional
independency. It reduces the bias found in the ordinary least
squared estimation and provides uncertainty estimation
improvements.  

The existing SERS and RIMA comparison approach, which uses
ordinary least square regression, means that the fixed effect
contribution to the combined RIMA and SERS resilience may
not be known. We estimate the model parameters through the
MCMC method, which links SERS and RIMA in the estimation
process through conditional independence. Our model
improvements remove the constant area fixed effect bias. This
overcomes the issue of not knowing the size of the fixed effect.
The deviations associated with the measurement errors from
SERS and RIMA can be added to the estimates of related
parameters and variance. This overcomes the limitation of least
squared estimation, which only gives an optimized single-point
estimate for each parameter. Our improvement provides both a
parameter and a variance uncertainty estimation of the combined
resilience.  

Here, we provide details aligned with the framework of Jones and
d'Errico (2019), and we use the same explanatory variables. Later
we provide extended Bayesian modeling details in Appendix 1. In
our BHM model, the general model framework for SERS and
RIMA is: 

  

PROChc is a process variable that represents a long-term mean
(area fixed effect) or an underlying fixed resilience pattern such
as the area effect. PROChc is a dynamic process, which could also
change with time, if  the resilience became available as a time series.
The subscript h indicates household, and subscript c stands for
county, representing area effect. The coefficient parameters αs and
 αR for SERShc and RIMAhc account for the measurement error
and the bias linked to the fixed area effect and are conditional on
both SERS and RIMA being dependent on the process variable
PROChc. The variable PROChc functions as a linkage, which
connects both data models in the estimation process, thus forming
a coupled modeling system. PROChc becomes a dynamic
connection between the estimation of αs and αR by updating
during each MCMC iteration, and the MCMC convergence
mitigates the biases related to the measurement error and the fixed
area.  
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SHOCKhc is a vector of variables for a series of defined shocks
that integrates the correlation between resilience, climate effects,
and impacts. DRIVERhc is a vector of variables for socioeconomic
drivers of household resilience. Both are explanatory variables in
our model.  

The inference stage of the Bayesian model estimates the SERS
parameter matrices αs, βS1, βS2, (Equation 1) and RIMA
parameter matrices αR, βR1, βR2, (Equation 2), with εR, εS being
the covariance matrices for SERS and RIMA, respectively. This
leads to a realistic and consistent estimation of the parameter
matrices of the explanatory variables SHOCKhc and DRIVERhc 
and results in improved correlation coefficients between SERS
and RIMA variables.  

We develop three scenarios of PROChc estimation. Scenario 1
treats PROChc as an unknown process variable, Scenario 2 has
PROChc as a known fixed effect, and Scenario 3 treats PROChc 
as an unknown fixed effect.  

In the first scenario, the variable PROChc is an unknown process
variable. Under this condition PROChc is a common latent process
variable in both assessments, which the explanatory variables
SHOCKhc and DRIVERhc do not explain. We assume that
resilience researchers understand the underlying process for both
SERShc and RIMAhc, and that both are of the same magnitude.
To demonstrate the model capability and to be consistent with
the data type in Jones and d'Errico (2019), we assume the αs and
αR are fixed to 1. Thus, the model is simplified from Equations 1
and 2 as: 

  

Here, PROChc is the linkage variable between both data models.
Thus, the conditional distribution of combined resilience
assessments model is: 

(4)

  

On the basis of the conditional distribution and SERS’s and
RIMA’s conditional independence on the linkage variable
PROChc, and the full conditional distributions of parameters
within the Bayesian modeling framework, MCMC can sample
the parameters PROChc, βS, εS, βR, and εR.  

In the second scenario, the variable PROChc is a known fixed
effect. Jones and d'Errico (2019) discuss multilevel models with
fixed area effects and robust standard errors, where households
are nested in sub-countries and regions in the model. They tested
models with area effects and with area effects removed. We can
incorporate sub-country fixed effect with PROChc, which can
either be a fixed area effect for each household or a known variable
for each household (e.g., farm size or number of animals).  

Under this condition, we can assume αS and αR to be equal and
that there is one linkage parameter α, which links both models.
Therefore, the model simplifies from Equations 1 and 2 to:

  

In this context, the conditional distribution of the combined
resilience assessments model is: 

  

On the basis of the conditional distribution and SERS’s and
RIMA’s conditional independence, MCMC sampling provides
the full conditional distributions of the parameters βS, εS, βR, and
εR.  

In the third scenario, where researchers do not have confidence
or prior knowledge of any fixed effects that affect resilience,
PROChc is an unknown fixed effect or latent process. In this
scenario, all the parameters are unknown. Consequently, αS and
αR are two scale parameters that monitor the magnitude of the
latent process on the resilience assessment. The variable PROChc 
is the linkage variable in this modeling scenario with which to
rewrite Equations 1 and 2 as the following: 

  

The variable PROChc and parameters αS and αR are in need of
estimation. Knowledge of the magnitude of αS and αR will be
helpful to understand the connection between SERShc and
RIMAhc. The conditional distribution of a combined resilience
assessments model becomes: 

  

On the basis of the conditional distribution and SERS’s and
RIMA’s conditional independence, MCMC can estimate the full
conditional distributions of the parameters PROChc, αs, αR, βS,
εS, βR, and εR.  

In the first and third scenarios, the modeling estimates of SERShc 
and RIMAhc are conditionally explanatory when linked to
PROChc, and in the second scenario model estimates are
conditioned on the linkage parameter α (Song et al. 2014).

Model test with synthetic data
The purpose of synthetic data testing is to establish model
credibility, estimate unknown SERS and RIMA scores, and
calculate the correlation between the scores in different modeling
scenarios. We demonstrate the validity of our model by using
randomly generated synthetic data. We created three sets of data
to simulate our three modeling scenarios. For comparison, we
construct the data on the basis of the data structure of Jones and
d'Errico (2019), using Equations 3, 5, and 7, respectively. The
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socioeconomic driver and shock variables are the same as those
outlined in Jones and d'Errico (2019). The randomly generated
vectors of shocks and socioeconomic drivers for each household
are based on a multivariate normal distribution. To test for
robustness, the mean of the multivariate normal distribution is
different in the random vectors of shocks and socioeconomic
drivers for each modeling scenario. In the second modeling
scenario, the PROChc variable is from randomly generated values
and we adopt the estimated values of the parameter vector
estimation of the socioeconomic drivers from Jones and d'Errico
(2019). We also randomly create SERShc and RIMAhc resilience
score vectors for each household with the same length as the total
number of representative household surveys. Figure 1 shows the
distribution histograms of the modeled SERS and RIMA values.

Fig. 1. Histogram of randomly created Subjective self-
Evaluated Resilience Score (SERS) and Resilience Index
Measurement Analysis (RIMA) assessments of our three
modeling scenarios.

In the second scenario the magnitude difference in PROChc 
represents fixed effects. We adjust the spread of SERS and RIMA
ranges to account for this. Although the moments of multivariate
distributions are different, the parameter vectors of the
socioeconomic drivers in the synthetic data are the same. When
using predetermined model parameters within the variance-
related uncertainty range, the values of the predetermined model
parameters should be close to the median value of the posterior
distribution of the estimated model parameter. This allows for a
model validity verification, because the model can retrieve the
values of predetermined model parameters within the uncertainty
range related to the variance. However, this proximity to the

median value will also depend on the magnitude of the
uncertainty.  

The MCMC simulation for model testing was run for 10,000
iterations with a “burn-in” period of 5000 iterations. All
parameters and variables are drawn from the posterior samples
after the burn-in period. To complete the BHM framework, we
need to specify the distributions of parameters from the previous
stages. For simplicity, we consider conjugate priors for the
variance parameters σ across all these models using the gamma
distribution, with σS~gamma(qS,rS) and σR~gamma(qR,rR), where
qS, qR, rS, and rR are hyperparameters.  

The quality of the model performance is not overly sensitive to
the choice of the values of hyperparameters. For all the other
variables in the first and second scenarios, we chose flat (i.e.,
noninformative) priors, which have flat probability over the entire
real number distribution. When using prior information from the
data, we find that the parameter posterior estimations are robust
for the proposed model under three data scenarios.  

For the third scenario, where all model components (i.e., variables
and parameters) are unknown, it is difficult to estimate the
components when there is collinearity between parameters. This
can lead to identification problems of estimates in the posterior
distribution. We have applied standard normal distribution priors
for both αS and αR. Because both are scale parameters, their values
are relatively small. The normal priors N(0.5,0.3) we use limit
the range of the scale parameters but still enable them to vary.
The parameter values of the PROChc priors depend on the
distribution ranges of SERShc and RIMAhc, which are relatively
small. This justifies using PROChc prior from the normal
distribution with N(1,1).  

We selected and tested hyperparameters of our prior distribution
to ensure they are not sensitive to the model performance. We
used visual inspection and diagnostic checks to verify simulation
convergence (Gelman and Rubin 1992).  

Bayesian statistics estimates the posterior distributions from input
data using MCMC sampling and establishes parameter values
from sampling the posterior distribution. The MCMC method
includes a repeated sampling procedure that matches its
stationary distribution with the posterior distribution. Sampling
repetitions are sufficient once convergence (i.e., matching) occurs.
Once the Markov Chain is irreducible, aperiodic, and transient,
the convergence is guaranteed. We tested the model using different
data vector lengths, because with a robust model design and when
the normal distribution assumption holds, uncertainties should
decrease with the increase of the length of the data. Decreasing
uncertainty with an increase in data points suggests that the
variance of the data follows the normal distribution assumption
(Gelman et al. 2014).

RESULTS
The trace plots in Figure 2 indicate a good convergence of the
MCMC algorithm in the first modeling scenario. The plots show
that the pre-set values of PROChc, σ

2
S, and σ2

R are close to the
mean of the posterior distribution, which suggests the parameters
are reasonably estimated.
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Fig. 2. Trace plots and histograms of the posterior distributions
of the model parameters of the first modeling scenario. The
preset values are 1, 3.5, and 2.5 for PROChc, σ

2
S, and σ2

R,
respectively.

Figure 3 shows the posterior distributions of the socioeconomic
drivers and it indicates that the model can easily distinguish the
attributes of different correlations. This provides confidence in
establishing the correlation between SERS and RIMA
assessments, and so the issue of confounding between-assessment
correlations with within-assessment variable correlations does
not occur.  

The second scenario model performs as well as the first scenario
model, although the data structure is more complex. The second
scenario handles fixed effects on each household through the
linkage parameter. The main effect may contain relatively extreme
values, and the household randomness will result in additional
uncertainty in the correlation estimation. Here we assume that
PROChc follows a uniform random distribution, which the scatter
plot of PROChc across all the households confirms (Fig. 4). The
parameter distributions in Figure 5 show that MCMC
convergence occurred. Although there is a slight shift of the
PROChc mean from the pre-set variances, the magnitude of the
shift is negligible. This shift is a result of the randomness in the
prior distribution of PROChc and the variance we used to create
the random socioeconomic drivers and shocks. The pre-set value
of the estimated socioeconomic driver vectors is generally close
to the median of the posterior distributions (Fig. 6).

Fig. 3. The posterior distribution of 22 SERS and RIMA
components with 2600 resilience scores for the first modelling
scenario. The red dots are the pre-fix values. The boxes are the
median of the posterior distribution of each component. The
light blue range is the 20–80 quantile range of RIMA. The dark
blue range is the 10–90 quantile range of RIMA. The light
brown range is the 20–80 quantile range of SERS. The dark
brown range is the 10–90 quantile range of SERS.

Fig. 4. Simulated fixed PROChc values of the second modelling
scenario
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Fig. 5. Trace plots and histograms of the posterior distributions
of the model parameters of the second modeling scenario. The
preset values are 0.21, 3, and 3 for α, σ2

S, and σ2
R, respectively.

In the third scenario, where all model components (i.e., variables
and parameters) are unknown, it is difficult to estimate the
components when there is collinearity between parameters. This
can lead to identification problems of estimates in the posterior
distribution. On the basis of the trace plots, PROChc, αs, and αr 
converged well and the histograms show that the mean of
posterior distributions are close to the pre-set values (Fig. 7) and
the posterior distributions are bell shaped (Fig. 8), which indicates
the variance estimates are reasonable. The mean of the posterior
distributions after burn-in periods are 0.363, 0.675, and 1.34 for
αs, αr, and PROChc, respectively, which are close to the pre-set
values. The model represents the unexplained part of the
explanatory variables, indicating that it can estimate the
correlation within the socioeconomic drivers and the shocks. The
model can retrieve the complex correlation even with no prior
knowledge of the data, as the posterior distribution of the
estimated socioeconomic drivers shows (Fig. 9).  

It should be noted that the intent of the quantile plots of the
correlation coefficient are not for comparison with point
estimates. We created synthetic data using the values of
correlation coefficients from the regression model outputs
provided in Jones and d'Errico (2019). In Figures 3, 6, and 9, we
show the magnitude with which our values (created using the
posterior distribution of the correlation coefficient) align with
their values and indicate that our three scenario models suitably
represent their correlations.

Fig. 6. The posterior distribution of 22 SERS and RIMA
components with 2600 resilience scores for the second modelling
scenario. The red dots are the pre-fix values. The boxes are the
median of the posterior distribution of each component. The
light blue range is the 20–80 quantile range of RIMA. The dark
blue range is the 10–90 quantile range of RIMA. The light
brown range is the 20–80 quantile range of SERS. The dark
brown range is the 10–90 quantile range of SERS.

In summary, these results indicate that it is beneficial to apply the
BHM for modeling resilience. The posterior distribution plots of
driver vectors from all three modeling scenarios show that the
parameter vector estimation is reasonable on the basis of its
accuracy and spread. Given the number of driver parameters, the
results show robustness of the model. In addition, better estimation
of posterior distributions of the correlation parameter can lead to
better estimation of the variance parameter. Because of the
connection through the link parameters, this modeling strategy can
reasonably share the uncertainty with the posterior distribution of
all model parameters, instead of leaving all the uncertainties to the
variance parameter estimation of an ordinary least squared
regression model. This leads to better uncertainty
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Fig. 7. Trace plots and histograms of the posterior distributions
of the model parameters of the third modeling scenario. The
preset values are 1.3, 0.35, and 0.65 for PROChc, αS, and αR,
respectively.

Fig. 8. Trace plots and histograms of the posterior distributions
of the model variance parameters of the third modeling
scenario. The preset values are 2.8 and 2.7 for σ2

R and σ2
S,

respectively.

Fig. 9. The posterior distribution of 22 SERS and RIMA
components with 2600 resilience scores for the third modelling
scenario. The red dots are the pre-fix values. The boxes are the
median of the posterior distribution of each component. The
light blue range is the 20–80 quantile range of RIMA. The dark
blue range is the 10–90 quantile range of RIMA. The light
brown range is the 20–80 quantile range of SERS. The dark
brown range is the 10–90 quantile range of SERS.

estimates and improved correlation parameter estimates. The three
modeling scenarios also address several assumptions for the
unexplained parts of the resilience, thus increasing modeling
flexibility.

DISCUSSION AND CONCLUSION
The modeling approach proposed in this paper provides an
advanced way to compare and link subjective and objective
approaches to resilience assessment in a coupled Bayesian
hierarchal model. We provide the modeling results using synthetic
data, which were generated with the estimated parameter values
from Jones and d'Errico (2019). We have improved the modeling
approach by using a linkage variable between the SERS and RIMA
models, which the ordinary least squared regression was not able
to do. The linkage variable serves as the model connection and
represents embedded pattern through the posterior distribution.  

https://www.ecologyandsociety.org/vol27/iss4/art13/
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We demonstrated that by using a Bayesian hierarchical linkage
approach, we can effectively retrieve the correct parameter values
that are used to create the synthetic data under three different
modeling scenarios. The pre-set parameter values fall within the
posterior distribution range of the parameter estimation for all
three of our modeling scenarios (Figs. 2, 5, 7, and 8). The findings
demonstrated that the model is effective in estimating the
distribution of parameters of those variables, given the complex
correlations between the two assessments and within the model
variables (socioeconomic drivers and shocks). In addition, the
model provides reasonable uncertainty estimation. The model
shows its ability to accurately retrieve pre-set parameter values in
the posterior mean to reduce modeling bias, which also proves
the accuracy of the estimation.  

Our testing, using three different scenarios, indicates that the
BHM approach performs consistently well. More importantly,
the posterior distribution of the error terms and other parameters
provides the measurement of the multiple sources of
uncertainties. This shows our approach is flexible and highly
effective in handling resilience assessment comparison. Moreover,
these three modeling scenarios provide the opportunity to explore
the complex relationship between resilience data and explanatory
variables under different conditions and prior knowledge (or lack
thereof) about variables.  

The results also illustrated that the model could satisfactorily
estimate (1) the correlation between the subjective and objective
resilience assessments approaches, (2) the relationship of the
resilience assessments with the socioeconomic drivers and shocks,
and (3) the correlation between components of the socioeconomic
drivers and shocks. Although there are complex correlations
within the components of the drivers and shocks, the model did
provide effective estimation of the parameter values and their
precision. In comparison to the model proposed in Jones and
d'Errico (2019), the Bayesian hierarchical linkage model can
provide an improved uncertainty estimation that is not possible
with other models using least squared estimates.  

Most importantly, the Bayesian hierarchical linkage approach
connects these two separate models at the estimation stage by
using the MCMC algorithm for the conditional distribution (e.
g., Gelman et al. 2014). This estimates the latent process of the
scale parameters, which may come from fixed effects such as farm
size or number of livestock. The implementation at the analytical
level and the computations are relatively efficient.  

Although our approach using BHM has the potential to expand
the statistical analysis of resilience to temporally and spatially
explicit analyses, the main effort in undertaking a resilience
assessment lies in the development of survey instruments and in-
field data collection. The development of our approach is a
stepping stone for those implementing the integration of
subjective and objective resilience assessment methods in data
collection. In addition, it provides insights for other methods
describing resilience, if  assessment variables are sufficiently
similar, and it has the potential for expansion into a multilayer
model working at different spatial and temporal scales: an issue
commonly found in survey and census data (see, e.g., Herr 2007).
One way to represent regional differences, for example, is to have
a spatial covariate structure in model errors and use differential
spatial covariate structures that will allow adjustments to complex

spatial correlations (Song et al. 2007). This will enable robust
resilience assessments, which are needed to increase the
acceptance and use of resilience as a framework in governance
and policy development. Developing resilience-focused practices,
policies, and programs to adapt and respond to adverse events
will better prepare society for multiple stresses and shocks
associated with rapid change and climate change–related extreme
events (see, e.g., O’Connell et al. 2019).  

Both objective and subjective resilience assessments are important
means of assessing community resilience. However, to date,
resilience assessments have tended to be either qualitative or
quantitative (Walton et al. 2013, Mayega et al. 2015, Zhang et al.
2018, Measham et al. 2019, Ensor et al. 2021, Walpole et al. 2021).
Estimating resilience with different types of assessments within a
linked modeling framework improves robustness because it
enables a more precise estimation of different resilience
dimensions. This reduces collinearity and the estimation process
accommodates the mutual correlations between or within spatial
scales, which would not be possible using two separate models.
We built on and expanded previous research toward integrated
resilience assessment conducted by Jones and d'Errico (2019),
who compared separate objective and subjective resilience
assessment models. Our Bayesian hierarchal approach advances
this to multiple modeling scenarios, and it allows simulation of
both objective and subjective resilience assessments within a
single framework that also accounts for several sources of
uncertainty. Our model enables researchers to analyze resilience
assessments with a relatively simple and sound framework. We
developed the model with resilience to drought in mind; however,
it is relevant to a wide range of contexts where an integrated
subjective and objective assessment is useful, including disaster
preparedness and other climate impacts, such as heat stress,
flooding, and related industry change (Dogru et al. 2019,
Measham et al. 2019, Chu et al. 2021). It can provide preliminary
insights into resilience on the basis of the correlation estimation,
which is an economical and feasible way to obtain basic
knowledge of community resilience.  

Our current approach links subjective and objective resilience
assessments, which has some limitations. Although the linkage
variable serves as the connection between the two assessments
and enables the representation of embedded patterns through the
posterior distribution of the linkage variable, it does not provide
a full integration of the two resilience assessments. However, the
BHM approach provides us with a strong foundation for
developing a model that fully integrates subjective and objective
resilience assessments.

Responses to this article can be read online at: 
https://www.ecologyandsociety.org/issues/responses.
php/13547

Acknowledgments:

We would like to thank two anonymous reviewers for their comments
on the paper, which helped improve clarity and context. This work

https://www.ecologyandsociety.org/vol27/iss4/art13/
https://www.ecologyandsociety.org/issues/responses.php/13547
https://www.ecologyandsociety.org/issues/responses.php/13547


Ecology and Society 27(4): 13
https://www.ecologyandsociety.org/vol27/iss4/art13/

is part of the CSIRO Drought Resilience Mission (https://www.
csiro.au/en/about/challenges-missions/Drought-Resilience). The
CRC TiME partly supported Tom Measham’s contribution to the
paper. The support of the Australian Government through the
Cooperative Research Centre Program is acknowledged.

Data Availability:

Data are synthetic and derived from Jones and D'Errico 2019. Our
article provides all details (method and equations) to enable a repeat
of the analysis in publicly available software such as R (www.r-
project.org). We provide the synthetic data and Matlab analysis
code on https://data.mendeley.com. The direct link to the data is
here: http://dx.doi.org/10.17632/8822bxf5n6.1.

LITERATURE CITED
Allen, C. R., D. G. Angeler, B. C. Chaffin, D. Twidwell, and A.
Garmestani. 2019. Resilience reconciled. Nature Sustainability
2:898-900. https://doi.org/10.1038/s41893-019-0401-4  

Chu, S. H. Y., S.-Y. Tan, and L. Mortsch. 2021. Social resilience
to flooding in Vancouver: the issue of scale. Environmental
Hazards 20(4):400-415. https://doi.org/10.1080/17477891.2020.1834345  

Dogru, T., E. A. Marchio, U. Bulut, and C. Suess. 2019. Climate
change: vulnerability and resilience of tourism and the entire
economy. Tourism Management 72:292-305. https://doi.
org/10.1016/j.tourman.2018.12.010  

Ensor, J. E., T. Mohan, J. Forrester, U. K. Khisa, T. Karim, and
P. Howley. 2021. Opening space for equity and justice in resilience:
a subjective approach to household resilience assessment. Global
Environmental Change 68:102251. https://doi.org/10.1016/j.
gloenvcha.2021.102251  

Filatova, T., J. G. Polhill, and S. van Ewijk. 2016. Regime shifts
in coupled socio-environmental systems: review of modelling
challenges and approaches. Environmental Modelling & Software
75:333-347. https://doi.org/10.1016/j.envsoft.2015.04.003  

Folke, C., Å. Jansson, J. Rockström, P. Olsson, S. R. Carpenter,
F. S. Chapin III, A.-S. Crépin, G. Daily, K. Danell, J. Ebbesson,
T. Elmquist, V. Galaz, F. Moberg, M. Nilsson, H. Österblom, E.
Ostrom, Å. Persson, G. Peterson, S. Polasky, W. Steffen, B. Walker,
and F. Westley. 2011. Reconnecting to the biosphere. AMBIO.
40:719. https://doi.org/10.1007/s13280-011-0184-y  

Food and Agriculture Organization of the United Nations (FAO).
2016. Resilience index measurement and analysis-II (RIMA-II).
FAO, Rome, Italy. https://www.fao.org/publications/card/en/c/
f86d84f6-def3-46ec-a5da-4ce312f3af7f/  

Gelman, A., and D. B. Rubin. 1992. Inference from iterative
simulation using multiple sequences. Statistical Science 7
(4):457-472. https://doi.org/10.1214/ss/1177011136  

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari,
and D. B. Rubin. 2013. Bayesian data analysis. Third edition.
Chapman & Hall/CRC Press, New York, New York, USA. http://
www.stat.columbia.edu/~gelman/book/BDA3.pdf  

Grafton, R. Q., L. Doyen, C. Béné, E. Borgomeo, K. Brooks, L.
Chu, G. S. Cumming, J. Dixon, S. Dovers, D. Garrick, et al. 2019.

Realizing resilience for decision-making. Nature Sustainability 2
(10):907-913. https://doi.org/10.1038/s41893-019-0376-1  

Herr, A. 2007. Data integration issues in research supporting
sustainable natural resource management. Geographical
Research 45(4):376-386. https://doi.org/10.1111/j.1745-5871.2007.00476.
x  

Higuera, P. E., A. L. Metcalf, C. Miller, B. Buma, D. B. McWethy,
E. C. Metcalf, Z. Ratajczak, C. R. Nelson, B. C. Chaffin, R. C.
Stedman, S. McCaffrey, T. Schoennagel, B. J. Harvey, S. M. Hood,
C. A. Schultz, A. E. Black, D. Campbell, J. H. Haggerty, R. E.
Keane, M. A. Krawchuk, J. C. Kulig, R. Rafferty, and A.
Virapongse. 2019. Integrating subjective and objective
dimensions of resilience in fire-prone landscapes. BioScience 69
(5):379-388. https://doi.org/10.1093/biosci/biz030  

Jones, L., M. A. Constas, N. Matthews, and S. Verkaart. 2021.
Advancing resilience measurement. Nature Sustainability
4:288-289. https://doi.org/10.1038/s41893-020-00642-x  

Jones, L., and M. d'Errico. 2019. Whose resilience matters? Like-
for-like comparison of objective and subjective evaluations of
resilience. World Development 124:104632. https://doi.
org/10.1016/j.worlddev.2019.104632  

Leach, M., J. Rockström, P. Raskin, I. Scoones, A. C. Stirling, A.
Smith, J. Thompson, E. Millstone, A. Ely, E. Arond, C. Folke,
and P. Olsson. 2012. Transforming innovation for sustainability.
Ecology and Society 17(2):11. http://dx.doi.org/10.5751/
ES-04933-170211  

Markantoni, M., A. A. Steiner, and J. E. Meador. 2019. Can
community interventions change resilience? Fostering perceptions
of individual and community resilience in rural places.
Community Development 50(2):238-255. https://doi.
org/10.1080/15575330.2018.1563555  

Mayega, R. W., N. Tumuhamye, L. Atuyambe, D. Okello, G. Bua,
J. Ssentongo, and W. Bazeyo. 2015. Qualitative assessment of
resilience to the effects of climate variability in the three
communities in Uganda. Eastern Africa Resilience Innovation
Lab, Kampala University, Kampala, Uganda. https://www.
ranlab.org/wp-content/uploads/2013/11/RAN_EA-RILab-Uganda-
Community-Consultations-Report-Climate.pdf  

Measham, T. G., A. Walton, P. Graham, and D. A. Fleming-
Muñoz. 2019. Living with resource booms and busts: employment
scenarios and resilience to unconventional gas cyclical effects in
Australia. Energy Research & Social Science 56:101221. https://
doi.org/10.1016/j.erss.2019.101221  

O’Connell, D., Y. Maru, N. Grigg, B. Walker, N. Abel, R. Wise,
A. Cowie, J. Butler, S. Stone-Jovicich, M. Stafford-Smith, et al.
2019. The resilience adaptation pathways and transformation
approach (RAPTA): a guide for designing, implementing and
assessing interventions for sustainable futures. Version 2.
Commonwealth Scientific and Industrial Research Organisation
(CSIRO), Canberra, Australia. https://acfid.asn.au/sites/site.
acfid/files/19-00418_LW_REPORT_RAPTAGuide_WEB_190829.
pdf  

Pimm, S. L., I. Donohue, J. M. Montoya, and M. Loreau. 2019.
Measuring resilience is essential to understand it. Nature
Sustainability 2:895-897. https://doi.org/10.1038/s41893-019-0399-7  

https://www.csiro.au/en/about/challenges-missions/Drought-Resilience
https://www.csiro.au/en/about/challenges-missions/Drought-Resilience
https://www.ecologyandsociety.org/vol27/iss4/art13/
https://www.r-project.org
https://www.r-project.org
https://data.mendeley.com
http://dx.doi.org/10.17632/8822bxf5n6.1
https://doi.org/10.1038/s41893-019-0401-4
https://doi.org/10.1080/17477891.2020.1834345
https://doi.org/10.1016/j.tourman.2018.12.010
https://doi.org/10.1016/j.tourman.2018.12.010
https://doi.org/10.1016/j.gloenvcha.2021.102251
https://doi.org/10.1016/j.gloenvcha.2021.102251
https://doi.org/10.1016/j.envsoft.2015.04.003
https://doi.org/10.1007/s13280-011-0184-y
https://www.fao.org/publications/card/en/c/f86d84f6-def3-46ec-a5da-4ce312f3af7f/
https://www.fao.org/publications/card/en/c/f86d84f6-def3-46ec-a5da-4ce312f3af7f/
https://doi.org/10.1214/ss/1177011136
http://www.stat.columbia.edu/~gelman/book/BDA3.pdf
http://www.stat.columbia.edu/~gelman/book/BDA3.pdf
https://doi.org/10.1038/s41893-019-0376-1
https://doi.org/10.1111/j.1745-5871.2007.00476.x
https://doi.org/10.1111/j.1745-5871.2007.00476.x
https://doi.org/10.1093/biosci/biz030
https://doi.org/10.1038/s41893-020-00642-x
https://doi.org/10.1016/j.worlddev.2019.104632
https://doi.org/10.1016/j.worlddev.2019.104632
http://dx.doi.org/10.5751/ES-04933-170211
http://dx.doi.org/10.5751/ES-04933-170211
https://doi.org/10.1080/15575330.2018.1563555
https://doi.org/10.1080/15575330.2018.1563555
https://www.ranlab.org/wp-content/uploads/2013/11/RAN_EA-RILab-Uganda-Community-Consultations-Report-Climate.pdf
https://www.ranlab.org/wp-content/uploads/2013/11/RAN_EA-RILab-Uganda-Community-Consultations-Report-Climate.pdf
https://www.ranlab.org/wp-content/uploads/2013/11/RAN_EA-RILab-Uganda-Community-Consultations-Report-Climate.pdf
https://doi.org/10.1016/j.erss.2019.101221
https://doi.org/10.1016/j.erss.2019.101221
https://acfid.asn.au/sites/site.acfid/files/19-00418_LW_REPORT_RAPTAGuide_WEB_190829.pdf
https://acfid.asn.au/sites/site.acfid/files/19-00418_LW_REPORT_RAPTAGuide_WEB_190829.pdf
https://acfid.asn.au/sites/site.acfid/files/19-00418_LW_REPORT_RAPTAGuide_WEB_190829.pdf
https://doi.org/10.1038/s41893-019-0399-7


Ecology and Society 27(4): 13
https://www.ecologyandsociety.org/vol27/iss4/art13/

Rivington, M., K. B. Matthews, G. Bellocchi, K. Buchan, C. O.
Stöckle, and M. Donatelli. 2007. An integrated assessment
approach to conduct analyses of climate change impacts on
whole-farm systems. Environmental Modelling & Software 22
(2):202-210. https://doi.org/10.1016/j.envsoft.2005.07.018  

Saja, A. M. A., A. Goonetilleke, M. Teo, and A. M. Ziyath. 2019.
A critical review of social resilience assessment frameworks in
disaster management. International Journal of Disaster Risk
Reduction 35:101096. https://doi.org/10.1016/j.ijdrr.2019.101096  

Song, Y., Y. Li, B. Bates, and C. K. Wikle. 2014. A Bayesian
hierarchical downscaling model for south-west Western Australia
rainfall. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 63(5):715-736. https://doi.org/10.1111/rssc.12055  

Song, Y., C. K. Wikle, C. J. Anderson, and S. A. Lack. 2007.
Bayesian estimation of stochastic parameterizations in a
numerical weather forecasting model. Monthly Weather Review
135(12):4045-4059. https://doi.org/10.1175/2007MWR1928.1  

Suwarno, A., A. A. Nawir, Julmansyah, and Kurniawan. 2009.
Participatory modelling to improve partnership schemes for
future community-based forest management in Sumbawa district,
Indonesia. Environmental Modelling & Software 24(12):1402-1410.
https://doi.org/10.1016/j.envsoft.2009.07.001  

Walker, B. 2020. Resilience: what it is and is not. Ecology and
Society 25(2):11. https://doi.org/10.5751/ES-11647-250211  

Walker, B., C. S. Holling, S. R. Carpenter, and A. Kinzig. 2004.
Resilience, adaptability and transformability in social-ecological
systems. Ecology and Society 9(2):5. https://doi.org/10.5751/
ES-00650-090205  

Walker, J., and M. Cooper. 2011. Genealogies of resilience: from
systems ecology to the political economy of crisis adaptation.
Security Dialogue 42(2):143-160. https://doi.org/10.1177/09670­
10611399616  

Walpole, E., J. Loerzel, and M. Dillard. 2021. A review of
community resilience frameworks and assessment tools: an
annotated bibliography. National Institute of Standards and
Technology, Gaithersburg, Maryland, USA. https://doi.
org/10.6028/NIST.TN.2172  

Walton, A. M., R. McCrea, R. Leonard, and R. Williams. 2013.
Resilience in a changing community landscape of coal seam gas:
Chinchilla in Southern Queensland. Journal of Economic and
Social Policy 15(3):4-28. https://search.informit.org/doi/10.3316/
ielapa.794512449998862  

Wikle, C. K. 2010. Hierarchical modelling with spatial data. Pages
89-106 in A. E. Gelfand, P. J. Diggle, P. Guttorp, and M. Fuentes,
editors. Handbook of spatial statistics. CRC, Boca Raton,
Florida, USA. https://doi.org/10.1201/9781420072884  

Xiao, W., X. Lv, Y. Zhao, H. Sun, and J. Li. 2020. Ecological
resilience assessment of an arid coal mining area using index of
entropy and linear weighted analysis: a case study of Shendong
coalfield, China. Ecological Indicators 109:105843. https://doi.
org/10.1016/j.ecolind.2019.105843  

Zhang, H., H. Yuan, G. Li, and Y. Lin. 2018. Quantitative
resilience assessment under a tri-stage framework for power
systems. Energies 11(6):1427. https://doi.org/10.3390/en11061427

https://doi.org/10.1016/j.envsoft.2005.07.018
https://doi.org/10.1016/j.ijdrr.2019.101096
https://doi.org/10.1111/rssc.12055
https://doi.org/10.1175/2007MWR1928.1
https://doi.org/10.1016/j.envsoft.2009.07.001
https://doi.org/10.5751/ES-11647-250211
https://doi.org/10.5751/ES-00650-090205
https://doi.org/10.5751/ES-00650-090205
https://doi.org/10.1177/0967010611399616
https://doi.org/10.1177/0967010611399616
https://doi.org/10.6028/NIST.TN.2172
https://doi.org/10.6028/NIST.TN.2172
https://search.informit.org/doi/10.3316/ielapa.794512449998862
https://search.informit.org/doi/10.3316/ielapa.794512449998862
https://doi.org/10.1201/9781420072884
https://doi.org/10.1016/j.ecolind.2019.105843
https://doi.org/10.1016/j.ecolind.2019.105843
https://doi.org/10.3390/en11061427
https://www.ecologyandsociety.org/vol27/iss4/art13/


Appendix 1 
Scenario 1, full conditional distributions 
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Scenario 2, full conditional distributions 
Model: 
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Scenario 3, full conditional distributions 
The full conditional distributions of the proposed model in the third data scenario: 
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Scenario model posterior distributions of the first 6 driver variable 
vectors 
 

 

Figure A.1.1: Histograms and kernel fit (red line) from Matlab function (histfit) of the 

posterior distributions of the first 6 variable in driver vector for the first modelling scenario.  



 

Figure A.1.2: Histograms and kernel fit (red line) from Matlab function (histfit) of the 

posterior distributions of the first 6 driver variable vector for the second modelling scenario.  



 

Figure A.1.3: Histograms and kernel fit (red line) from Matlab function (histfit) of the 

posterior distributions of the first 6 driver variable vector for the third modelling scenario.  
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